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Abstract 
We investigate the comprehensibility of dynamic Bayesian 
multinets (DBMs) and the dynamic Bayesian networks 
(DBNs) that compose them.  Specifically, we compare the 
DBM structures resulting from searches employing 
generative and class discriminative scoring functions.  The 
DBMs are used to model the temporal relationships among 
RVs and show how the relationships change between 
different classes of data.  We apply our technique to the 
identification of dynamic relationships among neuro-
anatomical regions of interest in both healthy and demented 
elderly patients based on functional magnetic resonance 
imaging (fMRI) data. The structures resulting from both 
generative and class discriminative scores were found to be 
useful by our collaborating neuroscientist, but for differing 
reasons. For example, generative scores result in structures 
that illuminate highly likely relationships and are more 
easily interpreted. Conversely, structures resulting from 
class discriminating scores are capable of representing more 
subtle changes and can illuminate important behavioral 
differences not apparent from structures learned from 
generative scores. 

Introduction 

We investigate the comprehensibility of Bayesian multinet 
(BM) structures used to model the interaction among 
neuroanatomical regions of interest (ROIs). Using 
functional magnetic imaging (fMRI) data collected by 
Buckner et al. (2000) on both healthy and demented elderly 
patients, our goal is to illuminate how ROI relationships 
change due to the onset of dementia. 

BMs are a generalization of the Bayesian network (BNs) 
framework, which has long been recognized as a highly 
comprehensible modeling framework.  BNs are commonly 
used to model systems in which the underlying relation-
ships among random variables (RVs) is unknown.  For 
these domains, the structure of the BN is also unknown and 
must be searched for.     

Unfortunately, the comprehensibility of BN structures is 
limited by their static nature.  This is because a BN’s 
structure cannot change based on the values of its 
constituent RVs.  E.g., if the independence between two 
RVs A and B is dependent on the value of a third RV C, a 
BN will include a link between A and B, and a link between 
A and C.  However, the fact that A and B are conditionally 

dependent given C is not apparent from the structure.  
Instead, this conditional dependence must be teased out 
from the BN’s parameters: a difficult task given the large 
number of parameters many BNs have.   

Bayesian multinets (BMs) address this issue by modeling 
the system with multiple BNs.  In our case, one BN with its 
own structure is used to represent each class of data.  Since 
fMRI data is temporal in nature, we use BNs that explicitly 
model temporal dynamics: dynamic Bayesian networks 
(DBNs).  Multinets that are composed of DBNs are 
referred to as dynamic Bayesian multinets (DBMs).  For 
our purposes, the DBM is merely a collection of DBNs and 
we will mainly refer to a DBM’s constituent DBNs as 
opposed to the DBMs themselves. 

Once the structure has been found for a DBM, i.e., a 
structure has been found for each of the underlying DBNs, 
interpretation of the structure is a relatively straightforward 
process. The existence of a link clearly indicates a 
relationship between RVs.  However, the nature of that 
relationship is entirely dependent on the method used to 
score candidate structures during the DBN structure search.  
We will refer to these methods as scores. 

We divide scores into two categories: generative and 
class discriminative.  Generative scores rank structures 
based on how well they identify highly likely relationships 
in the data. Conversely, discriminative scores rank 
structures based on how well they identify relationships 
whose dynamics change between classes.  The type of 
score used actually changes the semantic meaning of the 
links in the resulting DBN structure. DBNs trained with 
generative scores, which we will simply refer to as 
generative models, select significantly different structures 
than DBNs trained with class discriminative scores, 
referred to as discriminative models.   

Regardless of the score used, we find that structures 
mainly provide two types of useful information.  1)  The set 
of parents for each ROI and how that parent set changes 
between each class’s DBNs.  2) The number of times a ROI 
shows up as a parent in each class’s DBN.  Both sets of 
results give different information about the underlying 
system based on which type of score was used to train the 
structure. 

We find that generative models are generally more 
comprehensible than their discriminative counterparts.  
Since they describe highly likely relationships in the data, 



 
we have found that our collaborating neuroscientist can 
relatively easily compare structural results with putative 
neuroanatomical relationships.  However, since many of 
these putative relationships are present in both healthy and 
demented patients, they tend not to be represented in 
discriminative models.  This makes validation with 
discriminative models more difficult than with generative 
models.  However, discriminative models more readily 
indicate changing behavior between demented and healthy 
populations. 

