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Abstract

The planning and scheduling framework which is the object
of this paper consists in a loosely-coupled integration which
is achieved by cascading a classical planner and a general
purpose scheduler. The output of the planning phase yields a
partially ordered plan which is then integrated with time and
resource constraints to produce a scheduling problem. The
research described in this paper is aimed at understanding the
structural trademarks of the causal knowledge that a schedul-
ing tool can inherit from STRIPS-based reasoners. Specifi-
cally, we analyze quality of the plans in terms of two well-
known properties of scheduling problems, namely the Re-
strictiveness and the Resource Strength. To this end, we de-
scribe a set of experiments carried out on a series of state-of-
the-art planners aimed at assessing the bias of different plan-
ning strategies in the context of the loosely-coupled frame-
work.

Introduction
In recent years, increasing attention has been dedicated to
integrating Planning and Scheduling (P&S), with the aim
of extending the reach of automated solving to combinato-
rial optimization problems which require both causal and
time/resource reasoning. Integrated P&S frameworks are
typically obtained following two approaches. On one hand,
integrated P&S architectures can be designed using a “con-
textual” approach, so called because time/resources and the
causal sub-problem are dealt with contextually. This can be
achieved, as for instance in (Gerevini, Saetti, & Serina 2003;
Smith & Weld 1999; Currie & Tate 1991; Ghallab & Laru-
elle 1994), by expanding a strictly causal solving technique
with algorithms and data structures capable of dealing with
time and/or resources. Other contextual solvers adopt the
opposite strategy, namely starting from a scheduling-centric
approach and extending it with limited causal reasoning ca-
pabilities (Cesta, Fratini, & Oddi 2004; Jonssonet al. 2000;
Muscettolaet al. 1992). The main drawback of contex-
tual P&S integration strategies is that typically the “en-
hanced” system does not aquire a full set of capabilities.
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This is the case, for instance, of planners which support
PDDL2.1/2.2 (Fox & Long 2003; Edelkamp & Hoffmann
2004), an extension of the standard Planning Domain Defi-
nition Language (PDDL (Ghallabet al. 1998)) for modeling
actions with durations, a characteristic which does not alone
afford the versatility of common scheduling problem defini-
tion languages.

On the other hand, so-called “coupled” P&S consists
in linking separate implementations of the two solving
paradigms in order to achieve a bi-modular solver, in which
each component deals with the respective sub-problem. This
approach clearly presents some major difficulties since it
requires the definition of forms of information sharing be-
tween the two subsystems. Moreover, this type of integra-
tion can be achieved by a strong coupling of the two solving
components (i.e., in which every decision taken by one com-
ponent is “propagated” by the other component), or, on the
other end of the spectrum, by loosely-coupling the two solv-
ing sub-systems (i.e., the planner produces a plan and the
scheduler then enforces the time and resource related con-
straints upon this plan). While a strongly-coupled architec-
ture may seem to be more realistic, there is increasing evi-
dence that often a loose-coupling of solving components is
more applicable to solve certain classes of real-world prob-
lems1.

The P&S framework which is the object of our work con-
sists in a loosely-coupled integration which is achieved by
cascading a classical planner and a general purpose sched-
uler. The output of the planning phase yields a partially or-
dered plan which is then integrated with time and resource
constraints. The resulting scheduling problem is then given
to the scheduler for resolution. The research described in
this paper stems from the necessity for an in-depth compre-
hension of some fundamental aspects related to this form
of integration. In particular, we address the issue of under-
standing the structural trademarks of the causal knowledge

1This is the case, for instance, in military planning, where high-
ranking officers take high-level planning decisions, disregarding
issues such as resource allocation or specific synchronization con-
straints, while the more scheduling-related decisions which must
be taken in order to make a plan operational occur afterwards.
An interesting discussion on this topic was brought up during the
ICAPS Workshop on Integrating Planning into Scheduling, June
2004.



that a scheduling tool can inherit from STRIPS-based rea-
soners. Thus, we set out to measure the structural properties
of the scheduling problems yielded from the planning phase
in the light of the subsequent scheduling. The present analy-
sis extends the results obtained in (Pecora, Rasconi, & Cesta
2004; Cesta, Pecora, & Rasconi 2004), in which we fo-
cused on the bias produced by different planning approaches
(heuristic search and planning graph based) in the light of
makespan-optimizing scheduling. In this paper, our aim is
to assess the bias of the planning phase on two well-known
properties of scheduling problems, namely the Restrictive-
ness and the Resource Strength. These two structural prop-
erties of scheduling problems are commonly used2 as con-
trol parameters for the random generation of Resource Con-
strained Project Scheduling Problems with minimum and
maximum time lags (RCPSP/max) (Bruckeret al. 1998).
To this end, we describe a set of experiments carried out
on a series of state-of-the-art planners aimed at generating
scheduling problems which exhibit varying degrees of these
two parameters.

