Moving QA Towards Reading Comprehension
Using Context and Default Reasoning

Christine Clark, Daniel Hodges, Jens Stephan, Dan M oldovan
Language Computer Corporation
Richardson, Texas, 75080
{chri stine, dani el , j ens, nol dovan}@ anguageconput er. com

Abstract

For a question answering system to understand the underly-
ing assumptions and contextual features of natural language,
a contextually and semantically sensitive knowledge repre-
sentation and reasoning module is essential. This paper pro-
poses a three-layered knowledge representation coupled with
reasoning mechanisms for defaults and contexts as a solution
for pushing question answering towards a state capable of ba-
sic reading comprehension. A travel scenario is presented as
a vehicle for demonstrating the complexities of this problem,
and the ways in which semantic relations, contexts (for con-
ditionality, planning, time, and space), and defaults address
these complexities.

Introduction

Natural language is rich in implicit and explicit contexts in
addition to default assumptions that humans intuitively cap-
ture in their mental process. For a machine such as a ques-
tion answering system to perform the same task, a careful
and precise knowledge encoding scheme is required, as well
as accompanying reasoning mechanisms for contexts and
defaults. Consider the following travel scenario provided
by AQUAINT:

1. The Amtrak train arrived at Union Station Washing-
ton D.C. from New York City at 10 am on March 15,
2005.

2. It was an Acela Express, number 176, scheduled to
depart 30 minutes later on its return trip to the Big
Apple.

3. John took a taxi from his home in Georgetown and
arrived at the station 15 minutes before 176’s sched-
uled departure.

4. He planned to meet his financial adviser, Bill, at
Citibank, the same day at 2 pm.

5. If John’s train ran on time, the three-hour trip will
get him there on time.

6. If not, John intended to call Bill and push back the
appointment two hours.

Copyright (© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

After a quick glance, a human can easily comprehend the
locative, temporal, and conditional aspects of the text, and
can answer questions like "What time did John arrive at
Union Station?” or ”If the train did not run on time after
departing from Union Station, what would happen?”. Cur-
rently no automated question answering system can reliably
handle this “simple” reading comprehension exercise.

Recognizing, representing, and reasoning over contexts,
both explicit and implicit, is a major roadblock in achiev-
ing this task. Without proper context representation, it is not
possible to accurately answer questions that require lifting
(McCarthy 1993), like ”Did John call Bill?”, since this event
would only take place if the train is indeed late and John ful-
fills his intentions to do so. Furthermore, multiple instances
of the same event, e.g. the arrival of the train, can be cor-
rectly identified by its context, which allows the engine to
focus on “the task at hand” (Lenat 1998).

LCC demonstrated the potential of context detection and
reasoning by integrating a temporal context module into a
state of the art QA system (Moldovan et al 2005). How-
ever, for the field of QA to move towards the level of basic
human reading comprehension, a richer set of both physi-
cal (e.g. spatial, temporal) and possible world contexts (e.g.
subjectivity, planning, conditionality) as well as methods for
default reasoning need to be incorporated.

As motivated by the above mentioned scenario, we have
developed a model for representing and reasoning within
contexts that enables some contextual inferences and de-
faults. This paper will outline the details of a first order logic
based representation, as well as the knowledge and inference
mechanisms required to reason with this representation.

Approach

To achieve a question answering system that is capable of
understanding and reasoning with the semantics and con-
texts embedded in natural language exemplified by the travel
scenario, we propose layering conditional, planning, tem-
poral, and spatial aspects onto our existing first order logic
based knowledge representation. The details of this “three-
layered” approach is detailed in the section “A Semantically
and Contextually Rich Knowledge Representation”.

To fully exercise the power of this enriched knowledge

representation, a hierarchy of trigger rules and assump-
tion axioms should be added to enable contexts and prop-
agate context information across the discourse of the sce-
nario. This is instrumental for questions with contextual
constraints and is demonstrated in the section “Answering
Contextually Constrained Questions”. Further, to answer
open ended questions and to reason with defaults, we pro-
pose the addition of mechanisms in the inference engine to
track new inferences and reliably enable defaults with a spe-
cial purpose reasoner. The details of this approach are out-
lined in the section “Answering Hypothetical Questions”.

