
Using AnsProlog with Link Grammar and WordNet
for QA with deep reasoning

Luis Tari and Chitta Baral

Arizona State University
Department of Computer Science and Engineering

Brickyard Suite 501, 699 South Mill Avenue, Tempe, AZ 85287
{luis.tari, chitta}@asu.edu

Abstract
Early question and answering (QA) systems focused on
keyword search among documents for answers. However,
such systems can only answer fact-based questions. It
becomes clear that to answer more sophisticated questions,
QA systems should rely on some domain knowledge. We
propose a question and answering system that uses
AnsProlog to represent and reason from the knowledge
extracted by using Link Grammar and WordNet.

Introduction
Consider the following simple scenario:

John flew from Paris to Baghdad. Is John in Baghdad?
If a QA system does not know the fact that a person P
flying from place A to place B would imply that P is in B,
then it is hard to answer correctly even for such a simple
scenario. This simple scenario illustrates that domain
knowledge is needed to answer certain questions. In other
words, the answers may not be explicitly mentioned in the
story, so it is necessary to incorporate domain knowledge
to the existing facts from the story. We call such kind of
questions and answering that require domain knowledge as
QA with deep reasoning.
Several efforts have been made to incorporate certain
world knowledge to QA systems so that non-fact-based or
complex questions can be answered. In (Harabagiu 2001) a
QA system was proposed to utilize various software agents
that search and retrieve information to acquire knowledge
that might be useful in answering complex questions.
Semantic approaches to QA systems using WordNet were
proposed in (Vicedo 2000, Pasca and Harabagiu 2001).
Logic-based approach to QA systems were presented in
(Harabagiu and Pasca and Maiorano 2000, Pasca 2000).
Rus (Rus 2002) incorporated extended WordNet
(Harabagiu and Miller and Moldovan 1999) in logic forms
to QA systems. Consider again the simple scenario
mentioned above. Even if we use resources such as
WordNet (Fellbaum 1998) to find out that “to fly” means a
person traveling in an aircraft, we still need human
knowledge to figure out the effect of flying causes a person
to be in a certain destination. The main difference of our

proposed approach from other approaches is that we
incorporate domain knowledge so that deep reasoning can
be done in order to answer sophisticated questions.
It is evident that a proper representation and reasoning of
the story is crucial to achieve accurate answers. AnsProlog,
a logic programming language that is based on the answer
set semantics (Gelfond and Lifschitz 1988, Gelfond and
Lifschitz 1991), is a popular non-monotonic language that
has gained wide acceptance due to its simplicity and
expressiveness (Baral 2003). We propose the use of
AnsProlog for representation and reasoning, together with
Link Grammar (Sleator and Temperley 1993) to extract
facts from the natural language text and WordNet
(Fellbaum 1998) to disambiguate the meanings of the
extracted verbs and nouns. We implemented a prototype
that is based on a simple travel domain.
The outline of the paper is as follows: we first briefly
introduce the basics of AnsProlog, Link Grammar and
WordNet in the “Preliminaries” section. The system
architecture of our question and answering system is then
described in the “System Architecture” section, followed
by a detailed description of the various components
involved in the system. We then provide a simple scenario
for queries in the “Queries” section to demonstrate our
system. We then conclude in the “Discussion” section.

Preliminaries
In this section, we give a brief introduction to the syntax of
AnsProlog (Baral 2003) and describe two important
publicly available resources that are used in our question
and answering system - Link Grammar (Sleator and
Temperley 1993) and WordNet (Fellbaum 1998).

AnsProlog
An AnsProlog rule is of the form:

a ← a0, …, am, not am+1, …, not an.
where ai’s are literals and not represents negation as
failures. The intuitive meaning of the above rule is that if it
is known that literals a0, …, am, are to be true and if am+1,
…, an can be safely assumed to be false, then a must be

 2

true. A literal is defined as either an atom or an atom
preceded by the symbol ¬.
Smodels (Niemelä and Simons 1997) is one of the popular
answer set solvers for AnsProlog. In our QA system,
Smodels is used to compute answer sets. The Smodels
syntax of the above AnsProlog rule is as follows:

a :- a0, …, am, not am+1, …, not an.
The ‘←’ symbol is replaced by “:-”, while the classical
negation symbol ¬ is replaced by the symbol ‘-’.