Previously, we have also employed other machine 
learning techniques such as the Gaussian naïve Bayesian 
network (GNBN) and the support vector machine (SVM) 
to classify fMRI data.  We briefly look at the 
comprehensibility of these models and find that they are 
not particularly helpful to our collaborating neuroscientist. 

Background 

Bayesian Networks 
For an introductory overview of Bayesian networks (BNs), 
we refer the reader to Charniak’s aptly titled “Bayesian 
Networks without Tears”  (Charniak 1991). For a more 
detailed analysis, to (Jensen 2001; Heckerman, Geiger and 
Chickering 1995).  

BNs are directed acyclic graphs that explicitly represent 
independence relationships among RVs. They contain 
nodes for each RV and a directed link between any two 
statistically correlated nodes. The node originating the 
directed link is a parent and the terminating node a child. A 
child and its set of parents are a family. The set of nodes 
and links composes a structural topology. Each node 
contains a conditional probability table1 (CPT) that 
describes relationships between itself and its parents. 

If the topology is unknown, i.e., the independence 
relations among RVs is unknown, an appropriate structure 
must be elicited from the data. This process is referred to as 
structure search and is well understood (Heckerman, 
Geiger & Chickering 1995) and known to be NP hard 
(Chickering, Geiger & Heckerman 1994). In essence, 
structure search boils down to proposing as many 
hypothesis structures as possible and measuring the 
wellness of fit between each structure and the data. The 
method used to measure this fit is called a structure scoring 
function, which we refer to simply as a score. 

In many real-world domains, there are too many 
structures to score exhaustively.  As such, greedy search 
heuristics are typically employed.  One of the most 
commonly employed heuristic is as follows.  Start with a 
topology with no links and iteratively search through all 
legal modifications to the current topology. A legal 
modification is a link addition, removal or inversion that 
does not result in a cycle. Calculate the score for each 
modification and chose the modification that resulted in the 
                                                 
1 We assume discrete BNs. 

highest score. Repeat until no modifications yield 
improvements. 

The semantic meaning of the resulting structures 
depends on the type of score used during the structure 
search.  We divide scores into two general categories: 
generative and class-discriminative.  Generative scores, 
such as BD (Cooper and Herskovits 1992), BDE 
(Heckerman, Geiger and Chickering 1995), MDL (Lam & 
Bacchus) or even just posterior likelihood, select structures 
that describe highly likely relationships among RVs.  
Highly likely relationships are defined to be relationships 
that have high posterior probabilities given the data.   

However, if classification is the goal, highly likely 
structures are not ideal.  Class-discriminating scores, such 
as class conditional likelihood (CCL) (Grossman & 
Domingos 2004), EAR (Bilmes et al. 2001) and 
approximate conditional likelihood (ACL) (Burge & Lane 
2005), more effectively select structures that discriminate 
among classes.   

Dynamic Bayesian Networks 
We are particularly interested in modeling temporal 
processes via the dynamic BN (DBN) representation. For 
an overview of DBNs, we refer the reader to (Murphy 
2002). We use the following notation. 

X0:T is an observation which is a set of T fully observable 
vectors of n RVs, { Xi

t : 1 ≤ i ≤ n, 0 ≤ t < T}  with arities ri.  
Y is a RV used to represent the class associated with a 
given observation. A data point consists of observable RVs 
and a class RV: d = { X0:T, Y} . Notice that the class RV Y is 
associated with the entire time series.  We will assume 
binary classification such that the domain of Y = { 1, 2} . A 
dataset, D, is a collection of m fully observable data points, 
{ d1, …, dm} . Dj denotes a dataset containing all of (and 
only) the data points for a specific class, i.e., Dj = { d : Yd = 
j} . mj = |Dj|. 

B denotes a DBN containing nodes for RVs { X0:E, Y} .  E 
is used to denote time in a DBN instead of T since E may 
not equal T.  The parent set for a RV Xi

e, 0 ≤ e < E, is 
denoted PaB(Xi

e) or just Pa(Xi
e) if the DBN can be inferred. 

qe,i is the number of possible configurations for the RVs in 
Pa(Xi

e).  
ΘB is the set of CPT parameters for DBN B. ,

B
e iΘ  is the 

CPT for node Xi
e in BN B, , ,

B
e i jΘ  is the multinomial PB(Xi

e | 
Pa(Xi

e)=j) and , , ,
B
e i j kΘ  is the single CPT parameter PB(Xi

e = 
k | Pa(Xi

e) = j). 
The most general DBNs include T nodes for each RV in 

the system, i.e., one node for each of the RVs at each time 
point. For most real world problems, such DBNs are 
intractably large. To resolve this intractability, we make the 
Markov order 1 and stationary assumptions and assume no 
isochronal links throughout the rest of this paper. 