A Semantically and Contextually Rich
K nowledge Representation

To represent the travel scenario accurately in first order
logic, it is necessary to encode the syntactic and semantic
layers of the sentences, and use these as signals for marking
context boundaries. Unless otherwise indicated, all formu-
las are universally quantified, variable names are preceded
by a question mark, and all other predicate arguments are
skolemized constants. We will be using the following sen-
tence to demonstrate our representation:

He (John) planned to meet his financial adviser, Bill, at
Citibank the same day (March 15, 2005) at 2pm.

In the first layer of the representation, the first order logic
structure is derived from the syntactic parse of the text and
each token in the text is converted to a predicate of the struc-
ture lemma_part-of-speech (Rus and Moldovan 2002).

John_NN(x27) & plan_VB(e6,x27,x51) &
to_TO(e6,e7) & meet_VB(e7,x27,x34) &
his PRP$(x34,x27) & financial NN(x32) & ad-
viser_NN(x33) & nn.NNC(x34,x32,x33) &
Bill_.NN(x50) & at_IN(e7,x35) & Citibank_NN(x35) &
same_JJ(v10,x36) & day_NN(x36) & at_IN(e7,x39) &
2_NN(x37) & pm_NN(x38) & nn_NNC(x39,x37,x38)

The second layer encodes the semantic relations found
in the text by introducing a predicate labeled with the type
of semantic relation whose arguments are the heads of the
phrases that participate in the relation. The SYN relation
states that Bill is synonymous with financial adviser. The
TMP and LOC predicates relate the time and location to
the meet event.

SYN.SR(x50,x34) & LOC.SR(x3567) &
TMP_SR(x36,67) & TMP_SR(x39,€7)

The third layer marks the context boundaries of the sen-
tence using predicates that map to the type of context. The
types of context that will be required to represent this sce-
nario are temporal, spatial, conditional, planning, and as-
sumed contexts.

Temporal and Spatial Contexts

Temporal contexts are represented by introducing SUMO?
(Niles and Pease 2001) predicates for the Allen primitives
(Allen 1991) into the third layer of the representation. A

1Suggested Upper Merged Ontology

thorough explanation of the temporal context representation
is provided in (Moldovan et al 2005). When time related
predicates are found in the first layer of the logic form they
are removed and replaced by appropriate temporal context
predicates in the third layer. Here the time CTMP predi-
cate defines the time of the context and the during_.CTXT
predicate attaches that time to the meet event to indicate that
the meeting is to occur in the temporal context of 2 PM,
March 15, 2005.

during_CTXT(e7,t10) &
time_CTMP(2005,03,15,14,0,0)

We represent spatial contexts through predicates that in-
dicate the nature of the relation, such as destination, source,
and location. The at_CTXT predicate is used in this exam-
ple to indicate that Citibank is the locative context of the
meeting.

at_CTXT(e7,x35)

Conditional and Planning Contexts

Conditional contexts are used to express events and objects
that only occur in some hypothetical world. These hypothet-
ical worlds are defined by the preconditions of the contexts.
Similarly, planning contexts capture events and objects that
exist in hypothetical worlds defined by intentions, plans, and
wills. To represent these contexts, predicates labeled with
the type of context (planning or conditional) are introduced
with a context constant to track the context, and the remain-
ing arguments are the identifying variables for the events
scoped by the context. An implication is formed so as to
prevent the knowledge base from asserting the contents of
the contexts without a trigger rule. In the example, the de-
tection of the signal words “planned to” informs us that the
assertion, “meet his financial adviser...”, occurs in a plan-
ning context. The signal words are removed from the first
layer of the logic form and the assertion becomes implied
by a planning_CTXT predicate.

