
Heterogeneous Multirobot Coordination with Spatial and Temporal Constraints

Mary Koes, Illah Nourbakhsh, and Katia Sycara
{mberna, illah, katia}@cs.cmu.edu

Robotics Institute
Carnegie Mellon University

Abstract

Although recent work in multirobot teaming targets
challenging domains such as disaster response or plan-
etary exploration, the lack of formal problem descrip-
tions and benchmarks make it difficult to evaluate vari-
ous coordination approaches. We formally describe the
problem of scheduling a team of robots with heteroge-
neous capabilities to accomplish a set of joint tasks that
are spatially distributed. Finding the optimal plan in
these domains requires robots to integrate path planning
and task allocation with scheduling, which existing ap-
proaches to multirobot coordination separate. We have
developed a declarative framework for modeling the
problem as a mixed integer linear programming (MILP)
problem and a centralized anytime algorithm with error
bounds. The anytime algorithm can outperform stan-
dard MILP solving techniques, greedy heuristics, and a
market based approach which separates scheduling and
task allocation. Generating improved plans is insuffi-
cient if the schedules cannot be repaired to accomodate
new observations or hardware failures as the robots tra-
verse the environment. We present a framework for
schedule repair that leverages the expressive nature of
the MILP representation and minimizes the plan disrup-
tion.

Introduction
Challenging environments such as disaster response, recon-
naissance, and space construction require the coordination
of teams of robots. Robot teams in these domains will neces-
sarily be heterogeneous as cost limitations, power consump-
tion and size constraints require tradeoffs between mobility
and capabilities. Task execution in these domains may re-
quire subteams of robots to work together on a joint task if
no single robot possesses the necessary capabilities. Even
when one robot does possess sufficient capabilities, in time
sensitive domains such as search and rescue, the formation
and cooperation of subteams of robots may improve team
efficiency saving time, energy, or even lives. Coordination
of multiple robots on a joint task requires robots to consider
scheduling concurrently with task allocation. The presence
of spatial constraints requires robots to consider travel costs
and path planning during scheduling. Therefore, coordinat-
ing a team of robots to accomplish a set of joint tasks at dif-
ferent locations in the environment requires simultaneously

solving the task assignment, scheduling, and path planning
problems.

We are interested in the problem where robots start with
some initial information about the environment and goals.
For example, in the search and rescue domain, robots may
have an initial blueprint with probable victim locations. We
assume that goals have time-varying rewards. Robots may
be heterogeneous both in their ability to traverse the envi-
ronment and in their sensors and manipulators. Tasks may
require several capabilities. An example from the search and
rescue domain is the task of evaluating the state of a victim
which may require a microphone, vision system, and spot-
light. If no single robot is able to provide all the required
capabilities, multiple robots need to cooperate and all work
on the goal at the same time.

The problem can be viewed as a constraint optimization
problem with the objective of maximizing rewards from var-
ious goals. If we assume that rewards vary linearly with
time, the problem can be formulated as a mixed integer lin-
ear programming (MILP) problem incorporating schedul-
ing, task allocation, and path planning constraints. An MILP
problem formulation allows the flexibility to combine multi-
ple objective functions and to put ordering constraints on the
tasks. The declarative nature of this representation allows
intelligent replanning and reasoning about commitments to
teammates and the effects of a change in plans. It also facili-
tates communication between robot agents and humans who
may monitor execution and wish to change the plans.

Incorporating spatial constraints constitutes a significant
challenge, however. A naive MILP problem formulation is
to discretize both the environment and time and create a vari-
able for every node in the environment for every timestep.
For all but the smallest environments, this representation
is computationally infeasible. Solving MILPs is NP-hard,
and linear programs are inefficient at solving systems with
long sequential plans as in path planning (Bererton 2004).
Likewise, discretizing time causes problem complexity to
increase inversely with the time step size and directly with
the amount of time robots consider during scheduling. Dis-
crete time models may also be suboptimal if the time step
size is not sufficiently small. Instead we have developed an
MILP formulation that is independent of the environment
size and uses a continuous time model.