The Markov assumption states RVs are only dependent 
on other RVs in a small prior window of time w, 

( ) ( )1 0 1| ,..., | ,..., .t t t t t wP X X X P X X X− − −=  (1) 



The stationary assumption states the relationships among 
a RV and its p parents, 

1 ( )
t
Pa iX , …, ( )p

t
Pa iX , do not change 

across time, 

( ) ( )
1 1

ˆ ˆ ˆ1 1 1 1 ˆ| ,..., | , ..., , , .
p p

t t t t t t

i Pa Pa i Pa Pa
P X X X P X X X t t

− − − −= ∀  (2) 

The topological structure of these DBNs is composed of 
two columns of RVs.  (For an example, fast forward to 
Figure 2g.) The RVs no longer represent absolute time 
points, but instead represent a RV’s average statistical 
relationship with its parents across the entire time series. 
We denote RVs as Xt:t+1 instead of X0:1 to make this more 
clear in the notation.  Links are only allowed to originate in 
the Xt column and terminate in the Xt+1 column. 

We employ the following greedy structure search 
algorithm.  For each Xi

t+1 RV, the algorithm finds the 
parent node Xj

t
 that increases the DBN’s score the most.  It 

then finds the next parent, Xk
t, k≠ j, that increases the score 

the most in conjunction with the previously added parents.  
This process is repeated until a predetermined number of 
parents has been added to node Xi

t+1. 

Multinets 
Frequently, when using DBNs for class discrimination, a 
single DBN that includes a class node is learned. This is 
not optimal when the DBN’s topology depends on the 
data’s class. One fundamental weakness of the DBN 
framework (and the BN framework in general) is that the 
topology remains static, i.e., the existence of a link cannot 
change based on the values of other RVs.  This decreases 
the comprehensibility of the DBN by requiring parameters 
to be analyzed in order to identify dependencies that only 
occur when RVs take on certain values.   

Take for example, a non-temporal system containing 
four RVs, X = { X1, X2, X3, Y} . See Figure 1. Assume that 
X3 depends on X1 when Y = 1 but depends on X2 when Y = 
2. To model this system with a BN, the parent set of X3 
would include X1, X2 and Y.  The conditional dependency is 
not apparent from the structure.  Further, the number of 
parameters required to represent the BN is needlessly 
increased. 

Instead of using a single BN, separate BNs can be used 
to model each class—B1 for class 1 and B2 for class 2. The 
parent set for X3 would only include X1 in B1, and only X2 
in B2. B, the collection of B1 and B2, is referred to as a 
multinet. The joint probability distribution (JPD) 
represented by B can be computed from B1 and B2’s JPD,  

( , ) ( ) ( )
yB BP Y y P P Y y= = = = ⋅ =X x X x  .   (3) 

Each class of data, Y ∈ { 1,2} , is represented by a single 
dataset, D1 and D2.  Each dataset (and in turn, each class) is 
represented by a DBN, B1 for D1 and B2 for D2. Dataset Dα 

is referred to as Bα’s intra-class data, and Dβ as Bα’s extra-
class data, β ≠α ∈ { 1,2} . An event , ,i j k

βξ  is defined to be 
the occurrence within a data point d∈Dβ where Xi

t+1 = k 
and the set of Xi

t+1’s parent RVs (as defined by Dβ’s 
structure) are in their jth configuration, ∀ t > 1. , ,i j k

βη  is the 
number of times , ,i j k

βξ  occurs. 
Work in multinets has been formalized by Heckerman 

(1991) and Geiger and Heckerman (1996). They have also 
been specifically applied to DBNs by Bilmes (2000). 

