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Abstract

It is our goal to understand the role real-time human in-
teraction can play in machine learning algorithms for
robots. In this paper we presentInteractive Reinforce-
ment Learning(IRL) as a plausible approach for train-
ing human-centric assistive robots by natural interac-
tion. We describe an experimental platform to study
IRL, pose questions arising from IRL, and discuss ini-
tial observations obtained during the development of
our system.

Introduction

Machine learning is bound to play a significant role in the
development of robotic assistants for human environments
such as homes, schools, hospitals, nursing homes, and of-
fices. Taking into account the complexity and unpredictabil-
ity of both the surroundings and the tasks that such robots
will have to accommodate for, we expect that a significant
amount of training will be carried out by (possibly unskilled)
humans on-location. In order for assistive robots to play a
long-term role in people’s lives, we should additionally ex-
pect the need for the robot to periodically learn new tasks
and task refinements.

While various works have acknowledged and addressed
some of the hard problems that robots face when learning
in the real-world (Mataric 1997; Thrun & Mitchell 1993;
Thrun 2002), social learning in a human environment, as
described above, poses additional challenges for machine
learning systems. Autonomous robots will need to learn
from natural interactions with untrained humans. Given the
limits of human attention and patience, they will need to
learn in real-time from relatively few examples. Since ev-
ery action utilizes precious time and resources (battery, mo-
tor life, etc.) each trial run must be thoroughly exploited.
The tolerance for trials ending in failure is bounded at best
(and often nonexistent) and realistically is far below the vast
number usually relied upon for learning via exploration. In
summary, human-centric robots will have to learn efficiently,
safely, and from few examples.
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Interactive Reinforcement Learning
To this end we are developing the idea ofInteractive Re-
inforcement Learning(IRL) for autonomous robotic agents.
We use the term “IRL” as a generic name for a variation
on traditional Reinforcement Learning (RL) algorithms, in
which the reward signal is determined not only based on the
world state and agent action, but additionally by a real-time
interaction with a human teacher or coach. In an IRL ses-
sion, the human can choose to change the reward signal not
only at certain goal states, but continuously throughout the
interaction. However, IRL also allows the human to remain
passive when appropriate, usually deferring to an indepen-
dent environmental based reward signal.

Understanding the impact that human interaction has on
a standard machine learning process is the overarching goal
of this research. Our work on this problem domain is in its
preliminary stages. In this paper we present an experimental
platform to study IRL, pose some questions we are work-
ing to resolve, discuss initial observations obtained during
the development of our system, and project possible ways
to address the new challenges presented by IRL for human-
centric robots.

Research Questions
We want to study how human interaction can and should
change the machine learning process. How does natural hu-
man feedback work with standard reinforcement learning al-
gorithms? What are the new constraints? What behavioral
feedback does the human teacher need in order to understand
the process? Motivated by these questions and others, we
are developing a simulation environment that can serve as a
tool for experimenting with various algorithms and enhance-
ments. The ultimate goal of this research is to use these re-
sulting learning mechanisms on a humanoid robot.

IRL emphasizes theinteractive elements in teaching.
There are inherently two sides to an interaction, in our case
the teacher and the learner. Our approach aims to enhance
standard machine learning algorithms from both perspec-
tives of this interaction.

How Do Humans Teach?
Significant strides have been made in the development of
machine learning algorithms in structured environments



(static and dynamic). However, in order to adapt these ma-
chine learning methods for robots that are to learn from real-
time natural human instruction, we must take into account
factors of human interaction. An important question for IRL
is “how do humans want to teach?”. Our approach begins
with a few hypotheses about this question. We expect to
learn about these issues through experiments with real peo-
ple.

One aspect of human teaching is thetiming of feedback
given to the learning agent. While timing of reward signals,
and particularly dealing with delayed rewards have been dis-
cussed in RL literature (Kaelbling, Littman, & Moore 1996),
the timing of an untrained human’s feedback in an IRL sit-
uation has received little attention, yielding numerous open
questions:

• Is there a lower bound on time between rewards?

• Does timing change at different stages of the interaction?

• Which of the agent’s “behavioral” elements influence the
timing of the feedback?

• How does habituation influence reward-giving?

A second human factor is thelevel of feedback that a
human teacher would want to give an interactive machine
learning agent.

• When does feedback pertain to the whole task versus a
specific action in the task?

• How often is feedback associated with a state as a whole,
as opposed to a certain aspect of a state?

• What agent behavior can elicit high-level steering as op-
posed to micro-management of the agent’s actions?

A meta-issue involved in social learning with a human
teacher is that interactions with different teachers could be
quite different.

• Are there different teaching styles, or coach types?

• Can these be automatically detected?

• Does it make sense to adapt the agent’s behavior to a spe-
cific teaching pattern?