planning CTXT(p2,e7) — meet VB(e7,x27,x34)
& atIN(e7,x35) & Citibank NN(x35) &
same_JJ(v10,x36) & day_NN(x36) & at_IN(e7,x39) &
2_NN(x37) & pm_NN(x38) & nn_NNC(x39,x37,x38)
& _time_NE(x39) & time_CTMP(2005,03,15,14,0,0)
& LOCSR(x35,e7) & TMP_SR(x36,e7) &
TMP_SR(x39,e7) & at.CTXT(e7,x35) & dur-
ing_CTXT(e7,t10)

For both planning and conditional contexts we include a
trigger rule that allows the prover to enter the context if the
preconditions of the context are met. Conditional contexts
are simply triggered by the preconditions of their context.
Planning contexts are triggered when there is evidence in the
knowledge base that the plan was fulfilled. Thus, the con-
tents of the planning context are the triggers for the planning
context. So if John plans X, and later we find he executed X,
then that planning context is enabled.

meet_VB(e7,x27,x34) — planning_CTXT(p2,e7)

Assumed Contexts

Assumed contexts are an important part of our default rea-
soning implementation. The assume CTXT predicate in-
dicates to the prover that it is to be assumed that the pre-
conditions of a context have been met, unless there is evi-
dence to the contrary. The single argument of the predicate
references the context for which preconditions are to be as-
sumed. Each context that is enabled with default reasoning
should have an associated trigger rule where the antecedent
is the assume_ CTXT predicate and the consequent is the
appropriate context predicate. In this example, we want to
be able to reason by default that John’s meeting occurs as
planned. This is accomplished by making assume_ CTXT
imply planning_ CTXT.

assume_CTXT(p2) — planning_CTXT(p2,e7)

Answering Contextually Constrained
Questions

The context resolution module employs our first order logic
resolution style theorem prover, COGEX, that has been
adapted for natural language text processing (Moldovan et
al 2003). The Set of Support (SOS) search strategy is em-
ployed by the prover to partition the axioms into those that
have support and those that are considered auxiliary (Wos
1988). This strategy restricts the search such that a new
clause is inferred if and only if one of its parent clauses
come from the SOS. The inference rule sets are based on
hyperresolution, paramodulation, and demodulation. Hyper-
resolution is an inference rule that performs multiple steps
at once. Paramodulation introduces the notion of equality
substitution. Hyperresolution and paramodulation inference
rules allow for a more compact and efficient proof by con-
densing multiple steps into one. Below we present solutions
to questions posed in the travel scenario that require tem-
poral, spatial, conditional, and planning contexts. Take the
following:

[s1] The Amtrak train arrived at Union Station Wash-
ington D.C. from New York City at 10 am on March 15,
2005

[s2] It was an Acela Express, number 176, scheduled
to depart 30 minutes later on its return trip to the Big
Apple”’

[s3] ’John took a taxi from his home in Georgetown
and arrived at the station 15 minutes before 176°s
scheduled departure.”

[s5] ’If John’s train ran on time, the three-hour trip
will get him there on time.”

[a1] ”What time did John arrive at Union Station?”
[g2] If it departed on time, and the train ran on sched-
ule, what time would the train arrive in New York?”

The goal for these two questions is to identify and re-
solve the temporal contexts connected to the respective ar-
rival events in question. A human would answer these ques-
tions with “10:15 am” and “1:30 pm” without much trouble.
An automated inference engine however requires a series of
steps to arrive at these conclusions, which include:

(1) Detecting the implicit arrival event of the train in
New York

(2) Disambiguating the correct arrival event by apply-
ing the spatial contextual constrains ”at Union Station”
and ”’in New York”.

(3) Propagating the temporal contexts from the absolute
time arrival event to the relative events of the question.

We propose an architecture that detects the contextual
constraints of a question, resolves context in candidate an-
swers, and propagates context information among the an-
swer passages.