Inspired by human emergency responder coordination, we



assume that the environment can be broken down into inde-
pendent areas to be searched by manageably sized teams of
robots so that each team has on the order of 10 robots. We
present an anytime algorithm that converges to the optimal
solution while providing error bounds by combining stan-
dard ILP solution techniques with domain specific heuris-
tics. Although a centralized approach would not scale to
systems with hundreds of robots, our approach can outper-
form distributed approaches since it leverages the relaxed
solution to the MILP problem. It has been able to find sched-
ules for up to 20 robots within seconds, a necessary quality
for a system to be implemented on real robots.

Due to the uncertain nature of these environments the ini-
tial information is likely to be incorrect and will need to be
refined online as the robots execute their plans. Robots may
become disabled or lose capabilities while new teammates
or sensors may be added to the team. Although it is always
possible to naively replan after these events, this strategy
is not condusive to team stability. Since robots may occa-
sionally lose contact with the centralize planner, sudden and
frequent disruptions should be avoided. For systems where
humans interact with the robots such as in the search and res-
cue domain, human factors research (Adamczyk & Bailey
2004) suggests that interruptions reduce user effectiveness
and should be carefully managed.

The rest of the paper is organized as follows. We dis-
cuss existing techniques for multirobot coordination and ex-
plain why they fail to solve the class of problems involving
spatial and temporal constraints. Next we formally describe
the problem and instantiate it in the search and rescue do-
main. We show that the problem can be formulated as a
MILP problem and present our anytime algorithm that pro-
vides error bounds and converges to the optimal solution.
We introduce a framework for replanning while considering
disruption. We present the results of some experiments and
conclude with future work.

Related Work
Jones et al. (2004) propose a taxonomy of multirobot task
allocation problems depending on whether the robots are ca-
pable of performing one (ST) or more (MT) tasks at a time,
whether goals require exactly one (SR) or more (MR) robots
to be achieved, and whether task allocations are instanta-
neous (IA) or include time-extended scheduling (TA). While
this taxonomy ignores heterogeneity, it is useful for com-
paring our work, which falls into the ST-MR-TA category,
with existing systems. Market-based planners such as MUR-
DOCH (Gerkey & Matarić 2003) and TraderBots (Dias et
al. 2004) do not permit subteams to work on a task and
so fall into the ST-SR-IA and ST-SR-TA categories respec-
tively. Neither of these systems provide error bounds. When
a single robot is allocated to each task, interleaving task al-
location and scheduling is sufficient and the problems do not
need to be considered simultaneously. While recent work by
(Schneider et al. 2005) extends the TraderBots system to in-
clude time varying rewards and heterogeneous robots, it still
lacks the ability to solve the problem we propose requiring
multiple robots to coordinate on a task.

The field of coalition formation in the multiagent systems
domain is related to the ST/MT-MR-IA class of problems.
Shehory and Kraus (1998) present distributed anytime algo-
rithms with error bounds in the multiagent domain but do not
address reasoning about spatial constraints or time varying
reward. However, since multiagent systems are concerned
with rational agents, they do not explicitly maximize team
utility but instead use market mechanisms to promote sta-
bility and efficiency (Li et al. 2003). This is a different
paradigm than the declarative MILP framework in our work
which has no model of individual robot utility but explicitly
maximizes team utility.

A final body of related work includes distributed con-
straint optimization (DCOP) such as ADOPT (Modi et al.
2003). However, distributed algorithms cannot leverage the
relaxed solution as a centralized solution. Even for the
much simpler DiMES problem presented in (Maheswaran
et al. 2004) which does not include spatial constraints, the
ADOPT algorithm required minutes or hours so solve prob-
lems that a centralized planner could solve in a fraction of a
second and so is ill-suited for robotics applications.

LA-DCOP (Scerri et al. 2005) is a task allocation algo-
rithm for large scale teams that attempts to maximize the
team’s expected utility given probabilistic information by
computing a minimum capability threshold for each task.
LA-DCOP then interleaves scheduling and task allocation.
It does not guarantee the optimal solution or provide error
bounds. LA-DCOP does not explicitly consider path plan-
ning during task allocation but instead incorporates travel
time considerations with other fitness criteria into a single
axis for robot heterogeneity. Furthermore, the assumptions
underlying the probabilistic representation of team capabili-
ties may break down in domains with fewer robots decreas-
ing team performance.