We believe that all of the above will prove crucial for de-
signing machine learning algorithms for robots that are to
learn in a natural human environment.

Transparency - Revealing the Internal State
The above questions pertain to factors in the human
teacher’s behavior. Another important question is how the
learning agent’s behavior can affect the learning process. A
social learning interaction is inherently a partnership, where
both learner and teacher influence the performance of the
tutorial dyad. While this observation seems straightforward,
little attention has been paid to the communication between
human teacher and artificial agent in the traditional machine
learning literature.

Particularly, we believe that thetransparencyof the
learner’s internal process is paramount to the success of the
tutorial dialog. However, a fine balance must be struck be-
tween engulfing the human teacher with all pertinent infor-
mation, and leaving them in the dark.

A central goal of the presented architecture is the in-
vestigation of transparency mechanisms that are intuitive
for untrained human coaches of machine learning robotic
agents. We look towards early child development litera-
ture to inform our choice of agent-to-teacher signals, and
therefore stress the use ofgesture, gaze, andhesitationas
intuitively readable signals for an IRL agent (Kaye 1977;
Krauss, Chen, & Chawla 1996; Argyle, Ingham, & McCallin
1973)

Experimental Platform: Sophie’s World

To investigate the above questions regarding IRL, we have
implemented a Java-based simulation platform, which we
dub “Sophie’s World” (SW). SW is a generic object-based
State-Action MDP space for a single agent, Sophie, using a
fixed set of actions on a fixed set of objects. The semantics
in Sophie’s World are generic with respect to task context or
learning algorithm, enabling it to be used with a variety of
specific tasks and learning modules.

The design of SW was done with modularity and web-
deployment in mind. We plan to substitute various learning
algorithms and utilize different task scenarios, while keep-
ing the human interaction elements unchanged. We also plan
to deploy SW as a web-based application, enabling the col-
lection of a large amount of naı̈ve-user data towards our goal
of understanding how human teachers steer a learning agent.

Sophie’s MDP

In our system, a WorldW = 〈L,O, Σ, T 〉 is defined by a
finite set ofk locationsL = {l1, . . . , lk} andn objectsO =
{o1, . . . , on}. Each object can be in one of an object-specific
number of mutually exclusive object states. If we denote the
set of states objectoi can be in asΩi, then the complete
object configuration space can be described asO∗ = 〈Ω1 ×
. . .× Ωn〉.

W is also defined by a set of legal statesΣ ⊂ 〈L×LO ×
O∗〉. Thus a world states(la, lo1 . . . lon

, ω) consists of the
location of the agent, the location of each of the objects, and
the object configuration inω ∈ O∗.

Finally, W has a transition functionT : Σ × A 7→ Σ,
whereA is fixed (see below).

The action spaceA is defined by four predefined atomic
actions with arguments as follows: Assuming the locations
L are arranged in a ring, at any time step, the agent canGO
left or right , moving to a different location in the ring;
she canPICK-UP any object that is in her current location;
she canPUT-DOWNany object currently in her possession;
and she canUSEany object in her possession on any object
in her current location. Each action implements a transition
function inT that advances the world state.

On top of the described generic architecture we can then
build task-specific implementations, which determine the re-
maining aspects of the world: the the spatial relationship be-
tween the locations, the limit on the number of objects in
the agent’s possession, and the sub-transitionTU ⊂ T that
is accomplished by theUSEaction.



Interactive Rewards Interface
A central feature of SW is the interactive reward interface.
Using the mouse, a human trainer can—at any point in the
operation of the agent—award a scalar reward signalr =
[−1, 1]. The user receives visual feedback enabling them to
tune the reward signal to a certain value before sending it to
the agent. Choosing and sending the reward value does not
halt the progress of the agent, which runs asynchronously to
the interactive human reward.

Learning Algorithms
We believe that the reinforcement learning paradigm lends
itself naturally to a human interaction component, even
though there are few examples of interactive RL. Initially
the algorithms we are implementing include a standard Q-
Learning algorithm (Russell & Norvig 2002), a hierarchical
SMDP approach (Sutton, Precup, & Singh 1998), and we
are also looking at a recent biologically inspired form of hi-
erarchical RL (Singh, Barto, & Chentanez 2005).

We view this as a platform to explore and compare multi-
ple learning algorithms to understand how they can (or can-
not) be used in an interactive setting with untrained users.
The goal is to understand, under different approaches, how
human interaction and transparent expression of internal
state can be incorporated into the learning process.

Transparency behaviors
Adding elements of internal state transparency is expected
to significantly alter the learning process. The first element
of transparency we are exploring is gaze. The use of gaze
requires that the learning agent have a physical embodiment
(either real or virtual) that can be viewed and understood
by the human as having a forward heading or in some way
orienting prior to action. Thus, gaze precedes each action
and communicates something about the action that is go-
ing to follow. More abstract functions of gaze that we also
hope to explore include gaze as an expression of awareness
(looking at something establishes the mutual knowledge that
you know about it) and gaze as an expression of uncertainty
(looking between two potential action targets can communi-
cate low confidence).