This paper is organized as follows. We first present the
general experimental setup within which our analysis is car-
ried out. To this end, we first describe more precisely the
loosely-coupled P&S framework (an architecture similar to
REALPLAN -MS (Srivastava 2000)) which our work focuses
on, as well as the benchmark set on which our analysis is
performed. We then describe the details of the structural
properties we wish to measure, while the section that follows
describes an extention to one of the planners analyzed in the
experiments aimed at increasing the detail of our observa-
tions. The main results of this paper consist in analyzing
and comparing the performance in terms of the measures in-
troduced earlier of four state-of-the-art planners. The results
are then put together and further analyzed, and we conclude
with a summary of our findings as well as an outlook for
future work.

Experimental Setup
In an integrated P&S context, time and resource constraints
as well as causal dependencies are contemplated in the initial
problem definition. Every operator is inherently associated
to a time duration and requires a certain quantity of consum-
able multi-capacity resources that ensure its executability.

The general schema we use in this investigation is as fol-
lows (see figure 1). A causal model of the environment is
given as input to a planner, i.e., the domain representation
and the problem definition, both expressed in a STRIPS-like
formalism. This model does not contemplate time and re-
source related constraints, which are accommodated after
the planning procedure has taken place. In order to pro-
duce a problem specification which can be reasoned upon by
the scheduling procedure, the Partial Order Plan (POP) pro-
duced by the planner is integrated with time and resource
related information by means of a plan adaptation proce-
dure. This procedure produces a minimal-constrained de-
ordering (B̈ackstr̈om 1998) of the POP and integrates it with

2See for instance (Schwindt 1998).
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Figure 1: The loosely-coupled reference framework, in which a
planning problemp is solved by the planner, ultimately yielding a
scheduling problemπ.

time and resource related information to produce what we
shall call a completePOP. In more formal terms:

Definition 1. A completePOP P is a tuple
〈T ,P,R, C,U ,D〉 where
• T = {T1, . . . , Tn} ∪ {T0, Tn+1} is the set oftaskswhich

correspond to then activities in the POP produced by the
planner;T0 andTn+1 are calledsourceand sink activi-
ties;

• P is a set ofprecedence constraintsbetween the tasks,
whereTi ≺ Tj means that taskTi must be completed
before the execution of taskTj can begin;

• R = {R1, . . . , Rm} is a set of renewableresources;
• C = {C1, . . . , Cm} are thecapacitiesof the resources;
• U : T × R → N ∪ {0} is the function which determines

theresource usageattributes of a task, that is,U(T, R) =
u if task T usesu units of resourceR (u = 0 indicates
thatT does not use resourceR);

• D : T → N ∪ {0} is the function which determines the
durationsof the tasks, that is,D(T ) = d if the duration of
taskT is d time units.

According to the definition above, a completePOP coin-
cides with a Resource Constrained Project Scheduling Prob-
lem (RCPSP) (Bruckeret al. 1998) and can be visualized in
the form of a precedence graph.

A General Multi-Agent Problem Template
Our aim in this paper is to analyze the performance in terms
of plan quality of different planners within the above men-
tioned loosely-coupled framework. More specifically, we
are interested in assessing the influence of different planning
strategies on the structural characteristics of the scheduling
problems they lead to. This section briefly illustrates the
main features of the benchmark problems employed in the
experimental evaluation.

We focus on a multi-agent inspired planning domain
which produces completePOPs with high levels of concur-
rency by encapsulating the notion ofexecuting agent. Con-
currency is obtained by inducing the presence of multiple



agents in the POP. Having augmented the STRIPS subset
of the PDDL language with some simple extensions to al-
low the specification of durations and resource usage for the
operators (these directives are ignored by the planner and in-
tegrated into the POP to form the completePOP), the general
structure of a problem which leads to completePOPs which
exhibit high degrees of concurrency is shown in figure 2,
where:capacity 0 denotes an object which is not a re-
source. Given this structure, the number of agents in the
completePOP is determined by the number of objects with
non-zero capacity, i.e.,|{A1, . . . , An}|, and the resource us-
age of each task is given by the:uses clause in the abstract
operator specification.