Heterogeneous Task Scheduling with
Spatiotemporal Constraints

Given a map of the environment with tasks to be accom-
plished and a set of robots with heterogeneous capabilities,
we need an approach to obtain the optimal solution. Figure
1 shows a sample environment and an abstraction for the en-
vironment that the robots can use for planning. The desired
output, a team schedule in absolute time that can be executed
by the robots, is shown in figure 2.

We present a general problem formulation that captures
the important characteristics of problems with heteroge-
neous agents and joint activities for domains that require
spatial as well as temporal coordination. Suppose we have a
set of N resources operating in an environment with K rel-
evant capabilities and a set of M tasks to be accomplished.
Each task has an associated reward, location, and duration.
We then begin with a resource set R := {R1, R2, ..., RN}
and a set of tasks or goals G := {G1, G2, ..., GM}. The ob-
ject is to create a team plan for all the resources to maximize
the team reward over the time available.

We assume that the environment is discretized and repre-
sented as a weighted undirected graph of nodes and edges,
(N , E). Each resource Rn has specific capabilities, Sn



(a) USARSim NIST Yellow arena with overlayed abstract representation

Robot Capabilities
1 1
2 2
3 1,3
4 2
5 1,2

(b) Robots in example

(c) Goal map

Figure 1: The environment (a) is discretized (yellow lines) and represented as a graph where the costs of the edges signify the
distance between the centers of adjacent nodes if there is no wall (green) between them. The example has 10 tasks (white) and
5 robots (b) that all enter at the node marked by the arrow. We use an intermediate goal map representation (c) for the MILP
problem formulation.

where Sn is a vector whose length is equal to the cardinality,
K, of the set of capabilities relevant to this environment.

Each task has an associated location, duration, reward,
and necessary set of capabilities. We can then character-
ize the m-th goal as a tuple Gm := (Nm, dm, Qm(t), Cm)
where Cm, the capabilities required to achieve goal m, is a
vector whose length is equal to K and Cmk = 1 if capability
k is required to achieve task m and 0 otherwise. The dura-
tion requirement means that all capabilities must be satisfied
by the resource set, R, at location Nm for the entire con-
tinuous duration, dm, in order for the goal to be achieved.
Rewards, Qm, are time varying and there exists some time
limit, Tmax, after which time all rewards are 0.

Search and Rescue
The dangerous nature of a disaster area makes it an ideal ap-
plication for robotic exploration. Yet the unstructured and
uncertain nature of the environment, the necessity for speed
and heterogeneous capabilities, and the communication con-
straints all make it a challenging application for multirobot
coordination. Disaster response encompasses a large area
of problems. This work focuses on the problem of explor-
ing a semistructured disaster site such as the RoboCup Res-
cue competition (Jacoff, Messina, & Evans 2002) and the
accompanying simulator (Wang, Lewis, & Gennari 2003)
(Figure 1a). The team receives points for mapping the envi-
ronment, locating victims, determining whether the victim is
“alive” (by analyzing heat, motion, or sound signatures), and
reading small identification tags the victim may be wearing.
We consider three relevant capabilities based on real robot

Figure 2: The output of our algorithm is a team schedule, a
set of goal oriented schedule each of which can be executed
by an average robot with a 3T architecture.

capabilities: mapping (requires a laser range finder), victim
state identification (requires heat sensor), and victim ID tag
recognition (requires light, camera system, and good mobil-
ity). Since the simulator interacts with the environment at a
very low level, the robot architecture must provide a suitable
layer of abstraction for planning (Nourbakhsh et al. 2005).

MILP Problem Formulation
Since MILP solvers are typically not adept at solving long
sequential plans and can be much slower at path planning
than A* or other search methods, we attempt to reduce path
planning complexity by transforming the original environ-
ment (N , E) into a goal map (NG, EG) where each goal
Gm ∈ G is mapped to a node in NG (Figure 1c). The
transformation from the original environment into the goal
map requires that path planning be precomputed. We use



Floyd’s algorithm which is O(n3) (Cormen, Leiserson, &
Rivest 1990). In general, the edge costs may differ for dif-
ferent classes of robots. In addition to the task nodes, we
also have a start node and an idle node. The start node has
directed edges to each task node in the graph as well as the
idle node and represents the starting positions of the robots.
Every node has an edge with zero cost to the idle node. The
idle node has no transitions out since a robot would never
schedule a timeslot as idle unless there were no more possi-
ble tasks for it to work on.