The Kitchen World
To exemplify a usage of SW, our first implemented task sce-
nario is a Kitchen world (see Fig 1). In it the agent is to learn
to prepare batter for a cake and put the batter in the oven.

The object space contains five objects:Flour , Eggs , a
Spoon (each with a single object state), aBowl (with five
object states:empty , flour , eggs , unstirred , and
stirred ), and aTray (with three object states:empty ,
batter , and baked ). The world has four locations:
Shelf , Table , Oven, andAgent (i.e., the agent is in the
center with a shelf, table and oven surrounding her).

In this kitchen implementation, the agent can hold at most
one thing at a time.USEing an ingredient on theBowl puts
that ingredient in it; using theSpoon on theunstirred
Bowl transitions its internal state tostirred ; Using the
stirred Bowl on anempty Tray fills it, and so on.

Figure 1: Sophie’s Kitchen. The display at the top left indi-
cates the current state-based reward. The vertical bar is the
interactive reward interface and is controlled by the human.

In the initial state,S0, all objects are on theShelf , and
the agent faces theShelf .

A successful completion of the task will include putting
flour and eggs in the bowl, stirring the ingredients using the
spoon, then transferring the batter into the tray, and finally
putting the tray in the oven.

Due to the large number of same-state transitions and the
flexibility of the state space, there are many action sequences
that can lead to the desired goal. Here is one such sequence:

PICK-UP Bowl ; GO right ; PUT-DOWN Bowl;
GO left ; PICK-UP Flour ; GO right ; USE
Flour ; PUT-DOWN Flour; GO left ; PICK-UP
Eggs ; GO right ; USE Eggs; PUT-DOWN Eggs; GO
left ; PICK-UP Spoon ; GO right ; USE Spoon;
PUT-DOWN Spoon; GO left ; PICK-UP Tray ; GO
right ; PUT-DOWN Tray; PICK-UP Bowl ; USE
Bowl ; PUT-DOWN Bowl; PICK-UP Tray ; GO right ;
PUT-DOWN Tray.

In order to encourage short sequences, an inherent nega-
tive reward signal ofρ = −.04 is placed in any state but the
goal state. Also, some end states are so-calleddisasterstates
(for example—putting the eggs in the oven), which result in
a significant negative reward, the termination of the current
trial episode, and a transition to stateS0.

Initial Observations
The following section includes some of our initial ob-
servations concerning Interactive Reinforcement Learning
gleamed from our own interactions with the system in its
current development phase.

It is fairly obvious that a standard Q-Learning agent, for
example, is not suitable for learning an assistive task using
interactive reward training as described above—if only due
to the vast number of trials necessary to form a reasonable
policy. However, the details of what exactly needs adjust-
ment, and what human factors are dominant in such an in-
teraction, are largely unexplored. It is these key components



that we wish to uncover and enumerate.

What does the Interactive Reward Pertain To?
The main difference between a standard RL system and the
proposed IRL framework is the real-time interactive reward
signal that is administered by the human coach. In con-
trast to a traditional MDP reward signal, where a reward
is closely associated with a complete state or a state-action
pair, a human-derived reward bears a much more vague re-
lation to the most recent state and action of the agent.

A human coach is expected to naturally communicate
in goal-oriented and intentional ways, and it will be up to
the agent to determine what the human’s communication is
about. If in most MDP scenarios a reward pertains to a com-
plete state, in an IRL reward there is usually something in
particular about the state that is being rewarded (i.e., a par-
ticular subset of features that has some meaning or purpose
to the task at hand). For example, the human will expect
to be able to teach the kitchen agent that it is bad to put the
spoon in the fire, no matter what is currently on the table, and
they will expect the agent not to continually put the spoon in
the fire given small perturbations in the feature space of the
state.

Other elements of interactive reward have been noted by
(Isbellet al. 2001). Specifically their experiments with a re-
inforcement learning agent interacting with human trainers
showed that there is significant variability in the timing of
rewards, creating a credit assignment problem, usually asso-
ciated with delayed reward.

In addition to delayed rewards, we expect that with the
addition of transparent feedback (especially revealing pre-
action gestures like gaze) the human teacher will naturally
try to predict the agents intentions, and will administer an-
ticipatory feedback as well. While delayed rewards have
been discussed in the Reinforcement Learning community,
the concept of rewarding the action you are about to do is
novel and will require new tools and attention.