(define (domain . . . ) . . .

(:action op

:parameters (?a - agent . . . )

:precondition ( . . . )

:effect ( . . . )

:uses (?a USAGE)

:duration DUR ) . . . )

(a)

(define (problem . . . ) (:domain . . . )

(:objects

A1, . . ., An - agent :capacity CAP

B1, . . ., Bm - type :capacity 0 . . . )

(:init . . . )

(:goal . . . ))

(b)

Figure 2:General structure of augmented PDDL domain (a) and
problem specifications (b) which lead to completePOPs with mul-
tiple agents. Bold typeface indicates directives which are ignored
by the planner.

A very simple example “instantiation” of this somewhat
general template could be the following: a team of robotic
agent s can move from oneroom of an environment to an-
other (so long as there is a door connecting the two adjacent
rooms), and they can perform a simpleoperation on cer-
tain types ofobject s (iff they are in the same room as
the object). In order to model the fact that agents do not
perform anoperation on two objects at the same time,
each action:uses one unit of the resourceagent . This
equates to modeling the agents as binary resources for the
scheduler. The idea is that, once the planning has taken place
(disregarding this resource usage information), the scheduler
will enforce the resource usage constraints, adding as a con-
sequence a precedence constraint during the solving phase
which serializes two operations on the same object which
otherwise were independent.

Notice also that it is possible to model this binary re-

source constraint causally, by addingnot (busy ?a)
to the preconditions andbusy ?a to the effects of ac-
tion operation . The busy predicate can be seen as a
“causal excuse” for the resource capacity constraint mod-
eled with the:uses clause, and can be reset by a dummy
finish action (whose effect isnot (busy ?a) ). No-
tice that in this manner we would be producing scheduling
problems without resource contention peaks, thus transfer-
ring the burden of resolving these contentions to the plan-
ning phase. It has been shown in (Pecora & Cesta 2002;
R-Morenoet al. 2002) on a very similar domain that adopt-
ing this modeling strategy heavily affects the efficiency of
the planning procedure, making it very difficult to solve even
problems of small size.

Restrictiveness and Resource Constraints
There is a consolidated body of work in the field of schedul-
ing which deals with classifying scheduling problems with
respect to various quantifiable properties. Our aim in this pa-
per is to interpret these structural characteristics in the light
of different implementations of the planning phase which
constitutes the first component of the loosely-coupled frame-
work. In this section we present the two well-known struc-
tural factors of scheduling problems which we will focus
on. In the remainder of this paper we will use these factors
to measure the quality of the scheduling problems obtained
with a number of state-of-the-art planners.

Order Strength. The first parameter we focus on quanti-
fies the effect of the precedence constraints contained in the
plan (i.e., the causal structure of the scheduling problem) on
the possible execution sequences of the tasks. Our aim is to
measure to some extent the magnitude of the search space
which is explored by the scheduling phase. To this end, we
borrow the notion ofrestrictivenessfrom Project Schedul-
ing.

Given a completePOP〈T ,P,R, C,D〉, let l(P) be the
number of linear extensions of the causal structure deter-
mined by the precedence constraints inP. The restrictive-
ness of the completePOP3 can be defined as follows:

σ = 1− log
l(P)
|T |!

where |T |! represents the maximum number of linear ex-
tentions of a partial order in the set of tasksT . The re-
strictiveness measures the degree to which the precedences
between activities restrict the number of feasible execution
sequences of the tasks. For completely parallel causal struc-
tures, the restrictiveness is0, while it is 1 for serial task net-
works. In general, the higherσ, the less different alternatives
exist to resolve resource conflicts between tasks (by defin-
ing additional precedence constraints). As a consequence,
the restrictiveness is directly linked to the hardness of many
RCPSP/max problems (both with respect to feasibility and
optimization) (Schwindt 1998).

3The restrictiveness of a directed graph is used as a control
parameter for the random generation of RCPSP/max problems,
e.g. (Schwindt 1998).