Structure Scores 
To train generative models, we use Heckerman’s BDE 
score (Heckerman, Geiger & Chickering 1995).  The BDE 
score for DBN Dα is,  

where a set of prior information is given by the virtual 
counts ,i j

αη′  and , ,i j k
αη′ .  We use uninformative priors by 

setting these values to ri and 1, respectively.  
The score that maximizes classification accuracy is the 

one that maximizes class conditional likelihood (CCL) 
(Duda & Hart, 1973).  Unfortunately, CCL does not 
decompose into the aggregation of family scores.  This 
yields application of CCL intractable for large BNs such as 
the ones we construct in the neuroscience domain.  To 
overcome this limitation, Burge and Lane proposed a 
decomposable score, approximate conditional likelihood 
(ACL) (Burge & Lane 2005).  The ACL score for DBM B, 
which consists of the two DBNs B1 and B2, is, 

Unlike the BDE score, the ACL score is based on the 
choice of parameters for the DBNs.  Thus, the method used 
to train the parameters is important.  Burge and Lane 
experimented with three different parameter settings: the 
MLE parameters of the BN given the data, the parameters 
that maximize the ACL score and a smoothed version of 
the ACL-maximizing parameters,  referred to as ACL-ML, 
ACL-Max and ACL-Mid, respectively.  ACL-ML and 
ACL-Mid outperformed ACL-Max.  For this work, we 
have decided to use the ACL-Mid parameters, 
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Figure 1. A system where X3 is correlated with X1 when 
Y = 1 and with X2 when Y = 2.  (left) The BN required 
to model the system. That X3 is only correlated with 
either X1 xor X2 is not obvious from the structure and 
would need to be teased out of X3’s CPT. (right) The 
multinet required to represent the system.  It is clearly 
obvious from the multinet’s structures that X3 is only 
correlated with either X1 xor X2. 
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where ω is a normalization constant and ε is a Laplace 
smoothing constant. β ≠ α ∈ { 1,2} .   

Neuroanatomical Domain 
Functional magnetic resonance imaging (fMRI) has 
recently become widely used in the study and diagnosis of 
metal illness. It is a non-invasive technique measuring the 
activity of small cubic regions of brain tissue (voxels). 
Psychologists frequently use fMRI data to test hypotheses 
about changing neural activity caused by mental illness. 

An fMRI scanning session can result in hundreds of 3D 
images, each consisting of 65,000 or more voxels. As there 
is too much data collected to analyze directly, we abstract 
from the voxel level to a region of interest (ROI) level. To 
do this, we use the Talairach database (Lancaster et al. 
2000) as it is widely accepted in the neuroscience 
community. 

The database allows us to convert each 3D image into an 
activity snapshot detailing the momentary activation of 150 
ROIs. After applying the database to each image, a detailed 
time series accounting for the activity of each ROI is built. 
Each ROI is treated as a temporal RV, and the system is 
modeled with a discrete stationary Markov order 1 DBN 
containing the nodes Xt:t+1={ Xi

t, Xi
t+1 : 1≤i≤150} .  

Experiments 

We analyze data collected by Buckner et al. (2000) in an 
experiment theorized to elicit different neural responses 
from healthy and demented elderly patients.  Figure 2 
shows our experimental layout.    For each patient, fMRI 
images are taken while the patients undergo a visual 

recognition task.  The resulting series of images are then 
converted into an activation time series for each ROI via 
the Talairach database.  A support vector machine and a 
Gaussian naïve Bayesian network are then trained from the 
data.  However, as the DBNs are discrete, the data must be 
quantized before the DBN structure search is employed. 

To quantize the data, a sliding window mean for each 
ROI’s activity is calculated and the ROI’s activity is 
normalized around this mean.  This removes low frequency 
drifts in the time series.  Four discrete states are defined 
roughly corresponding to high, very high, low and very low 
activity.  The continuous-valued time series is discretized 
based on how far the activity of the time series diverges 
from the sliding window mean at each point in time.  
Figure 2e shows a simple 2-state quantization for the time 
series in Figure 2c.   

The data is then separated into two groups, one group for 
the demented patients and one group for the healthy 
patients.  Generative and discriminative DBNs are learned 
for each group with the BDE and ACL scores, respectively. 