Habituation in Teaching
(Isbell et al. 2001) also observed habituation in an interac-
tive teaching task. In the beginning of training users tended
to give a great deal of feedback, but after the algorithm be-
comes sufficiently good the feedback was shown to drop off.
The human often overlooks the occasional mistake, and will
not reward good behavior. Thus, we might conclude a need
for a “no feedback is good feedback” policy, whereby the
agent can assume that, in some cases, if the human partner
says nothing the agent is doing something right.

There may be ways to battle the teaching habituation
through social interaction. If the agent has not received feed-
back for some time it could simply ask the human partner for
encouragement.

Regardless, we must take into account the fact that the hu-
man partner has a limited attention span for repetitive teach-
ing. Thus, it will be important for the algorithm to be as
efficient as possible. For instance, once a certain part of
the state-action space is well known, the agent should prob-
ably rush through it to get to the unknown and interesting
elements at which it may slow down its action to allow for

more feedback from the human instructor. The human part-
ner will likely need to see the progress from their teaching
quickly in order to remain motivated to teach.

Beyond Scalar Rewards
As stated, a reward signal is typically stationary and is some
function of the environment. It is usually a scalar value indi-
cating positive or negative feedback for being in the current
state or for a particular state-action pair. Introducing human-
derived real-time reward prompts us to reconsider these as-
sumptions.

For instance, an important characteristic of human social
learning interactions is “just-in-time” error correction. The
teacher can stop and correct the learner’s behavior mid-task.
Moreover, when told something is wrong, the obvious next
step is to reverse or “undo” the previous action. Standard re-
inforcement learning algorithms are not designed to change
on such a small time scale and symmetry is not typically
part of action representation. However, when a human part-
ner is the teacher, the algorithm should act more drastically
towards negative feedback, and should try to take actions
to revert to the prior state. This leads to broader questions
about what “undo” means for various actions. It requires
some knowledge about equal and opposite action (e.g. pick-
up and put-down), and clearly it is sometimes not possible
to undo an action (e.g. ”mix the eggs and flour”). This meta-
knowledge of one’s action space may need to be learned in
addition to learning specific tasks.

Finally, we found that a scalar positive/negative feedback
signal is a fairly impoverished communication channel for
a human-centric tutorial interaction. Having other signals
than the scalar reward will likely be helpful to both the hu-
man teacher and the machine learning algorithm. For in-
stance, we expect that letting the teacher say ”keep going”,
”that’s enough”, ”try again”, etc. should help the algorithm
control exploration in ways that will be more readable and
reasonable to the human partner.

It might also be worth considering qualitatively different
levels of reward. Some things are bad for the task because
they are useless, others are bad because they cause irre-
versible damage to the goal, yet others might not be related
to the task, but are inherently bad for the robot’s safety.

Related Works
Active learning or learning with queries (Cohn, Ghahra-
mani, & Jordan. 1995) is an approach to machine learning
that explicitly acknowledges a human in the loop. In these
approaches the human’s roles is generally quite constrained,
and there is not usually much attention paid to making the
workings of the learning process transparent to the human.

Cobot is a software agent that learns how to behave in
an online community via Reinforcement Learning, receiv-
ing rewards from the members of that community (Isbellet
al. 2001). While the environment and interaction is quite
different than our task goals, the application of a standard
reinforcement learning algorithm to an interactive situation
with untrained human teachers makes their findings inter-
esting and relevant for this work. Their findings suggest that



the average user did not have behavior that was easy to learn
from, reward timing is not regular, and reward values are
not always consistent over long periods of time. We hope to
follow-up and extend this work with new data from our IRL
sessions.

Aspects of social learning are starting to be explored
with robots. Natural language has been utilized to frame
learning episodes in a classification task (Steels & Kaplan
2001), and for instructing a robot in a navigation task (Lau-
ria et al. 2002). In Nicolescu and Matarić (2003), a robot
learns a sequential task by following a human demonstra-
tion (e.g., learning a path through an environment of ob-
jects). Short verbal commands point out information and
frame the demonstration; by saying ’bad’ the human in-
structor identifies which part of the robot’s task model is
incorrect, and the subsequent demonstration is used to cor-
rect the problem. In other work we have demonstrated as-
pects of collaboration and social learning on a humanoid
robot, using social cues and gestures to achieve trans-
parency and guide instruction (Lockerd & Breazeal 2004;
Breazealet al. 2004).

Conclusions
Even from limited exploration of our experimental platform,
we were able to identify a host of new considerations for
Reinforcement Learning that stem directly from the intro-
duction of a human-based real-time reward signal. We hope
to solidify our observations as the system is further devel-
oped and deployed to a larger number of untrained human
subjects.

We also believe that our conclusions can extend beyond
RL robotic agents to other kinds of feedback-based learning
systems. Notions ofaboutness of a reward signal, delayed
and anticipatory rewards, and even a generalization of gaze
as any forward-looking action can be expected to play a role
in any feedback-based machine learning algorithm with a
human in the loop.
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