Unfortunately, calculatingσ is #P-complete, since it in-
volves counting linear extensions (Brightwell & Winkler
1991). As shown in (Mastor 1970), a good approximation
of the restrictiveness is theorder strength. Given a com-
pletePOPπ, this measure can be determined very efficiently
and is defined as follows:

OSπ =

∣∣P
∣∣

|T | (|T | − 1) /2
(1)

i.e., the number of precedence relations, including the tran-
sitive ones (P denotes the set of precedence relations in the
transitive closure of the precedence graph), divided by the
theoretical maximum number of constraints. It is shown
in (De Reyck & Herroelen 1996) thatOS outperforms other
significant network measures regarding the correlation with
the hardness of RCPSP/max instances.

The OS parameter thus expresses the properties of the
causal structure determined by the planning phase, and has
no connection with the resource constraints contained in the
problem. As we will see, different planning strategies yield
plans which differ in causal structure, thus the planning al-
gorithms themselves are also connected to the hardness of
the resulting scheduling problems instances.

Resource Strength. One of the main features of sched-
ulers consists in the capability to deal with resources in ad-
dition to complex time-constraints. In order to understand
the bias produces by different planning strategies on the
resource-related characteristics of the resulting scheduling
problems, we employ another well-known measure, namely
the resource strength4. Given thek-th resource in the com-
pletePOP, we denote withrk

min the maximum usage of this
resource by a single task in the completePOP, that is

rk
min = max

T∈T
U(T, Rk)

Also, letrk
max denote the peak demand of resourceRk in the

precedence-preserving earliest start schedule (i.e., the infi-
nite capacity solution). The resource strength of resource
Rk is thus defined as

RSk =
Ck − rk

min

rk
max − rk

min

whereCk ∈ C is the capacity of resourceRk. The re-
source strength expresses the relationship between the re-
source demand and the resource availability in the given
completePOP.

Notice that a scheduling problem in which the capacity
Ck of thek-th resource is at mostrk

max (i.e., the maximum
potential claim of resourcek in the precedence-preserving
earliest start schedule) is such that resourcek is “well-
dimensioned”. Conversely, ifCk exceeds the peak demand
of Rk, then this resource’s capacity is unnecessarily large,
sincerk

max is an upper bound onCk such that the problem

4This parameter was first defined in (Cooper 1976; Alvarez-
Valdez & Tamarit 1989). The definition we use here is taken
from (Kolisch, Sprecher, & Drexl 1995).

is resource-feasible. We call a problem in whichRk ad-
heres to the first requirementk-parsimonious. Notice also
that rk

min is a lower bound forCk, since it represents the
maximum usage of resourceRk by a single task in the com-
pletePOP. Therefore, in ak-parsimonious completePOP we
have thatCk is bounded in the interval[rk

min, rk
max], since

these bounds represent, respectively, the smallest and largest
capacity which can be given toRk in order for the schedul-
ing problem to be resource feasible with respect toRk. If
this is the case, then clearlyRSk is also bounded in the in-
terval [0, 1], while RSk may be greater than1 of the com-
pletePOP is notk-parsimonious.

In conclusion, theRS parameter takes into account the
resource constraints which are given by the requirements of
the tasks on one hand, and the limited resource capacities
on the other, thus it measures the scarcity of the resource
availability with respect to the requirements. In the follow-
ing sections, our analysis focuses on the averageRS over
the resources which are employed in the completePOP, that
is

RSπ =

∑
k:Rk∈Ru

RSk

|Ru| (2)

whereRu ⊆ R is the set ofusedresources, i.e., for which
U(T,R) > 0 for someT ∈ T . Notice that a completePOP
may not prescribe the use of all resources modeled in the
original problem, since the particular action instantiations
which achieve the goal (the POP produced by the planner)
are obtained by means of a purely causal deduction, and
as such does not explicitly take into account any resource-
related metric. Indeed, some among the planners we ana-
lyze in the following sections over-commit more than others
with respect to resource utilization. This reflects strongly on
the average resource strength: the higherRSπ, the less con-
straining are the capacities of the resources with respect to
the task network.

While the scheduling literature points to numerous other pa-
rameters which could be useful in the context of this investi-
gation, some of which we will be analyzing in future work,
in the following section we observe how the planning phase
affects the two properties defined above.