Link Grammar
Typical natural language parsers, such as part of speech
taggers, identify the part of speech of words for a sentence.
The Link Grammar parser is a syntactic parser that parses
English text based on the Link Grammar theory. Unlike a
part of speech tagger, the parser outputs labeled links
between pairs of words for a given input sentence. For
instance, if word a is associated with word b by the link
“S”, a is identified as the subject of the sentence while b is
the finite verb related to the subject a.

WordNet
WordNet is a lexical dictionary intended for the use of
computers. The WordNet lexical database provides all
possible senses for nouns, verbs, adjectives and adverbs
organized in terms of word meanings rather than word
forms (Miller et al 1993).
In our QA system, we utilize the hypernyms of nouns and
verbs to disambiguate the various senses. Word a is a
hypernym of word b if a has a “is_a” relation with b.
WordNet 2.1 is used for our QA system.

System Architecture
In this section, we provide an overview of the architecture
of our QA system and how each of the components
interoperates. The input to the system is a list of sentences
in natural language and the output is the answers for the
questions asked with respect to the story.
The system is composed of several components: Fact
Exactor, WordNet Association, Sense Matching, Event
Ordering, Travel Domain Reasoning and Question
Processor, as shown in figure 1. Given the input sentences,
the component Fact Extractor utilizes Link Grammar to
extract the necessary facts based on the links associated
with the words in the sentences. The facts extracted by the
Fact Extractor component are then passed along to the
other components of the system.
In natural languages, it is usually the case that verbs and
nouns have different meanings in different context.
Therefore it is important to disambiguate the meanings of
verbs and nouns in order to perform correct reasoning. To
achieve this goal, the WordNet Association component
assigns possible senses for the verbs and nouns extracted
by the Fact Extractor component based on hypernyms
provided by WordNet. Among the possible senses of verbs
generated by the WordNet Association component, verbs
are then further processed by the Sense Matching
component by using the extracted facts to find the correct
senses.
Ordering of events is important so that the story can be
correctly represented. However, the actual time for the
occurrence of events may not be mentioned in the story.
The Event Ordering component orders and assigns events
to various time points. With the extracted facts, verbs and

Figure 1 - System Architecture of our QA System with Deep Reasoning

 3

nouns with correct senses and ordered events, reasoning
can then be done through the Travel Domain Reasoning
component. The component consists of AnsProlog rules
that describe inertia of fluents so as the effects and
executability of actions. Smodels (Niemelä and Simons
1997) is used to as the answer set solvers.
The last component of our system is the Question
Processor, which translates questions in natural language
into AnsProlog rules automatically. The component is still
in its infancy stage, so the majority of the queries are
written manually in the form of AnsProlog rules.

Fact Extractor
The first step of our QA system is to extract facts in the
form of AnsProlog from the sentences. This is done by
parsing each sentence using the Link Grammar parser, so
that an output showing links between pairs of words is
produced. A simple algorithm is then used to generate
AnsProlog facts based on the links. The algorithm works as
follows:
Input: pairs of words associated with links produced by
Link Grammar
Output: Facts in the form of AnsProlog

1. Suppose ei is the current event number and the
event is in the j-th sentence. Form the facts
in_sentence(ei, j) and event_num(ei).

2. If word a is associated with word b through the
link “S”, then form the facts event_actor(ei, a) and
event_nosense(ei, b). If a appears in the name
database, then form the fact person(a).

3. If word a is associated with word b through the
link “MV” and b is also associated with word c
through the link “J”, then form the fact
parameter(ei, b, c). If c appears in the city
database, then form the fact city(c).