Results 

A DBN structure search results in a collection of family 
structures.  With decomposable scores (such as BDE and 
ACL), each of the families in the DBN also has a score.  
This allows the families to be ranked in importance. We 
have found that two types of information are most helpful 
from the set of sorted families. 1) The parent set within 
each family, particularly high ranking families, and how 
that parent set changes between classes.  Table I lists the 
parents for each of the DBN’s five highest scoring families.  
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Figure 2.  Experimental design flowchart.  (a) Raw data is acquired for each patient. (b) The data is grouped into ROIs 
via the Talairach database. (c) The aggregate mean voxel activation (AMVA) of each ROI, and its sliding window trend, 
is computed.  (d, f) The GNBN and SVM models are learnt from the AMVA time series.  (e) The AMVA time series is 
quantized (two state quantization shown). (g) A discrete dynamic Bayesian network is learned for each class of data.  The 
links are dashed to indicate that they were found during a structure search. 
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2) The number of times a ROI is found as a parent.  Table 
II lists the top ten most common parents in each of the 
DBNs.   

High Scoring Families 
Families with higher scores will describe stronger 
relationships than families with weaker scores, though the 
nature of the relationship depends on the score used.  The 
generative models are most useful in understanding strong 
relationships among ROIs, but they are not specifically 
trained to differentiate between classes.   

For instance, in the healthy patient generative model, 
Brodmann areas (BAs) 4 and 6 were found as two of the 
top five highest scoring families.  This indicates that their 
behavior was highly correlated to the behavior of their 
corresponding parents.  BA 4 and BA 6 are the primary and 
premotor ROIs (respectively). Further, the occipital lobe, 
the location of the visual cortex, was a parent for both these 
ROIs.  This allows neuroscientists to infer that a patient’s 
visual processing is correlated with subsequent motor 
activity.  This relationship is expected given the nature of 
the underlying experiment: recognition of a visual stimuli 
followed by pressing a button. 

Finding meaningful relationships such as this one allows 
our collaborating neuroscientist to validate the generative 
model’s results.  Conversely, within healthy discriminative 
models, BA 4 and BA 6 are not both high scoring families.  
While BA 6 was the 12th highest scoring family, BA 4 was 
the 109th.  This indicates that the behavior of BA 4 and BA 
6 did not dramatically change between healthy and 
demented patients.  Since many expected relationships 
among ROIs will be equally likely in both classes, they will 

not be included in discriminative structures.  As a result, 
we have found that generative structural results are easier 
for our collaborating neuroscientist to compare with 
putative neuroanatomical relationships. 

The order in which parents are found in the search is also 
important.  Parents added earlier tend to have stronger 
relationships with the child.  Further, due to the greedy 
search heuristic, all parents added after the first parent may 
or may not have a strong pair-wise correlation with the 
child.  In fact, the first parent is the only one guaranteed to 
have a strong pair-wise correlation with the child.  All other 
parents are only guaranteed to be correlated with the child 
given the value of previously selected parents.  This has the 
unfortunate effect of reducing the comprehensibility of the 
models. 

For example, assume ROI X and Y are parents for ROI Z 
such that X was the first parent added and Y was the second 
parent added.  It could be that Y is completely uncorrelated 
with Z but that the combination of X and Y is highly 
correlated with Z.  It is likely that domain experts fail to 
pick up on this subtle nuance and would tend to treat an 
ROI’s parents as a list of ROIs who are all highly 
correlated with the child. 

Even though generative scores select for structures that 
are highly likely given just a single class’s data, differences 
between each class’s resulting structures can be helpful in 
identifying differences between the classes.  If a highly 
likely relationship exists in one class’s data but not the 
other, the relationship will be found by only one of the 
class models.  Neuroscientists can then infer a changing 
relationship between an ROI and its parents based on 
differing parent sets.  For instance, four of the top five 

BDE Healthy BDE Demented ACL Healthy 
ROI Parents ROI Parents ROI Parents 

 Gray Matter Cuneus  Parietal Lobe Parietal Lobe  Insula BA 38 
  Cingulate Gyrus   Amygdala  Med. Dorsal Nucleus Lat. Globus Pallidus 
  Insula   Uvula of Vermis   Lentiform Nucleus 
  Brodmann area 28   Caudate Tail  Ventral Ant. Nucleus Lat. Globus Pallidus 
 Left Cerebrum Cuneus  BA 40 Parietal Lobe   Lentiform Nucleus 
  Cingulate Gyrus   Amygdala  BA 13 BA 38 
  Brodmann area 13   Uvula of Vermis  Angular Gyrus Caudate Head 
  Cerebellar Tonsil   Lateral Dorsal Nucleus   Anterior Cingulate 