As a final note, it is interesting to notice that taking into
account “classical” properties of project scheduling prob-
lems rather than the strong-coupling constraint density we
have defined in our previous work, allows us to relax the re-
stricting assumptions we have made with respect to resource
capacities and usage. In particular, parameters such as the
two we analyze in this work are defined for any causal struc-
ture in the scheduling problem, as well as for multi-capacity
resources and multiple-resource usage constraints.

Enhancing BLACK BOX for Obtaining Multiple
Causal Solutions

Before describing in detail the structural characteristics of
the scheduling problems which we want to observe, we de-
scribe an extention to the loosely-coupled framework aimed



at enhancing the detail of our observations. Among the plan-
ners used in our experiments, we employ a planning sub-
system which is capable of producing multiple plans, thus
yielding, after the information integration and de-ordering
procedure has taken place, multiple completePOPs. Having
more solutions to the causal part of the P&S problem pro-
vides us with a richer set of scheduling problems on which
to perform the structural analysis by means of the measures
defined previously. This extends the results obtained in (Pec-
ora, Rasconi, & Cesta 2004; Cesta, Pecora, & Rasconi 2004)
because it enables us to observe how not only different plan-
ning strategies but also different methods for extracting so-
lutions within a certain planning strategy can influence the
structure of the underlying scheduling problem. This is par-
ticularly true in the case of planning graph based planning,
in which a planning graph contains many valid plans. More-
over, these plans are partitioned into sets according to the
level of expansion at which they are obtained. In other
words, given the minimum levell at which there exists a
solution to the planning problem, instead of obtaining one
scheduling problemπl, we obtain the set of scheduling prob-
lems{πl

1, π
l
2, . . .} which derive from the solution subgraphs

of the planning graph5.
In order to obtain multiple completePOPs in a single

level of planning graph expansion, we have implemented
a modified version of theBLACK BOX planning system,
which we call MBLACK BOX (for multiple-BLACK BOX).
This enhancement is obtained by replacing theZCHAFF
SAT-solver (Moskewiczet al. 2001) originally integrated
within the BLACK BOX system with MCHAFF, an enu-
merative variation ofZCHAFF (Moskewicz et al. 2001;
Moskewicz 2004), i.e., which is capable of finding multi-
ple models of a given well-formed formula (see figure 3).
The experiments described in the following sections thus fo-
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Figure 3: EnhancingBLACK BOX with enumerative capabilities
by replacingZCHAFF with MCHAFF. Gl denotes the planning
graph expanded up to levell.

5Moreover, by increasing the level of expansion of the plan-
ning graph we can produce the sets of scheduling problems
{πl

1, π
l
2, . . .}, {πl+1

1 , πl+1
2 , . . .}, . . . , {πm

1 , πm
2 , . . .}, wherem is

the index of planning graph level-off. The analysis ofOS andRS
on further levels of expansion of the planning graph is outside the
scope of this paper, and will be addressed in future work.

cus also on the variation ofOS andRS within the sets of
solutions produced byMBLACK BOX.

Experiments
The two parameters shown above represent attributes of
scheduling problems which are widely accepted as mean-
ingful. In the context of this investigation,OS character-
izes the causal structure of planner-derived scheduling prob-
lems, measuring the restrictiveness of the task network de-
termined by the planning phase, thus indicating the “degree
of freedom” available to the scheduler in resolving conflicts.
RS on the other hand quantifies the constrainedness of com-
pletePOPs with respect to the resources allocation deter-
mined by the planner. BothOS andRS provide a means
to interpret the effect of the decisions taken by the planner
with respect to the causal and resource allocation problem
represented by the input planning problem.

Benchmark Problems
For the purpose of the experiments described in this sec-
tion, the general multi-agent domain definition described
earlier was instantiated according to the dependency graph
shown in figure 4. The domain consists in a total of six
operators, each requiring an object as well as a certain
type of agent (type one or two). Moreover, each operator
:uses a particular amount of the executing agent, and has
a given:duration . Our benchmark consists of 100 ran-
domly generated problems within this domain in the form
p =

〈
A1, A2,

[
Cmin

1 , Cmax
1

]
,
[
Cmin

2 , Cmax
2

]
, O

〉
, where

• A1 (A2) is the number ofagent s of type one (two);

• [
Cmin

1 , Cmax
1

]
(
[
Cmin

2 , Cmax
2

]
) is an interval within

which lies the:capacity of every agent of type one
(two);

• O is the number ofobject s (i.e., with:capacity 0 ).