The objective is to find a schedule for each robot that max-
imizes team utility. Each schedule consists of a set of sub-
plans representing a path through the goal map that can be
mapped back onto a path through the original environment.
The number of subplans scheduled for any given robot is
defined as the planning horizon (ω) for that robot. Each sub-
plan consists of the time to travel to the location to perform
the task, the time spent waiting for teammates to arrive, and
the time actually performing the task (Figure 2).

We build a MILP mathematical model of the problem.
Note that Rn and Gm correspond to robots or goals while
subscripts denote a variable that points to a robot or goal.
Variables are either binary or real valued and fall into one of
three classes:

• Goal variables include binary variables Gm and RnGm

that denote whether the goal is scheduled and whether
robot n works on goal m respectively. Goal variables
Gm start and RnGm start are real valued variables for
the absolute time at which the goal is scheduled or the
robot is scheduled to work on the goal. RnGm do is a
real valued variable denoting the amount of time robot
n dedicates to achieving goal m. All real valued vari-
ables take on the value 0 if their binary counterparts are
0. Additionally, we define antivariables Gm start∗ and
RnGm start∗ that have the same value as their corre-
sponding variables but take on the value of Tmax if their
binary counterparts are 0.

• Schedule variables include binary variables RnOiP(g1,g2)

that denote whether or not robot n travels from goal
1 to goal 2 in its ith timeslot. The time spent travel-
ing, waiting, and working on the goal during a given
timeslot (figure 2) are represented with real valued
variables RnOi travel, RnOi startDo, and RnOi do.
RnOi startDo is an absolute time while RnOi travel
and RnOi do represent amounts of time.

• Linking variables RnGmOi (binary) and RnGmOi do
and RnGmOi startDo (real) are used to establish con-
straints between the schedule and goal variables.

We want to maximize solution utility which is the sum
the reward functions from all tasks accomplished evaluated
at the time at which they were accomplished. We assume
that rewards decrease linearly with time.

Utility =
∑

m s.t. Gm∈G

Tmax−Gm start∗

Tmax
Qm

We subject this objective function to the following con-
straints.

• Robots must work on exactly one task at a time:

∀n s.t. Rn∈R,i<ω :
∑

m s.t. Gm∈G

RnGmOi = 1

• Except the idle task, a robot may not work on a task more
than once:

∀n s.t. Rn∈R,m s.t. Gm∈G :
∑

i<ω

RnGmOi ≤ 1

• Network constraints: In order to take the path from g1 to
g2 at this timestep, the robot must have been at node g1 at
the end of last timestep:

∀n s.t. Rn∈R,g1 s.t. Gg1∈G,1≤i≤ω :∑

g2 s.t. Gg2∈G

RnOiP(g1,g2) = RnGg1
Oi−1

In order to take path from g1 to g2 at this timestep, the
robot must end up at node g2:

∀n s.t. Rn∈R,g2 s.t. Gg2∈G,1≤i≤ω :∑

g1 s.t. Gg1∈G

RnOiP(g1,g2) = RnGg2
Oi

The time allocated for travel in this timestep for this robot
must at least equal the time necessary for this robot to
traverse path (g1, g2). Since this is robot dependent, we
can have different costs for different classes of robots (e.g.
large, fast wheeled machines versus small, legged, climb-
ing robots).

∀n s.t. Rn∈R,g1,g2 s.t. Gg1 ,Gg2∈G,1≤i≤ω :
RnOiP(g1,g2)ShortestPath(g1, g2, Rn) ≤ RnOi travel

• Initial condition for time: (δ = starting time, δ ≥ 1).

∀n s.t. Rn∈R : RnO1 startDo = RnO1 travel + δ

• General time constraint based on timestep definition (Fig-
ure 2)

∀n s.t. Rn∈R,1≤i≤ω :
RnOi startDo = RnOi−1 startDo + RnOi−1 do+
RnOi travel

• Robots with the appropriate capabilities must be present
at a node in order for the capability to be covered.