4. If word a is associated with word b through the
link “O”, then form the facts noun(b) and
object(ei, b).

5. If word a is associated with word b through the
link “ON” and b is also associated with word c
through the link “TM”, then form the fact
occurs(ei, b, c) and time(c).

6. If word a is associated with word b through the
link “TY”, then form the fact occurs_year(ei, b).

7. If word a is associated with word b through the
link “D”, then form the fact noun(b).

Example 1 Given the sentence “The train stood at the
Amtrak station in Washington DC at 10:00 AM on March
15, 2005.”, Figure 2 shows the corresponding output from
Link Grammar.
The following facts are extracted based on the Link
Grammar output:
event_num(e1).
in_sentence(e1,1).

event_actor(e1,train).
event_nosense(e1,stood).
parameter(e1,at,amtrak_station).
parameter(e1,in,washington_dc).
parameter(e1,at,t10_00am).
occurs(e1,march,15).
occurs_year(e1,2005).
person(john).
city(washington_dc).
city(new_york_city).
verb(stood).
noun(train).
noun(amtrak_station).
time(t10_00am).

�

Figure 2 – Output of the Link Grammar Parser
corresponding to the sentence “The train stood at the
Amtrak station in Washington DC at 10:00 AM on
March 15, 2005.”

WordNet Association
The role of the WordNet Association component is to
disambiguate the meanings of nouns and verbs. In the
travel domain, it is essential to identify nouns that are in
fact transportation or persons. Such identification is done
through predefined lists of hypernyms for both
transportation and persons. We called the predefined lists
as root hypernyms. The root hypernyms for transportation
consists of the words “travel”, “public transport” and
“conveyance”. The word “person” is the only root
hypernym for persons.
Together with the root hypernyms, each noun is first
queried through WordNet to find its hypernyms. If one of
the hypernyms matches the root hypernyms of
transportation, then the noun is regarded as transportation.
Similarly, if the hypernyms of a noun matches the root
hypernyms of persons, then the nouns is regarded as a
person. The following examples illustrate the idea:

Example 2 Given the noun “train”, Figure 3 shows a
partial list of hypernyms produced by WordNet. In sense 1,
public transport is a hypernym of train, so the WordNet
Association component outputs the fact
transportation(train).

 4

Figure 3 – Hypernyms of the word “train” produced by
WordNet

�
Example 3 Given the noun “conductor”, Figure 4 shows a
partial list of hypernyms produced by WordNet.
In sense 4, person is a hypernym of conductor, so the
WordNet Association component outputs the fact
person(conductor).

�
The WordNet Association component performs a similar
process on each verb extracted from a sentence by using
the hypernyms of WordNet. Rather than relying on a list of
predefined hypernyms as in the case of nouns, the
component returns all possible senses of a given verb.
Given the verb v and v has the hypernym v’, then the
component returns the fact is_a(v, v’). This process is
illustrated in example 4.

Figure 4 – Hypernyms of the word “conductor”
produced by WordNet

Example 4 Given the verb “stood”, Figure 5 shows a
partial list of hypernyms returned from WordNet.
In figure 4, the words “rest”, “be”, “resist”, “fight”,
“contend” are the hypernyms of “stood”. Therefore, the
facts below are returned by the WordNet Association
component:
is_a(stood,rest).
is_a(stood,be).
is_a(stood,resist).
is_a(stood,fight).
is_a(stood,contend).

�

Figure 5 – Hypernyms of the word “stood” produced
by WordNet

Sense Matching
With the possible senses of verbs generated by the
WordNet Association component, the correct senses are
matched using the extracted facts related to the same event.
AnsProlog rules are written to match the correct senses of
verbs. The following rules are used for matching the
correct senses of the verb “stood”:

%% verb V means occupying a place or
%% location
event(E,be) :- event_actor(E,TR),
 is_a(V,be), parameter(E,at,C),
 event_nosense(E,V), parameter(E,at,T).

%% verb V means occupying a place or
%% location
event(E,be) :- event_actor(E,TR),
 is_a(V,be), parameter(E,in,C),
 event_nosense(E,V), parameter(E,at,T).