Each problem was generated by randomly choosingA1, A2,
O, as well as the capacity of each agent of type one and two
within the corresponding interval. Un-resolvable problems
were avoided by ensuring that theCmin

1 ≥ 4 andCmin
2 ≥ 3.

Notice that the absence of negative effects in this do-
main make the corresponding planning problems polyno-
mial. This choice is determined by our interest in aspects
related to the solution quality rather than the performance
of the planners we consider. To this end, the 100 generated
benchmark problems are intended to provide an easy set of
problem instances from the planning point of view. Con-
versely, the additional resource and time related informa-
tion poses a more elaborate scheduling sub-problem, with
respect to which the tested planners exhibit a varying degree
of commitment.

As we will see in the experimental analysis, the regularity
of this domain introduces a strong dependency of the results
obtained by the various planners on the size of the problem
instance. In addition, notice that the domain is such that we
expect to obtain little variation in the causal structure of the
plans obtained with different planners6. Nonetheless, as we

6This domain can be interpreted as a workflow-management ap-
plication, in which there is no real difficulty in determining the se-
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Figure 4:The dependency graph of the multi-agent domain used
for the generation of the benchmark set. Ovals represent predicates
and rectangles represent operators.

will see the relative regularity of the benchmark set does not
affect the generality of our observations.

From POPs to Scheduling Problems

To begin with, the benchmark problems described above
were solved usingMBLACK BOX. As mentioned, this plan-
ner employsMCHAFF in order to produce multiple solutions
to a single planning problem. On the 100 benchmark prob-
lems, MBLACK BOX yields a total of 7046 plans (the enu-
meration performed byMCHAFF yields between 10 and 200
unique plans for each problem). Each solution represents a
completePOPπj

i , wherei ∈ [1, 100] andj refers to thej-th
unique solution to problemi. We then calculateOSπj

i
and

RSπj
i
. Moreover, we extract from these measuresOSmax

πi
,

OSmin
πi

, RS
max

πi
andRS

min

πi
, which represent the maximum

and minimum values ofOS andRS obtained for thei-th

quence of operators which achieves a goal, and in which the plan-
ner’s task is essentially that of deciding an allocation of agents to
operations.

P&S problem.
The same set of 100 benchmark problems were solved

by FF (Hoffmann & Nebel 2001),LPG (Gerevini, Saetti,
& Serina 2003) andCPT(Vidal & Geffner 2004), andOSπi

andRSπi were also computed for the 100 solutions obtained
from these planners.

Resources
We begin by analyzing the resource related aspects of the
obtained completePOPs. Figure 5 shows the value ofRS
for the various planners considered. In particular, only the
first plan produced byMBLACK BOX is considered (i.e., the
original non-enumerative version ofBLACK BOX). Recall
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that high values ofRS indicate that the corresponding plan
is under-constrained with respect to resource capacity con-
straints, thus that the resources are assigned in such a way
that their capacity limitations are less likely to entail re-
source conflicts. It is immediate to notice the gap in perfor-
mance betweenFF andCPT on one hand, andMBLACK -
BOX andLPG on the other. In most problems the former
planners employ only one or two agents out of the over-
all pool of available agents. The strongly sub-optimal al-
location of resources (agents) to tasks clearly has no im-
pact on the quality of the solution to the causal sub-problem
(the POP), while it heavily affects the quality of the com-
pletePOP as a whole. The scheduling problems produced
by FF andCPTare thus very constrained from the point of
view of resources. Overall, this may have some disadvan-
tages with respect to the scheduling phase, such as longer
makespans, less robust solutions, and so on.

The poorer quality of the plans obtained withFFandCPT
demonstrates the fact that the over-committing nature of the
performance-oriented heuristics employed by these planners
appears to be counter productive in the light of the subse-
quent scheduling phase. Conversely,BLACK BOX andLPG
have the nice property of committing less to resource peak
leveling decisions, thus maintaining a lower level of inva-
siveness in the decision space of the scheduler. This phe-
nomenon is even more interesting in the light of the fact that
both BLACK BOX and LPG are (though in different ways)



planning graph based planners. These results thus point to
an interesting load balancing quality of the planning graph
paradigm.