Union Station

Schedule

arrival (train) i .
10am, March 15, 2005 S departure (train) B arrival (John)
W later @ before| @
3hours|ater
arrival
(John, train)

[25]

Big Apple / New York

Figure 1: Constraints: temporal, spatial, planning

Figure 1 illustrates the context relations that need to be re-
solved to enable time stamp propagation to answer the ques-
tions. The dark boxes represent the spatial context of the
events and the white boxes represent the temporal context of
the events. Since there are several arrival events of the same
agents, the spatial contexts are needed to disambiguate. The
train’s arrival event at Union Station is the only event an-
chored in absolute time and all other events are relative to it.
The arrows labeled with time values show the details of this
offset. The light grey box represents the planning context
introduced in the scenario by the scheduling event. The im-
plicit arrival in the Big Apple (New York City) is relative to
the actual departure event at Union Station, while the other
events are chained to the scheduling context.

To answer [q1], the correct arrival event for John has to
be chosen based on the spatial constraint "Union Station”.
The time stamp for this event can now be propagated using
the absolute time of the train’s arrival at Union Station and
applying the relative operators ”30 minutes later” and ”15
minutes before” on the propagation chain.

The following is the final proof output of the logic prover
for [q1]. The proof begins by making the necessary asser-
tions from the scenario:

Scenario Assertions

(1) John_NN(x27) & arrive_-VB(e5x27,x31) &
station_.NN(x6) & LOC_SR(x7,e5) & destina-
tion_.CTXT(x6,e5) & during.CTXT(e5t12) &
time_CTMP(t12,2005,03,15,10,15,0)

The prover utilizes the following synonymy axiom to
equate “Union Station” with “station”:

Synonymy axiom

(2) -station.NN(x6) | (Union_.NN(x5) & Sta-
tion_NN(x6) & nn_NNC(x7,x5,x6))

(3) Union_NN(x5)
(4) Station_NN(x6)
(5) nn_NNC(x7,x5,x6)

The prover inserts the question logic form into the search
space and unifies all of the negated predicates in the logic
form with predicates in the knowledge base to produce a
refutation:

[a1] Logic Form

(6) -John_NN(?x3) | -arrive_VB(?x1,?x3,?x4)
| -Union.NN(?x5) | -Station.NN(?x6) | -
nn_NNC(?x7,7x5,?x6) | -LOC_SR(?x7,”x1) | -
destination CTXT(?x7,?x1) | -during_CTXT(?x1,?x2)
| -time_CTMP(?x2,7x8,7x9,?x10,?x11,7x12,7x13)

The time of John’s arrival is extracted from the
time_.CTMP predicate in the answer logic form that the
question unified with. The prover guarantees the time is cor-
rect by making sure that the event that the time is associated
with occurs in the spatial context of Union Station:

John arrived at Union Station at 10:15 AM on March
15, 2005.

To resolve [g2], we need to detect the implicit arrival
event at the Big Apple for John and the train. This can be
achieved by common sense knowledge axioms. At first, the
time stamp propagation chain is broken inside the schedul-
ing event. However, the scheduling context is qualified by
the conditional context of the question by stating ”if it de-
parted on time, and the train ran on schedule”. We can there-
fore construct a time stamp propagation chain to the absolute
time event by linking to the time stamp of the scheduling
context.

Here we present the proof for [g2]. The prover first asserts
the conditional contexts in the question:

Assertion

(1) train_.NN(x3) & depart VB(e3,x3,d0) &
on_time_RB(v5,e3) & run_VB(e8,x3,x40) &
on_IN(e8,x5) & schedule_NN(x5)

The assertion fulfills the preconditions of the planning
context, that require us to know if the train departed on
schedule. Axioms (2) and (3) below equate “on time” with
“on schedule”:

World Knowledge Axioms

(2) -on_time_RB(?x1,7x2) | (on_IN(?x2,?x3) & sched-
ule_NN(?x3))

(3) -on_IN(?x2,7%x3) |
on_time_RB(?x1,?x2)

(4) schedule_NN(?x1) & on_IN(e3,?x1)
(5) on_time_RB(?x1,e8)

Once we know that the train departed on schedule, we can
enter the planning context via the trigger rule in (6). From
the planning context we infer that the train’s destination is
the “Big Apple”:

Planning Context
(6) -on_IN(e3,s1) | -schedule.NN(s1) | plan-
ning_CTXT(pl,e3) -planning_CTXT(p1,e3) |