The first rule says that if an event E involves an actor TR
which is a kind of transportation, a city C, time T and the
verb V has a hypernym as “be”, then the action involved in
E has the same meaning as the verb “be”. In other words,
the verb V has the meaning of “be” in the context of the
event E. The second rule works similarly, other than city C
has to be associated with the preposition “in” rather than
“at” as in the first rule.
As another example of how the Sense Matching component
works, the following rule is used to match the correct
senses of a verb that has the meaning of “enter”:

%% verb V means to get on board of
%% some kind of transportation
event(E,enter) :- event_actor(E,P),
 is_a(V,enter), event_nosense(E,V),
 object(E,TR),parameter(E,at,T).

The intuitive meaning of the above AnsProlog rule says
that verb V has the meaning of “enter” if event E has
person P as the actor and a transportation TR and time T
are involved in event E.

 5

Event Ordering
The events extracted are needed to be ordered based on the
time specified in each of the events. However, in the
description of a story, it is rarely the case that all events
mentioned have explicit mention of time. To assign events
with unknown time, we use ordering of sentences as an
assumption. Suppose event e1 is known to happen at time
t1 and the story did not mention when event e2 occurs.
Among the sentences, e1 is mentioned before e2.
According to the ordering of the sentences, we can assume
that e2 happens after t1. The following is a simple
algorithm used to order and assign events to timepoints:
Let E = {e1,…,en} be a set of events and each event ek is
associated with an actual time tk, where tk is in an ordered
list of time T. Suppose the actual time of event ej is not
known, then tj = “unknown” and tj is placed at the end of
the list T.

1. For each event ek ∈ E associated with actual time
tk, create timepoints tp2k and tp2k+1 and map ek to
timepoint tp2k.

2. Create an extra timepoint tp1.
3. Create a fact timepoint(tp1, before, t1) to indicate

that timepoint tp1 refers to before time t1.
4. Create facts timepoint(tp2k, at, tk) and

timepoint(tp2k+1, after, tk).
5. Iterate through all sentences in the order of the

given sentences. If event ek appears in the i-th
sentence and ek is associated with time tk =
“unknown”, then

a. Find an event ej such that ej is associated
with tj ≠ “unknown” and ej appears
before the i-th sentence.

b. Maps ek to timepoint tp2j+1.

The following example is used to illustrate the idea of
event ordering and assignment:
Example 5 Let the predicate in_sentence(ek, i) imply that
event ek appears in the i-th sentence and let the predicate
parameter(ek, at, tk) represent event ek occurs at actual time
tk. Suppose we have the following facts extracted by the
Fact Exactor component:

parameter(e1, at, t10_00am).
in_sentence(e1, 1).
in_sentence(e2, 2).
parameter(e3, at, t10_30am).
in_sentence(e3, 3).

With the above facts, E = {e1, e2, e3} and T = <t10_00am,
t10_30am, unknown>. The following set of timepoints is
created using steps 1 and 2:
timepoints = {tp1, tp2, tp3, tp4, tp5}, and e1 is mapped to tp2
and e3 is mapped to tp4.

In steps 3 and 4, the following facts are created:

timepoint(tp1, before, t10_00am).
timepoint(tp2, at, t10_00am).

timepoint(tp3, after, t10_00am).
timepoint(tp4, at, t10_30am).
timepoint(tp5, after, t10_30am).

In step 5, since e2 is associated with unknown time and e1
appears ahead of e2 among the sentences, e2 is mapped to
tp3.

�

Travel Domain Reasoning
The Travel Domain Reasoning component utilizes the
output of other components described earlier for reasoning.
The component is written in AnsProlog rules and the rules
can be grouped into three categories: action rules, fluent-
action rules and general rules.

Action Rules
Action rules are rules that describe the occurrences of
actions based on the extracted facts and the executability of
actions. Some of the rules in this category are shown
below:

%% transportation TR is at location
%% number LN at timepoint TP
o(be_at(TR,LN),TP) :-

 event_actor(E,TR), event(E,be),
 parameter(E,at,C), maps_to(LN,C),

 is_associated(E,TP).