∀m s.t. Gm∈G,k s.t. Cmk=1 :
∑

n s.t.Rn∈R,Snk=1

RnGm ≥ Gm

• A joint task cannot start until all allocated robots are
present:

∀n s.t. Rn∈R,m s.t. Gm∈G : Gm start ≥ RnGm startDo
∀m s.t. Gm∈G : Gm · Tmax ≥ Gm start

• All robots must work on the joint task for the entire dura-
tion:

∀m s.t. Gm∈G,n s.t. Rn∈R :
Gm start − RnGm startDo + dm ≥ RnGm do
RnGm do ≤ RnGm · Tmax

RnGm do ≥ dmRnGm

∀m s.t. Gm∈G :∑

n s.t. Rn∈R

RnGm do ≥ dm
∑

n

RnGm



• A robot may not work on a joint task before the scheduled
start time: (necessary to force all robots to work on the
task concurrently):

∀n s.t. Rn∈R,m s.t. Gm∈G : Gm start ≤ RnGm startDo∗

• All times must be less than Tmax.

• Linking constraints relate goal variables to their an-
tivariables and goal variables to schedule variables
through linking variables. Linking constraints are
necessary in order for the resulting solution to be
legal. For example, we have linking constraints
relating RnOi startDo to RnGmOi startDo and
RnGmOi startDo to RnGm startDo so that the con-
straints on the robot’s time are transferred to the tasks
allocated to that robot. Linking constraints are neces-
sary in order for the resulting solution to be legal. These
constraints are not included here but can be viewed at
http://www.cs.cmu.edu/˜mberna/research/aaai sup.pdf.

Anytime Scheduling Algorithm

Algorithm 1 Anytime Scheduling using MILP Solver
1: planHoriz = # Tasks
2: prob = CreateMILP(planHoriz)
3: upperBound = RelaxedSolution(prob)
4: oldSoln = {}
5: for planHoriz = 1 to # Tasks do
6: prob = CreateMILP(planHoriz)
7: start = HeuristicScheduler(oldSoln, planHoriz)
8: optimalSolnForPH = Optimize(prob, start)
9: oldSoln = optimalSolnForPH

10: end for
11: return optimalSolnForPH

Once the problem has been formulated as a MILP, stan-
dard linear programming techniques can be applied to find
the optimal relaxed solution (without integer constraints)
which can be computed in polynomial time (Cormen, Leis-
erson, & Rivest 1990). In our experiments, computing the
optimal relaxed solution was very fast, requiring well under
a second for problems such as the example in figure 1(a-b)
and less than 10 seconds even for a large environment with
900 nodes, 20 robots, and 20 tasks. This relaxed solution
provides an upper bound on team utility. Finding the optimal
integer solution however is NP hard (Cormen, Leiserson, &
Rivest 1990) and the standard algorithm used to search the
space of integer solutions, branch and bound, has worst case
exponential time complexity. The integrality gap between
the relaxed and integer solutions frequently means that find-
ing a feasible solution can take minutes or even hours.

In this respect, domain specific heuristics can easily out-
perform an ILP solver as they can compute feasible if subop-
timal solutions very quickly. Furthermore, the time varying
property of the original problem suggests a greedy approach
is likely to perform well. Most ILP solvers including the
package we use (CPLEX) have the ability to take an exist-
ing solution as a starting point for the search. Recall from the

problem formulation that the planning horizon, ω, is defined
as the number of tasks (including the idle task) scheduled for
a given robot. We combine the benefits of domain specific
heuristics with the optimality guarantees of an ILP solver
by interleaving the two approaches over an ever increasing
planning horizon (Algorithm 1). The branch and bound al-
gorithm stores the best solution so the algorithm may be in-
terrupted at any time and will simply return the best solution
thus far. When the planning horizon equals the number of
tasks, the solution is guaranteed to be optimal since it grants
every robot the possibility of accomplishing every task. In
practice however, no single robot performs all tasks so the
optimal solution may be found at a lower planning horizon.