-schedule_NN(?x3) |

(to_TO(x4,x11) & Big_Apple.NN(x11) & desti-
nation_CTXT(x4,x11))

(7) planning_CTXT(p1,e3)

(8) to_TO(x4,x11) & Big_Apple_.NN(x11) & destina-
tion_CTXT(x4,x11)

Now, we use axioms (9) and (11) below to equate “Big
Apple” with “New York City” and “John’s train” with
“train”:

Synonymy Axioms

(9) -Big_Apple_NN(x11) | New_York_City_NN(x11)
(10) New_York_City_NN(x11)
(12) -train_NIN(x3) |
_S_POS(x3,x27))

(12) John_NN(x27) & _s_POS(x3,x27)

The question’s assertion also informs us that the train ran
on schedule. Using this knowledge and trigger rule (13) be-
low, we infer that an on time train should enable the condi-
tional context c1. This context informs us of the duration of
the trip:

Conditional Context

(13) -John_NN(x27) | -_s_POS(x3,x27) | -train_NN(x3)
| -run_VB(e8,x3,x40) | -on_time_RB(v3,e8) | condi-
tional CTXT(c1,e8)

(14) -conditional_ CTXT(c1,e8) | (trip.NN(x4) &
Time_Length(t3,3,0,0) & duration_CTXT(x4,t3))

(15) conditional _CTXT(c1,e8)

(16) duration_CTXT(x4,t3) & Time_Length(t3,3,0,0)
& trip_NN(x4)

The axiom below tells us that an arrival event occurs when
there is a departure and a trip. This axiom also calculates the
time of that arrival by adding the duration of the trip to its
departure time:

(John_NN(x27) &

Arrival Axiom

(17) -depart_VB(e3,x3,d0) | -trip.NN(x4) | -
duration CTXT(x4,t3) | -Time_Length(t3,3,0,0)
| (arrive_VB(el3,x3,d2) & during_CTXT(el3,t4)

& time_CTMP(t4,2005,3,15,13,30,0) &
TMP_SR(t4,e13))
(18) during_CTXT(el13,t4) &

TMP_SR(t4,e13) & arrive VB(e1l3,x3,d2) &
time_CTMP(t4,2005,3,15,13,30,0)

The destination axiom below declares that an object that
departs on a trip with a destination will arrive at that desti-
nation:

Destination Axiom

(19) -depart_VB(?x1,7x2,7x3) | -trip.NN(?x4) |
-t0_TO(?x4,7x5) | -destination_CTXT(?x4,?x5) |
-arrive_VB(?x6,7x2,7x7) | (LOC_SR(?x5,7x6) &
at CTXT(?x2,7x5))

(20) at_CTXT(x3,x11) & LOC_SR(x11,e13)

The question logic form is inserted into the search and a
refutation is found:

Question

(21) -train_.NN(?x1) | -arrive_VB(?x2,?x1,?x3)

-New_York_City_NN(?x4) | -
TMP_SR(?x5,7x2) | -LOC_SR(?x4,7x2) | -
during CTXT(?x2,2x5) | -at.CTXT(?x1,7x4) |
-time_CTMP(?x5,?x6,?x7,?x8,?7x9,?x10,?x11)

The arrival time in the question will unify with the time
calculated by the arrival axiom. We verify that this is the
correct arrival time by making sure that the train’s arrival
occurs in the spatial context “New York”:

The train will arrive in New York at 1:30 PM on
March 15, 2005.

Answering Hypothetical Questions

In the previous examples we used a proof-by-contradiction
method to find an answer. However, in the following sce-
nario we are confronted with open-ended questions which
make proof-by-contradiction inappropriate:

[s5] If John’s train ran on time, the three-hour trip will
get him there on time.

[s6] If not, John intended to call Bill and push back the
appointment two hours.

[q9] If the train departs on time and runs on schedule,
what will happen?

[g5] If John’s train did not run on time after departing
from Union Station, what would happen?