The above rule describes when the action for transportation
TR to be at location LN takes place. Such an action can
occur at timepoint TP only if event E has a transportation
TR as the actor, the action is about being in a city C and E
is associated to timepoint TP.
Similarly, the rules below describe the occurrence for
person P to enter transportation TR at timepoint TP. The
last part of the first rule describing the action “enter” says
that the action “enter” can take place at timepoint TP,
unless it is known that the action cannot be taken place at
timepoint TP. This happens when person P and
transportation TR are in different locations, which is
expressed in the second rule. Such kind of rule is called the
executability of actions.

%% person P enters transportation TR at
%% timepoint TP
o(enter(P,TR),TP) :-

event_actor(E,P), object(E,TR),
event(E,enter), is_associated(E,TP),
not -o(enter(P,TR),TP).

%% Person P cannot enter train TR at
%% timepoint TP if P and TR are in
%% different locations at timepoint TP
-o(enter(P,TR),TP) :- h(p_at(P,LN),TP),

h(t_at(TR,LN1),TP),LN != LN1.

 6

Fluent-Action Rules
Fluent-Action rules describe the direct and indirect effects
of actions on the fluents or properties of the world. In other
words, the rules describe what will happen when an action
is taken place. Below are some of the fluent-action rules:

%% person P is at location number LN at
%% timepoint TP
h(p_at(P,LN),TP) :- o(be_at(P,LN),TP).
%% transportation TR is at location
%% number LN at timepoint TP
h(t_at(TR,LN),TP) :-
 o(be_at(TR,LN),TP).

The above rules describe the state of the world when the
action “be_at” occurs, the fluent person P or transportation
TR is at location number LN is true at timepoint TP. The
rule below describes the effect of the occurrence of action
“enter”, and states that person P enters transportation TR at
timepoint TP implies that P is in TR.

%% person P is in transportation TR at
%% timepoint TP
h(in(P,TR),TP) :- o(enter(P,TR),TP).

For a person to be in a transportation, we need to capture
the intuition that the person should be in wherever location
the transportation currently is at. Likewise, if a
transportation in a location, we can safely say that the
person on the transportation is also not in that particular
location.

%% person P is at the same location as
%% transportation TR if P is in TR
h(p_at(P,LN),TP) :-
 h(t_at(TR,LN),TP), h(in(P,TR),TP).
-h(p_at(P,LN),TP) :-
 -h(t_at(TR,LN),TP), h(in(P,TR),TP).

General Rules
An important property about fluents in the action theory is
to capture a fluent f at timepoint TP remains true at
timepoint TP+1 unless we know that it cannot be true at
timepoint TP+1. Likewise, fluent f at timepoint remains
false at timepoint TP+1 unless something causes f to be
true at TP+1. This property is known as inertia of fluents.
The rules below capture this important property:

%% Inertia of fluents FL at timepoints
%% TP and TP+1
h(FL,TP+1) :-
 h(FL,TP), not -h(FL,TP+1).
-h(FL,TP+1) :-
 -h(FL,TP), not h(FL,TP+1).

Question Processor
The last component of our question and answering system
is the Question Processor. The goal of the Question
Processor component is to translate questions in natural
language into AnsProlog queries (or rules) so that we can
get the answers using the extracted facts of the stories and
the reasoning component.
The first step of the component is to parse a given question
using the Link Grammar parser. The links determine what
type of question is being asked and what sort of AnsProlog
“templates” should be used to form a query. We illustrate
this step with the example below.

Example 6 Given the input question “Where was the train
on March 15?”, Figure 6 shows the corresponding output
from the Link Grammar Parser.

Figure 6 – Output of the Link Grammar Output
corresponding to the question “Where was the train on
March 15?”