Framework for Schedule Repair
As robots execute their plans, they will discover discrepan-
cies between the real world and their representation. We
have defined a set of replanning catalysts:
– Robot added
– Robot removed/incapacitated
– Robot capability added
– Robot capability removed/incapacitated
– Goal added
– Goal removed
– Goal capability requirement added
– Goal capability requirement removed
– Path cost shortened
– Path cost lengthened
– Goal duration increased
– Goal duration decreased
– Goal reward changed
The discovery of any of these events necessitates replanning.
We have identified three methods for replanning.
Full Replanning Given the current state at the time of the

interruption and the changes to the beliefs caused by the
interruption, a new MILP can be formulated and solved
using the anytime algorithm previously described. This
approach (illustrated in figure 3a) will converge to the op-
timal solution but ignores the cost of processing an in-
terruption. If a robot is out of communication and does
not receive the new plan, team performance may suffer.
Humans monitoring and interacting with the robots may
have difficulty context switching from one task to another.
Human factors research suggests that interruptions should
be kept to a minimum and carefully handled in order to
reduce cognitive load and receive optimal performance
(Adamczyk & Bailey 2004).

Constrained Replanning One option to guard against dis-
ruption is to artifically constrain the problem (Figure 3b).
For example, robots out of communication range may be
constrained to keep the original plan and ignored for re-
planning purposes or robots interacting with humans may
not change the next two planned tasks. This reduces the
size of the MILP and provides for certain guarantees on
system stability but may result in suboptimal behavior.

Aware Replanning Rather than using hard constraints as
in constrained replanning, it is possible to include pref-



(a) Full replanning

(b) Constrained replanning

(c) Aware replanning

Figure 3: The schedule repair framework permits three types
of replanning. Full replanning (a) converges to the optimal
solution within the restrictions of the solver. Constrained
replanning (b) holds some of the original plan fixed (red)
and solves the remaining reduced problem (green). Aware
replanning incorporates the desire to reduce disruption into
the objective function during replanning.

erences to avoid changes to the current plan in the objec-
tive function. Rather than simply maximizing the utility
as described in the MILP Problem Formulation, the sys-
tem seeks to maximize the utility minus penalties incurred
for changing variable values (Figure 3c). The resulting
schedule is then optimal to the extent that these penal-
ties reflect the true costs of changing the plan. Hybrid
approaches combining constrained and aware replanning
are also possible.
In order to avoid miscommunications and reduce the

cognitive load of humans observing and interacting with
the robots, we want to minimize the amount that the plan
changes, particularly in the near term. The quantification of
the difference between two plans is defined as disruption.
We investigated several possible metrics for measuring dis-
ruption including a dynamic programming metric based on
biological sequence analysis (Durbin et al. 1998). However,
in order to include disruption in the objective function for
aware replanning, it must be described as a linear equation.

We use the following metric for disruption:
∑

m s.t. Gm∈G,n s.t. Rn∈R

|RnGm start∗
′

−RnGm start∗|
Tmax

γn

where RnGm start∗
′

is the value of RnGm start∗ in the
original schedule and RnGm start∗ corresponds to the the
time at which robot n is scheduled to begin task m or Tmax

if robot n is not scheduled to work on task m as explained
in the MILP Problem Formulation. Each robot has a cost
associated with changes in the plan, γn. Our metric for dis-
ruption is the weighted change in time at which the task will
start. Taking on a task or dropping a tasks has a large cost
while small changes are relatively inexpensive. Other possi-
ble metrics include penalizing changes in earlier tasks more
strongly than changes in later tasks, penalties based only on
the number of robots with changed schedules, or time inde-
pendent penalties based on changes in the set of goals. The
metric chosen should be appropriate to the domain and the
cost of context switching within that domain.

Results
We have tested our formulation and algorithm extensively
in an abstract simulator. The simulator randomly generates
an initial blueprint, represented as a grid world. We tested
environments between 10 and 1000 nodes and found (as ex-
pected) that planning complexity is independent of environ-
ment size in our formulation. The simulator also randomly
generates a set of tasks with rewards and capability require-
ments. Robots are randomly given capabilities. The value
of Tmax was always sufficiently high to permit the team to
accomplish all the tasks (subject to constraints on team ca-
pabilities).

We considered four different algorithms. A myopic
scheduling algorithm recursively optimizes the MILP for a
planning horizon of 1, that is scheduling 1 task for each
robot at each iteration. The standard ILP solver (CPLEX)
optimizes the MILP for a fixed planning horizon. The any-
time algorithm combines these approaches as described in
Algorithm 1. We also compared our results to a greedy



5 10 15
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Number of tasks

%
 U

til
ity

 G
ai

n 
vs

. A
ny

tim
e 

A
lg

or
ith

m

Myopic Market based CPLEX

Figure 4: The anytime algorithm consistently resulted in
higher utility than the other approaches. Results shown are
averaged over trials with 3, 9, and 15 robots.