 Right Cerebrum Right Cerebrum  BA 7 Inferior Parietal Lobule ACL Demented 
  Cuneus   Declive ROI Parents 
  Dentate   Amygdala  BA 13 Thalamus 
  Uncus   Inf. Semi-Lunar Lobule   BA 42 
 Brodmann area 6 Occipital Lobe  Inf. Parietal Lobe Inferior Parietal Lobule  Insula Thalamus 
  Brodmann area 6   Uvula of Vermis   BA 42 
  Cerebellar Tonsil   Occipital Lobe  Amygdala Caudate Body 
  Subcallosal Gyrus   Amygdala  Parahippocampal Gyrus Mid Temporal Gyrus 
 Brodmann area 4 Brodmann area 4  BA 10 Brodmann area 10  Anterior Lobe Mid Temporal Gyrus 

  Occipital Lobe   Brodmann area 33   
  Pyramis   Cerebellar Tonsil   
  Rectal Gyrus   Lateral Dorsal Nucleus   

 
Table I.  The five top scoring families for the healthy and demented DBNs trained with the BDE or ACL score.  The 
parents are listed in the order they were added to the family in the greedy structure search heuristic.  The maximum 
number of parents allowed per family is four, but the ACL score generally resulted in fewer parents. 



 

families in the demented class’s model specifically include 
portions of the parietal lobe (the parietal lobe itself, the 
inferior parietal lobe, BA 40 and BA 7), whereas none of 
the top families in the healthy model do.  This suggests that 
parietal families may become more involved in visual-
motor processing in early stages of dementia, as temporal 
brain regions become compromised.  In addition, most of 
these regions do not receive input directly from posterior 
visual areas, but instead from a variety of parietal, 
cerebellar, and sub-cortical regions, as well as the 
amygdala. 

However, the ability for generative models to 
differentiate between classes is limited to finding 
relationships that are highly likely in at least one of the 
class’s data.  Relationships that are relatively weak in both 
classes of data will not achieve high scores in the 
generative models regardless of whether the they change 
between classes.  For instance, in the demented 
discriminative models, the parahippocampal gyrus has the 
4th highest score.  This suggests that the behavior of the 
parahippocampal gyrus’s changes significantly in demented 
patients.  This ROI is known to degenerate quickly in the 
presence of dementia.  Yet, it was only the 96th highest 
scoring family in the healthy generative model since its 
relationship to its parents was significantly weaker in 
magnitude (as measured by the BDE score) than the 
relationships in many other families. 

Parent Statistics 
While specific ROIs’  parent sets are informative, we have 
found the most comprehensible set of information to be the 

number of times an ROI has been a parent throughout a 
class’s entire DBN.  Table II lists the number of times each 
ROI is a parent in the generative and discriminative 
models.  In generative models, if an ROI is found as a 
parent in many families, that ROI likely plays a significant 
role in the mental activity the class’s corresponding 
population.  In discriminative models, it indicates that an 
ROI’s behavior significantly changes between classes. 

The most profound neuroanatomical results involve the 
amygdala, an ROI responsible for emotional response.  In 
the demented generative model, the amygdala shows up as 
a parent 77 times—that is more than half of the families!  
This is especially profound given that in the healthy 
generative model, it only shows up as a parent once.  The 
structural results from the generative models clearly 
indicate a changing amygdalar relationship. 

However, of the 77 families that the amygdala was a 
parent in, it was chosen as the third or fourth parent 61 
times.  In those families, the relationship among the child 
and two or three other parents was stronger than it was 
between the child and the amygdala.  From these results, 
we cannot even be assured that the amygdala has a strong 
pair-wise correlation with many of its children.  Further, if 
the structure search had been limited to finding just two 
parents (possibly due to computational and time 
constraints), the importance of the amygdala would have 
been obscured.  We have also found that depending on the 
BDE parameter priors used, the structure search may 
actually stop improving the score before the third and 
fourth parents are added, further increasing the possibility 
the amygdalar relationships would be missed. 