The first step is to recognize what type of question is being
asked. The word “where” indicates that the question is
about asking for a city or a place. The first part of the
translation is as below.
query0(C) :-
h(t_at(ACTOR,LN),TP), maps_to(LN,C),
event_actor(E,ACTOR),

The second step is to identify what “ACTOR” is referred to
in this question. The link “SI” indicates that “train” is the
actor of the question.
ACTOR = train,

The third step is to figure out the conditions of the
question. In this case, the links “ON” and “TM” indicate
the condition is about a particular date. So the following is
added to the translation:
occurs(E,MO,DAY), is_associated(E,TP),

To recognize what “MO” and “DAY” are, the link “TM”
indicates that
MO=3, DAY=15.
Therefore the question is translated into the AnsProlog rule
query0(C) :-

h(t_at(train,LN),TP), maps_to(LN,C),
event_actor(E,train), occurs(E,3,15),
is_associated(E,TP).

�

 7

Currently, WordNet is not utilized to identify if the actor of
the question is a person or a transportation. In addition, the
question “where” can have the answer of a city or a
particular place. Therefore, the following AnsProlog rules
are generated for the question “Where was the train on
March 15?”:

%%% Where was the train on March 15?
query0(C) :- h(t_at(train,LN),TP),
 maps_to(LN,C), event_actor(E,train),
 occurs(E,3,15), is_associated(E,TP).
query0(C) :- h(p_at(train,LN),TP),

maps_to(LN,C), event_actor(E,train),
occurs(E,3,15), is_associated(E,TP).

query0(W) :- in(W,C),
h(t_at(train,LN),TP), maps_to(LN,C),
event_actor(E,train), occurs(E,3,15),
is_associated(E,TP).

query0(W) :- in(W,C),
h(p_at(train,LN),TP), maps_to(LN,C),
event_actor(E,train), occurs(E,3,15),
is_associated(E,TP).

To show that the process of translation questions into
AnsProlog rules can be generalized to other questions
about “where”, example 7 is used to illustrate the idea.

Example 7 Given the input question “Where was the train
on March 15?”, Figure 7 shows the corresponding output
from the Link Grammar Parser.

Figure 7 – Output of the Link Grammar Output
corresponding to the question “Where was the train at
10:00 AM?”

Similar to example 6, we have the following translation that
utilizes “where” and “train” being an actor:
query1(C) :-
 h(t_at(train,LN),TP), maps_to(LN,C),
 event_actor(E,train),

The link “Dmcn” indicates that the question has the
condition about time. So the rest of the query is
timepoint(TP,at,T), T=t10_00am.

Therefore the question is translated into the AnsProlog
rules:
%%% Where was the train at 10:00 AM?
query1(C) :- h(t_at(train,LN),TP),
 maps_to(LN,C), event_actor(E,train),
 timepoint(TP,at,T), T=t10_00am.
query1(C) :- h(p_at(train,LN),TP),

maps_to(LN,C), event_actor(E,train),
timepoint(TP,at,T), T=t10_00am.

query1(W) :- in(W,C),
h(t_at(train,LN),TP), maps_to(LN,C),
event_actor(E,train),
timepoint(TP,at,T), T=t10_00am.

query1(W) :- in(W,C),
h(p_at(train,LN),TP), maps_to(LN,C),
event_actor(E,train),
timepoint(TP,at,T), T=t10_00am.

�

Queries
To evaluate our question and answering system, we use the
following simple story about John traveling on a train:

The train stood at the Amtrak station in Washington
DC at 10:00 AM on March 15, 2005.

The train was scheduled to depart for New York City
at 10:30 AM and arrive at 1:30 PM on March 15.

John arrived at the Amtrak station at 10:15 AM.

John boarded the train at 10:20 AM and handed the
ticket to the conductor.

The conductor punched the ticket.

John sat by a window.

The train left the Amtrak station on time.

Using the questions shown in examples 6 and 7, the
answers are as follows:

%% Q0: Where was the train on March 15?
query0(new_york_city).
query0(washington_dc).
query0(amtrak_station).

%% Q1: Where was the train at 10:00 AM?
query1(washington_dc).
query1(amtrak_station).