0 20 40 60 80
0

20

40

60

80

100

120

Time in seconds

U
til

ity

Figure 5: Anytime Algorithm results over time on example
from figure 1(a-b). All times are CPLEX CPU times on a
2.8GHz Pentium 4 machine with 1GB RAM.

market based algorithm that sequentially holds one auction
for each capability requirement of each task to allocate the
tasks and then optimizes the schedule based on that allo-
cation. Though other improvements are possible, includ-
ing reauctioning tasks, several market-based systems (e.g.
MURDOCH (Gerkey & Matarić 2003)) use this greedy al-
location algorithm.

Figure 4 shows the results of the four algorithms on ran-
domly generated test cases, varying the number of robots (3,
9, and 15) and the number of tasks (5, 10, and 15). The
ILP solver, CPLEX, performed poorly due to the time limit
of 60 seconds we imposed during which time it was unable
to find an integer solution. Note that the anytime algorithm
always performed as well as or better than the myopic sched-
uler with a mean utility gain of 0.6% and a maximum utility
gain of approximately 13% even under tight time constraints
and improves further over time. The anytime algorithm per-
formed significantly better than the market based algorithm
with separated task allocation and scheduling with an aver-
age utility gain of 10%. The performance of both the market
based system and CPLEX decreased as problem complexity
(number of tasks) increased. However, while CPLEX typi-

cally performed slightly better with fewer robots, the market
based system performed significantly worse with 3 robots
because the robot interactions and increased number of tasks
per robot resulted in schedule inefficiencies.

We also examined the performance of the various algo-
rithms over time on the example problem from Figure 1(a-
b). Figure 5 shows that the anytime algorithm has discrete
jumps corresponding to the heuristic scheduler step of Algo-
rithm 1 (line 7) and slight improvements as the ILP searches
the space near the heuristic solution, reaching the maximum
utility of 124.5 after about 45 seconds. The myopic heuristic
terminated with a maximum utility of 124.35 in less than 0.1
seconds. The market based approach required 56 seconds to
find a feasible schedule and 210 seconds to find the optimal
schedule (given the initial allocation) with a utility of 123.3.
CPLEX required 8 minutes to find a feasible solution and
still had not converged to the optimal solution when stopped
after an hour with a utility of 121.4. These results show that
the anytime algorithm significantly improves performance
over standard ILP solution techniques, though if time is an
issue, the myopic heuristic may be more suitable.

Conclusion and Future Work
The problem of task allocation for heterogeneous robot
teams with support for joint tasks has different challenges
than either task allocation without joint tasks or multia-
gent coalition formation without spatial constraints. Find-
ing the optimal solution requires simultaneously solving the
path planning, scheduling, and task allocation problems. A
declarative framework enables robots to reason about their
commitments to their teammates, explain their actions to
humans, and provides sufficient flexibility. We presented a
continuous time MILP problem formulation that minimizes
the effect of path planning complexity. We also demon-
strated an anytime algorithm with error bounds capable of
both quickly finding a solution for midsized robot teams and
of finding the optimal schedule, given enough time.

Due to inaccuracies in the representation and uncertainty
in the environment, robots will need to refine their schedules
as they execute their plans. We utilize the declarative frame-
work provided by the MILP problem formulation for intel-
ligent replanning, reasoning about interactions and schedule
stability during replanning.

The algorithm and framework provided suffer from the
standard drawbacks of a centralized system including vul-
nerability to point failure, communication failure, and lack
of scalability. We are investigating methods for mitigat-
ing these drawbacks by designing and implementing a dis-
tributed version of this algorithm. One approach would be
to have each robot contain a copy of the environment and
perform the planning. This naturally introduces challenges
in keeping the plans synchronized across robots, particularly
during replanning.

Another area for future work includes augmenting the
problem definition to include ordering constraints between
tasks, partial rewards for partial satisfaction of goal require-
ments, and real valued capabilities. The MILP problem for-
mulation is general enough to easily accommodate these



changes though it is unclear what the impact on solution
complexity would be.