The new goal is to discover what will happen in the hypo-
thetical world where John’s train runs on time or doesn’t run
on time. The answer to [q9] is clearly that John will call Bill
and push back the appointment two hours, it is easy for a hu-
man to arrive at this conclusion. The steps for an inference
engine are more complex and include:

(1) Deriving “John intended to call Bill and push back
the appointment two hours” from the hypothetical con-
dition: “John’s train did not run on time”.
(2) Entering the planning context of John’s intentions
via an assumed context to derive: “John calls Bill and
pushes back the appointment two hours”

We propose a solution to this problem that requires tracking
the side effects of adding hypothetical assertions to a knowl-
edge base as well as applying default reasoning to explore
answer paths for which sufficient trigger rules are not avail-
able. This lifts conclusions out of their context that should
be returned as qualified answers to the user.

Conditional Context Conditional Context

get there
(51

Figure 2: Conditional and Planning Contexts

Planning Context

push back call
(6] (6]

on time?|

Figure 2 illustrates the hypothetical propositions asserted
by the scenario. The events of the conditional contexts are
surrounded by a bounding box to illustrate that this knowl-
edge is only true in a world where the assumptions of its
context are true. The events of the planning context are sur-
rounded by a box which is inside the conditional context’s

box to illustrate that this knowledge is only true in a world
where the assumptions of both of their surrounding contexts
are true.

In the above example, the conditional contexts embedded
in the scenario text are represented as described in section
“A Semantically and Contextually Rich Knowledge Repre-
sentation”, and so the statements, “the three-hour trip will
get him there on time” and “John intended to call Bill and
push back the appointment two hours” are preconditioned
on whether the train runs on time or not. In sentence [s6],
John’s intentions must be represented inside a planning con-
text. The scenario tells us nothing of what John will do, only
what he plans on doing. Just as with the conditional con-
text, if we do not explicitly scope John’s intentions inside a
planning context, his intentions will be treated as unqualified
facts in the knowledge base. Further, this planning context
occurs inside a conditional context. Until we know for sure
that the train does not run on time, we can say nothing about
John’s plans. Thus, it is necessary to nest the contexts, which
is easily supported by the knowledge representation.

The questions are preconditioned on whether the train will
run on time, but the system interprets these preconditions as
hypothetical assertions that should trigger conditional con-
texts in the knowledge base. The hypothetical clause in the
questions define possible worlds, and the set of propositions
that are inferred from the scenario knowledge base together
with the hypothetical assertions from the question, is the set
of events that are true in this possible world. We can get this
information by exploring the search trace for the inferred
clauses derived from the hypothetical.

To handle entering John’s planning context we need de-
fault reasoning. This is achieved by adding assume CTXT
predicates to the knowledge base that do not contradict the
currently inferred knowledge. The assume context asser-
tions lift constrained facts out of their context and allow the
prover to reason within that context. The mechanism for
default reasoning integrated with COGEX is illustrated in
Figure 3.

fail add

none
left .
assumption - Fail J

A

 added
KB remove
Concistency Check W”;‘P‘i on

Figure 3: Reasoning with Defaults

panowel

Before assume_CTXT predicates are added to the knowl-
edge base, COGEX attempts to find new inferences derived
from the question axiom. If one cannot be found, the default
reasoning module incrementally adds assume_CTXT predi-
cates into the knowledge base for contexts in the knowledge
base that have yet to be triggered. After each assumption
predicate is inserted, the knowledge base is checked for in-
consistencies with the newly added default knowledge. If
the consistency check fails, the assumption is removed from
the knowledge base. The module continues inserting as-

sume_CTXT predicates into the knowledge base until no
contradictions are found or the set of assumptions is empty.
Once this is the case, the prover reinserts the question ax-
iom into the knowledge base and again checks for newly in-
ferred knowledge inferred from the hypothetical. If no new
inferences are derived, the module returns to assuming the
preconditions of other contexts that have yet to be explored.
This technique allows us to keep track of everything that has
been assumed by the prover by simply examining the trace
of the proof search for the assume_CTXT predicate. This
is a very important feature of the default reasoning module
because it allows us to qualify our answers with the assump-
tions of the contexts. It would be incorrect to state that any
assertions inferred from the assumed contexts are absolute
facts.