%% Q2: Where was the train at 10:15 AM?
query2(washington_dc).
query2(amtrak_station).

It is interesting to notice that the story does not explicitly
mention where the train is at 10:15 AM. Since we know
that the train is at the Amtrak station in Washington DC at
10 AM, using inertia of fluents, we can conclude that the
train is still at the Amtrak station in Washington DC. This
is indicated by the answers for question Q2.
The following questions, which can be answered without
domain knowledge, are encoded manually as AnsProlog
rules:

%% Q3: What was the train's

 8

%% destination?
dest(train,C) :- event_actor(E,train),
 event(E,leave), parameter(E,for,C).

%% Q4: What time did the train depart?
depart_at(train,T) :-

h(t_at(train,LN),TP), dest(train,C),
maps_to(LN,C),

 -h(t_at(train,LN),TP+1),
 timepoint(TP,at,T).

%% Q5: What date did the train leave?
depart_on(train,M,D) :-

h(t_at(train,LN),TP), dest(train,C),
maps_to(LN,C),
-h(t_at(train,LN),TP+1),

 timepoint(TP,at,T),
 is_associated(E,TP), occurs(E,M,D).

%% Q6: What date did John arrive in
%% New York City?
get_to_NYC(john,M,D) :-

not h(p_at(john,LN),TP),
maps_to(LN,new_york_city),
h(p_at(john,LN),TP+1),

 is_associated(E,TP+1), occurs(E,M,D).

%% Q7: If John arrived in New York City
%% as scheduled, what time did he
%% arrive? What date?
at_NYC(john,T) :-
 maps_to(LN,new_york_city),

h(in(john,TR),TP+1),
not h(t_at(TR,LN),TP),
h(t_at(TR,LN),TP+1),
timepoint(TP+1,at,T).

on_NYC(john,M,D) :-
 maps_to(LN,new_york_city),

h(in(john,TR),TP+1),
not h(t_at(TR,LN),TP),
h(t_at(TR,LN),TP+1),
is_associated(E,TP+1), occurs(E,M,D).

%% Q8: Who punched John's ticket?
who_punched(P) :-

o(punch(P,ticket),TP),
-h(own(john,ticket),TP+1).

The corresponding answers to the above queries are:
%% Answer to Q3
dest(train,new_york_city).

%% Answer to Q4
depart_at(train,t10_30am).

%% Answer to Q5
depart_on(train,3,15).

%% Answer to Q6
get_to_NYC(john,3,15).

%% Answers to Q7
on_NYC(john,3,15).
at_NYC(john,t1_30pm).

%% Answer to Q8
who_punched(conductor).

Consider the following queries that cannot be answered
directly from the story:
%% Q9: If John did not arrive at the
%% Amtrak station after 10:30 AM,
%% would he have boarded the train?
make_it(yes) :- john_at(W,TP1),
 in(W,C), h(t_at(train,LN),TP1),
 maps_to(LN,C).
make_it(no) :- not make_it(yes).
john_at(amtrak_station,TP+1) :-
 timepoint(TP,after,t10_30am).

The answer to Q9 is make_it(no), due to the fact that the
train leaves at 10:30. So John would not able to board the
train if he arrived after 10:30 AM.

%% Q10: When did the conductor punch
%% the ticket?
when_punch(EP,T) :-
 event_actor(E,conductor),
 o(punch(conductor,ticket),TP),
 is_associated(E,TP),
 timepoint(TP,EP,T).

Notice that in the story, it is not mentioned that when the
conductor punched the ticket. However, based on sentence
ordering, we can assume that it happened after John
boarded the train at 10:20 AM. So the answer is
when_punch(after, t10_20am).

Consider the following hypothetical queries that require
domain knowledge about travel:
%% Q11: If John did not have a ticket,
%% can he board the train?
-h(own(john,ticket),0).
board_train(john,yes) :-
 h(in(john,train),TP).
board_train(john,no) :-
 not board_train(john,yes).