While work thus far has dealt primarily with creating
plans and reacting to disturbances, system performance may
be increased by reasoning about uncertainty. For example,
if there exists a high prior probability that a robot will be
incapacitated, it may be preferable to use another robot, or
send two robots. Learning the distributions for interruptions
online and planning accordingly is another interesting topic
for future research.

Acknowledgements
This work is supported by National Science Foundation
Award IIS-0205526. The authors would also like to thank
the ILOG corporation for their generous support.

References
Adamczyk, P., and Bailey, B. 2004. If not now, when?:
The effects of interruption at different moments within task
execution. In Human Factors in Computing Systems: Pro-
ceedings of CHI’04, 271–278. ACM Press.
Bererton, C. 2004. Multi-Robot Coordination and Com-
petition Using Mixed Integer and Linear Programs. Ph.D.
Dissertation, Robotics Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA.
Cormen, T. H.; Leiserson, C. E.; and Rivest, R. L. 1990.
Introduction to Algorithms. MIT Press/McGraw-Hill.
Dias, M. B.; Zlot, R. M.; Zinck, M. B.; Gonzalez, J. P.;
and Stentz, A. T. 2004. A versatile implementation of
the traderbots approach for multirobot coordination. In In-
ternational Conference on Intelligent Autonomous Systems
(IAS-8).
Durbin, R.; Eddy, S.; Krogh, A.; and Mitchison, G. 1998.
Biological Sequence Analysis: Probabilistic models of pro-
teins and nucleic acids. Cambridge University Press.
Gerkey, B. P., and Matarić, M. J. 2003. Multi-Robot Task
Allocation: Analyzing the Complexity and Optimality of
Key Architectures. In Proc. of the IEEE Intl. Conf. on
Robotics and Automation.
Jacoff, A.; Messina, E.; and Evans, J. 2002. Experiences
in deploying test arenas for autonomous mobile robots. In
Proc. 2001 Performance Metrics for Intelligent Systems
Workshop (PerMIS01).
Jones, C.; Shell, D.; Matarić, M. J.; and Gerkey, B. 2004.
Principled approaches to the design of multi-robot sys-
tems. In Proc. of the Workshop on Networked Robotics,
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2004).
Li, C.; Chawla, S.; Rajan, U.; and Sycara, K. 2003. Mech-
anisms for coalition formation and cost sharing in an elec-
tronic marketplace. Technical Report CMU-RI-TR-03-10,
Robotics Institute, Carnegie Mellon University, Pittsburgh,
PA.
Maheswaran, R. T.; Tambe, M.; Bowring, E.; Pearce, J. P.;
and Varakantham, P. 2004. Taking DCOP to the real

world: Efficient complete solutions for distributed multi-
event scheduling. In Proc. of the Third International Joint
Conference on Autonomous Agents and Multiagent Sys-
tems, 310–317.
Modi, P. J.; Shen, W.-M.; Tambe, M.; and Yokoo, M.
2003. An asynchronous complete method for distributed
constraint optimization. In Proc. of the second interna-
tional joint conference on Autonomous agents and multia-
gent systems, 161–168.
Nourbakhsh, I.; Sycara, K.; Koes, M.; Yong, M.; Lewis,
M.; and Burion, S. 2005. Human-robot teaming for search
and rescue. IEEE Pervasive Computing: Mobile and Ubiq-
uitous Systems 72–78.
Scerri, P.; Farinelli, A.; Okamoto, S.; and Tambe, M. 2005.
Allocating tasks in extreme teams. In Proc. of the fourth
international joint conference on Autonomous agents and
multiagent systems.
Schneider, J.; Apfelbaum, D.; Bagnell, D.; and Simmons,
R. 2005. Learning Opportunity Costs in Multi-Robot Mar-
ket Based Planners. In Proc. of the IEEE Intl. Conf. on
Robotics and Automation (ICRA).
Shehory, O., and Kraus, S. 1998. Methods for task allo-
cation via agent coalition formation. Artificial Intelligence
101(1-2):165–200.
Wang, J.; Lewis, M.; and Gennari, J. 2003. USAR: A
game based simulation for teleoperation. In Proc. 47th
Ann. Meeting Human Factors and Ergonomics Soc.