For non-hypothetical seeking questions, where a proof-
by-contradiction is desirable, the same technique is ap-
plied, but now the exit condition is a successful proof-by-
contradiction as opposed to a newly inferred clause.

To demonstrate the mechanisms for evaluating hypothet-
icals and applying defaults in a knowledge base, the proof
trace for the solution to [g5] is outlined below. The trace
has been divided up into sections for clarity, but the order of
the sections in the original trace has been preserved. As dis-
cussed previously the inference process starts by asserting
the hypothetical context assertion introduced by the ques-
tion:

Assertions from the question

1) John_NN(x1) & S POS(x2,x1)&
train_NN(x2)& run_VB(el,x2,x50)& -
on_time_RB(v1,el)& after_IN(el,e2)& de-
part_VB(e2,x2,x6)& Union_NN(x4)& Sta-
tion_NN(x5)& nn_NNC(x6,x4,x5)& be-
fore_CTXT(e2,el) & source_CTXT(e2,x6)

The inference engine analyzes context c1, c2, and p1 and
is unable to infer anything from these contexts until they are
triggered:

Conditional Context (cl)

(2) -conditional CTXT(cl,el) | (trip_.NN(x4) & three-
hour_JJ(v2,x4) & get_ VB(e2,x4,x5) & him_PRP$(x5)
& there_RB(v3,e2) & on_time_RB(v4,v3)
& AGTSR(x2el) & AGTSR(x4e2) &
Time_Length(t1,3,0,0) & duration_CTXT(x4,t1))

Conditional Context (c2) & Planning Context (pl)
(3) -conditional CTXT(c2,el) | -
planning_CTXT(p1,e3) |
(call_VB(e4,x1,x6) &
push_back_VB(e5x1,x7) &
& two_NN(x9) & hour_NN(x10) &
nn_NNC(x11,x9,x10) & _quantity_NE(x11)
& AGTSR(x2,e4) & AGTSR(x2,e5) &
TMP_SR(x11,e5) & during_ CTXT(x7,t2) &
time_CTMP(t2,2005,03,15,14,0,0))

Once the trigger rule for conditional CTXT(c2,el) is
able to fire, the inference process moves into context cl
while still remaining outside of the planning context p1:

Bill_NN(x6) &
appointment_NN(X7)

Trigger Conditional Context

(4) -John_NN(x1) | --s_POS(x2,x1) | -train_NN(x2) |
-run_VB(el,x2,x50) | on_time_RB(vl,el) | condi-
tional_CTXT(c2,el)

(5) on_time_RB(v1,el) |

conditional _CTXT(c2,el)

(6) conditional_ CTXT(c2,el)

Since no assertion or refutation of John’s intentions can
be found, the assume CTXT(pl) predicate is inserted into
the search space so that the prover may enter the planning
context. The detection of the assume_CTXT(pl) predicate
also informs us that whatever is inferred from this context
must be qualified by the assumptions of the context:

Trigger Planning Context

(7) -call_VB(e4,x1,x6) | -push_back_VB(e5,x1,x7) | -
appointment_NN(x7) | -two_NN(x9) | -hour_NN(x10) |
-nn_NNC(x11,x9,x10) | planning_CTXT(p1,e3)

(8) assume_CTXT(pl)

(9) -assume_CTXT(p1) | planning_CTXT(p1,e3)

(10) planning_CTXT(p1,e3)

After entering the planning context a solution to the ques-
tion can be inferred:

Inferred Predicates

(11) time_CTMP(t2,2005,03,15,14,0,0) &
during_CTXT(x7,t2) & TMP_SR(x11,e5)
& AGTSR(x2,e5) & AGTSR(x2ed) &
quantity NE(x11) & nn_.NNC(x11,x9,x10) &
hour_NN(x10) & two_NN(x9) & appointment_NN(x7)
& push_back VB(e5x1,x7) & BIill_LNN(x6) &
call_VB(e4,x1,x6)

John intended to call Bill and push back the appoint-
ment two hours.