In order to answer Q11, the system needs extra knowledge
about the fact that it is required to have a ticket to board a
train. Such knowledge is not mentioned in the story and we
incorporate a rule describing the knowledge in AnsProlog
as part of the general travel domain knowledge. Our QA
system returns board_train(john, no), indicating that john
cannot board the train.

 9

As another example of using domain knowledge to answer
questions, consider the following question:
%% Q12: If the train was an Amtrak
%% train, when would he arrive?
amtrak(train).
when_arrive(TR,EP,T) :-
 h(t_at(TR,1),TP), timepoint(TP,EP,T).

A train that leaves on time normally arrives on time. For
Amtrak trains, they usually arrive late even when they leave
on time. Here we need a default rule that describes trains
normally arrive on time and treat Amtrak trains as
abnormal trains. With this extra knowledge, our system
returns the answer when_arrive(train, after, t1_30pm),
indicating that the train arrives late rather than at 1:30 PM,
once we know that the train is an Amtrak train.

Discussion
We described a simple approach to question and answering
with deep reasoning that utilizes AnsProlog for
representation and reasoning, together with Link Grammar
for fact extraction and WordNet for disambiguating verbs
and nouns. This approach is different from previous
approaches in the sense that we use AnsProlog to express
certain domain knowledge that is required for deep
reasoning. Using the simple traveling scenario and queries
described in the paper, we showed that such sophisticated
questions cannot be answered without the use of domain
knowledge about travel and deep reasoning.
As future work, we need to expand the AnsProlog rules for
the travel domain and be able to translate different types of
questions into AnsProlog rules for our Question Processor.

References
Baral, C. 2003. Knowledge representation, reasoning and
declarative problem solving. Cambridge University Press.
Fellbaum, C. eds. 1998. WordNet: An Electronic Lexical
Database. MIT Press.
Gelfond, M. and Lifschitz, V. 1988. The Stable Model Semantics
for Logic Programs. International Symposium on Logic
Programming, pp. 1070 - 1080, MIT Press.
Gelfond, M. and Lifschitz, V. 1991. Classical Negation in logic
programs and disjunctive databases. New Generation
Computing, pp. 365 - 387.
Harabagiu, S., Miller, A., Moldovan, D. 1999. Wordnet 2 – a
morphologically and semantically enhanced resource. In
Proceedings of SIGLEX-99, pp. 1-8.
Harabagiu, S., Pasca, M. and Maiorano, S. 2000. Experiments
with Open-Domain Textual Question Answering, in Proc. of
COLING-2000, August 2000, Saarbruken Germany, pp. 292-298.
Harabagiu, S. 2001. Just-In-Time Question Answering. Invited
talk in Proc. of the Sixth Natural Language Processing Pacific
Rim Symposium (NLPRS-2001), Tokyo, Japan, pp. 27-34.

Miller, G., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.
1993. Introduction to Wordnet: An Online Lexical Database,
http://www.cogsci.princeton.edu/~wn/papers.shtml.

Niemelä, I. and Simons, P. 1997. Smodels - An Implementation of
the Stable Model and Well-Founded Semantics for Normal LP.
Logic Programming and Non-monotonic Reasoning, pp. 421 –
430, Springer Verlag.
Pasca, M. 2000. Open-domain factual answer extraction.
Technical Report, Southern Methodist University.
Pasca, M. and Harabagiu, S. 2001. The Informative Role of
WordNet in Open-Domain Question Answering, in Proceedings
of the NAACL 2001 Workshop on WordNet and Other Lexical
Resources: Applications, Extensions and Customizations,
Carnegie Mellon University, Pittsburgh PA, pp. 138-143.
Rus, V. 2002. Logic forms for Wordnet Glosses. PhD thesis,
Southern Methodist University.
Sleator, D. and Temperley, D. 1993. Parsing English with a Link
Grammar. Third International Workshop on Parsing
Technologies.
Vicedo, J. L. 2000. A semantic approach to question answering
systems. In Proceedings of Text Retrieval Conference (TREC-9),
NIST, pp. 440 – 445.