BDE Demented ACL Demented 
 N 1st 2nd 3rd 4th  N 1st 2nd 3rd 4th 

Amygdala 77 6 10 30 31 Amygdala 37 32 5 0 0 
Inferior Semi-Lunar Lobule 52 0 4 20 28 Brodmann area 42 26 13 12 1 0 

Brodmann area 31 45 43 2 0 0 Parahippocampal Gyrus 23 15 6 2 0 
Lateral Dorsal Nucleus 36 0 8 9 19 Medial Frontal Gyrus 20 6 13 1 0 

Cerebellar Tonsil 30 0 5 15 10 Middle Frontal Gyrus 18 0 17 1 0 
Uvula of Vermis 27 0 2 10 15 Thalamus 14 6 8 0 0 

Uncus 17 3 2 4 8 Medial Dorsal Nucleus 11 7 4 0 0 
Pyramis 17 1 8 7 1 Insula 7 6 1 0 0 

Precuneus 11 10 1 0 0 Middle Temporal Gyrus 7 6 1 0 0 
Insula 10 4 6 0 0 Brodmann area 47 7 0 2 5 0 

BDE Healthy ACL Healthy 
Cerebellar Tonsil 46 2 3 22 19 Amygdala 92 92 0 0 0 

Dentate 33 2 3 8 20 Parahippocampal Gyrus 20 2 4 14 0 
Rectal Gyrus 23 0 1 11 11 Inferior Occipital Gyrus 18 1 8 9 0 

Brodmann area 38 22 0 15 5 2 Brodmann area 38 11 6 4 1 0 
Subcallosal Gyrus 19 0 2 4 13 Brodmann area 10 9 0 7 2 0 
Brodmann area 28 19 0 6 6 7 Vent. Post. Med. Nucleus 9 0 7 2 0 

Cuneus 17 11 6 0 0 Caudate Tail 9 8 1 0 0 
Insula 16 10 5 1 0 Thalamus 7 0 4 3 0 

Uvula of Vermis 15 0 2 4 9 Middle Temporal Gyrus 7 1 3 3 0 
Brodmann area 23 14 10 4 0 0 Brodmann area 36 7 2 5 0 0 

 
Table II.  The top ten most common parent ROIs.  N is the number of times the ROI was a parent.  The remaining columns 
indicate how many times the ROI was selected as the 1st, 2nd, 3rd or 4th parent.  The BDE families had exactly 4 parents but 
the ACL families frequently selected only one or two (as additional parents did not increase the score). 



In the discriminative models, not only is the amygdala 
the most prevalent parent, but it is overwhelmingly chosen 
as the first parent.  This resolves the ambiguity inherent in 
the generative models of whether the amygdala has a pair-
wise correlation in its children.  However, the interpretation 
of the amygdala as a parent in the discriminative models is 
more complex than in the generative models.  The 
discriminative models indicate that the behavior of the 
amygdala dramatically changes between healthy and 
demented patients, but the nature of that change is not 
clear.  Based solely on the discriminative results, it is not 
possible to tell whether the activity of the amygdala is more 
pronounced in healthy or demented patients. The 
generative structures clarify this ambiguity.  As previously 
mentioned, in these structures the amygdala is frequently a 
parent in the demented networks, but not in the healthy 
networks.  This indicates that the amygdala’s behavior is 
significantly more correlated with other ROIs in the 
demented population.     

Thus, combination of amygdalar results from both the 
discriminative and generative models is what was most 
useful.     

SVM and GNBN Results 
Previously, we also experimented with the ability for 
support vector machines (SVMs) and Gaussian naïve 
Bayesian networks (GNBNs) to classify dementia (Burge et 
al. 2005) based on the fMRI data.  Overall, we found that 
the SVMs classified with the worst accuracy and that the 
GNBNs classified with an accuracy somewhere between 
the generative and descriptive models’  accuracies; an 
impressive feat given the simplicity of the model. 

But what do the results of these models indicate about 
the underlying neuroanatomical dynamics that change due 
to the onset of dementia?  The GNBN has a static non-
temporal structure with the class RV set as a parent of each 
of the ROI variables.  The ROI RVs, Xi, can be ranked 
based on P(Xi |Y,D) to determine which RVs were most 
strongly correlated with the class RV, however, we have 
found these results are not particularly helpful for our 
collaborating neuroscientist.   

The results from the SVM are even less comprehensible.  
An SVM creates a hyperplane classification boundary in a 
high dimensional space based on the location of a set of 
support vectors.  The SVM results indicated which of the 
patients were the most important in determining the 
classification boundary (i.e., which patients’  data points 
corresponded to support vectors) but we found it difficult 
to associate underlying neuroanatomical behavior with the 
SVM’s classification decisions. 