The solution to [g9] functions similarly to the solution to
[g5] without the nested planning context. In this case, the
train’s on time arrival will trigger conditional CTXT(c1,el)
which will cause everything within the conditional context
clto be inferred instead of the contents of context c2.

Thethree-hour trip will get him there on time.

Discussion
Effective comprehension of the travel scenario requires a
question answering system to handle:
1. Discourse level coreference resolution
2. Semantic relation and Context boundary detection
3. Discourse level temporal coreference and time stamp
propagation
4. Axioms on demand such as lexical chains, semantic
relation chains, and eventualities
5. Context trigger rules
6. Default reasoning
The accurate detection of contexts, semantics, triggers,
and defaults is an open research problem. And do to this,

the focus of this paper is on the knowledge representation
and reasoning tools necessary for contexts, rather than on

detection issues. To achieve this end we made simplifying
assumptions that the above issues were handled by external
components. These components would serve as input to the
reasoning module in the question answering system, since
LCC has ongoing efforts to tackle these problems. But, to
compensate for the inevitability of an incomplete knowledge
base and imperfect semantic and context detection, we con-
tinue to use backoff strategies as outlined in (Moldovan et al
2003).

Conclusion

Recognizing, representing, and reasoning within context, a
question answering system is much more effective at re-
trieving accurate and precise results as demonstrated in
(Moldovan et al 2005). The motivating examples detailed
in the previous sections reinforce this notion by establish-
ing that contexts and default assumptions are critical in re-
trieving information for user queries. It is clear that par-
titioning and storing content by context allows a question
answering system to instantly bypass large portions of its
knowledge repository and focus on generating contextually
relevant inferences. Further, it provides a means for dealing
with knowledge that appears contradictory when it is pro-
cessed in a single, contextually insensitive, plane. But most
importantly, contextual reasoning prevents the system from
making mistakes by only providing answers that meet the
contextual constraints of the question. No longer will an-
swers be provided “out of context”, since assertions that are
true in one setting are not necessarily true in another. Addi-
tionally, defaults serve as important nuggets of information
when the context constraints of the text source are overly
strict.

Acknowledgments

This work was funded in part by the ARDA AQUAINT
program. Additionally, LCC would like to thank Abraham
Fowler and Bob Hauser for their contributions to the section
“A Semantically and Contextually Rich Knowledge Repre-
sentation”.

References

James Allen. 1991. Time and Time Again: The Many Ways
to Represent Time. International Journal of intelligent Sys-
tems, July 1991, pp341-355.

David Bixler, Dan Moldovan and Abraham Fowler. 2005.
Using Knowledge Extraction and Maintenance Techniques
to Enhance Analytical Performance. Proceedings of 2005
International Conference on Intelligence Analysis.

Doug Lenat. 1998. The Dimensions of Context-Space. CY-
CORP Internal Report.

John McCarthy. 1993. Notes on Formalizing Context. Pro-
ceedings of 1993 International Joint Conference on Artifi-
cial Intelligence.

Dan Moldovan, Christine Clark, Sanda Harabagiu 2005
Temporal Context Representation and Reasoning. To Ap-
pear in the Proceedings of the International Joint Confer-
ence on Artificial Intelligence 2005.

Dan Moldovan, Christine Clark, Sanda Harabagiu, Steve
Maiorano 2003 COGEX: A Logic Prover for Question
Answering. Proceedings of the Human Language Tech-
nology and North American Chapter of the Association for
Computational Linguistics 2003, pages 87-93.

lan Niles and Adam Pease. 2001. Towards a Standard Up-
per Ontology. Proceedings of the 2nd International Confer-
ence on Formal Ontology in Information Systems. Ogun-
quit, Maine, October 2001

Vasile Rus and Dan Moldovan. 2002 A High Performance
Logic Form Transformation. International Journal on Arti-
ficial Intelligence Tools, Vol. 11, No. 3 (2002) 437-454

Larry Wos. 1998. Automated Reasoning, 33 Basic Re-
search Problems. Prentice Hall, 1988.