Conclusions 

We have examined the comprehensibility of dynamic 
Bayesian multinets (DBMs) and the dynamic Bayesian 
networks (DBNs) that compose them. Specifically, we have 
used DBMs to model the changing relationships among 

neuroanatomical regions of interest (ROIs) due to the onset 
of senile dementia. 

We divided DBN scoring metrics into two categories: 
generative and class discriminative.  Generative scoring 
functions were found to favor structures representing 
relationships that were highly likely given a single class’s 
data.  While this is not ideal for class discrimination, we 
have found the resulting structures to be quite helpful given 
their highly comprehensible nature.  In particular, our 
collaborating neuroscientist found it easy to validate the 
generative results with putative neuroanatomical relation-
ships.  

Conversely, class discriminative scores favored 
structures representing relationships that discriminated 
between classes.  These structures illuminated changing 
ROI relationships that were too subtle to be identified by 
the generative models.  Indeed, classifiers based on 
discriminative models achieved higher accuracies than 
those based on generative models.  However, interpretation 
of discriminative structures is not as straightforward as that 
of generative structures.   

When analyzing the structure for both types of models, 
two types of information were most helpful.  1) The parent 
set for each ROI and how that set changed between classes. 
2) The number of times a ROI was found as a parent in the 
entire DBN.  Further, the order in which parents were 
found by the greedy structure search was important as only 
the first parent added was guaranteed to have a high pair-
wise correlation with the child, a subtlety that we suspect is 
easily overlooked by domain experts.   

Overall, we found that neither generative nor 
discriminative models were more helpful than the other but 
instead that a combination of results from both models was 
most meaningful. 

Future Work 

Regulatory systems are common in neural networks and the 
identification of feedback systems is an important issue in 
the neuroscience domain.  Unfortunately, identification of 
feedback loops from DBNs making the stationary and 
Markov order one assumptions is difficult.  Several 
problems arise, illustrated by Figure 3. 

First, since the RVs in the DBNs represent the average 
temporal relationship between ROIs across the entire time 
series, it is difficult to determine if the relationship between 
two RVs temporally precedes a relationship between two 
other RVs.  For example, the DBN in Figure 3a suggests 
there may be the feedback loop A→B→C→D→A.  But it 
is also possible that the relationship between B and C does 
not occur after the relationship between A and B.  This 
would indicate that the structure does not represent a 
feedback loop.   

A second issue arises when many possible feedback 
loops can be inferred from a single structure.  For example, 
the DBN in Figure 3b has many possible loops.  But, which 
loops are indicative of actual feedback loops in the 
underlying system?  In a large DBN with 300+ nodes, there 



 

may even be too many candidate feedback loops to 
realistically enumerate.  The score used to select the 
structure also plays an important role. If a discriminative 
score is used, portions of the feedback loop that do not 
change between classes may not even appear in the 
structure. 

Finally, we are interested in having our collaborating 
neuroscientist provide information that helps guide the 
DBN structure searches.  In particular, we would like to 
take advantage of the hierarchical arrangement of ROIs in 
the brain.  The approximately 150 ROIs defined by the 
Talairach database are arranged in 5 hierarchical levels.  
Large ROIs, such as the left and right cerebrum and 
cerebellum, are located in the topmost level.  Small ROIs, 
such as the amygdala and the Brodmann areas, are located 
at the bottommost level.  Currently, nodes in the DBNs are 
allowed to have parents from any level of the hierarchy.  
But many relationships that span hierarchical levels may be 
uninteresting to neuroscientists.  Through interaction with 
our collaborating neuroscientist, we can eliminate some 
relationships that are not likely to be helpful and hopefully 
improve the structure search results.  Unfortunately, given 
the sheer number of possible relationships, this type of 
interaction has not been significantly helpful in guiding 
structure search and further attempts to incorporate input 
from our collaborating neuroscientist continue. 
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Figure 3. Identification of feedback loops in DBN 
structures is difficult.  a) A structure with the possible 
feedback loop A→B→C→D→A.  The structure alone 
cannot indicate whether this is truly a feedback loop. b) 
A structure with many possible feedback loops, e.g., 
A→B→A, B→C→B, A→B→C→D→C→B→A, etc. 
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