Let us now observe the results obtained with the enumer-
ative plannerMBLACK BOX. As shown in figure 5, the per-
formance ofLPG is in line with that of the classical single-
planBLACK BOX, reaching for many problems higher peaks.
Conversely, plotting the results obtained with the enumera-
tive variantMBLACK BOX yields the results shown in fig-
ure 6. These results show that extracting more solutions
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Figure 6:Average resource strength forLPG and the best perfor-
mance ofMBLACK BOX.

to a given planning problem affords us a choice between
“equivalent” completePOPs with potentially very different
characteristics from the point of view of resource allocation.
In conclusion, notice that the enumeration of solutions per-
formed byMCHAFF also ignores the resource related infor-
mation in the problem instance. Indeed, these results suggest
the possibility to equip the SAT solver with a more informed
heuristic for solution space exploration that takes into ac-
count resource related metrics.

Causal Structure
We now turn our attention to the causal characteristics of
the POPs produced by the planners considered above. As
described previously, the output if the planner consists in a
sequence of tasks which are then de-ordered to produce the
precedence graph〈T ,P〉. The structural characteristics of
this graph affect the scheduling phase in a number of ways,
and, as noted earlier, a good predictor for the hardness of
a scheduling problem is represented by the restrictiveness,
which can be in turn approximated byOS.

Figure 7 shows the values ofOS obtained with the four
planners considered in the previous section. Again, we start
by analyzingMBLACK BOX in non-enumerative mode. We
can immediately notice three characteristics of the results:
the presence of plateaus, the fact thatOSπi for all planners
exceptMBLACK BOX coincide on all problems, and that the
values ofOS appear to be scaled. These phenomena are due
to the particular structure of the domain used to produce the
benchmark problems.

The first two aspects can be easily explained in terms of
the particular structure of the domain employed for the gen-
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Figure 7:Order strength for the the various planners (MBLACK -
BOX in non-enumerative mode).

eration of the benchmark problems. In fact, the domain in
question yields planning problems whose solutions have a
structure which depends strongly on the size of the problem
(see figure 8). In addition to the plateau effect, the results
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Figure 8:Dependency of the order strength on problem size in the
benchmark set.

show thatLPG, CPT andFF all tend to produce very sim-
ilar solutions, so similar that from the strict point of view
of the causal structure (i.e., not considering how resources
are allocated) the plans are identical. Again, this is a direct
consequence of the “simplicity” (from the planning point
of view) of the domain. Indeed, further experiments show
that this does not occur on more complex planning prob-
lems (such as the planning competition benchmarks), where
the three planners yield solutions with values ofOS that are
not as easily comparable. This observation indicates that the
benchmark problems considered in this paper yield a search
space whose topology points all three heuristics to solutions
with the same structural characteristics. Indeed, the simplic-
ity of the domain is also the reason for the apparent scaling
between the values obtained withBLACK BOX and those ob-
tained with the other three planners. In fact, experiments on
more complex domains do not yield scaled values ofOS.

However, given that the benchmark set is so regular, it
is somewhat unexpected thatBLACK BOX obtains solutions



with a different causal structure. These results seem to em-
phasize the difference between the SAT-solver based plan
extraction mechanism and the search procedures employed
by the other planners. The fact that the value ofOS is lower
for BLACK BOX than for the other planners confirms the re-
sults obtained in (Pecora, Rasconi, & Cesta 2004), in which
we have shown, by means of a different experimental anal-
ysis, that planning graph based planners tend to produce
scheduling problems which are easier than those produced
by planners based on heuristic search (recall thatOS is an
indicator of the hardness of a scheduling problem).

A natural question at this point is the following: how does
the enumeration of solutions performed byMBLACK BOX
affect OS? Figure 9 shows the highest (worst) and low-
est (best) order strength of the multiple solutions obtained
by MBLACK BOX. An interesting aspect of these results is
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that the best values ofOS obtained byMBLACK BOX are
also the first, i.e.,OSmin

πi
= OSπ0

i
, ∀i. Recall that with

respect to the quality of resource allocation (RS), we find
that exploring different solutions to the planning problem is
advantageous (see figures 5 and 6 in the previous section).
Conversely, exploring further solutions does not yield an im-
provement with respect to the order strength, which is also
increasing (i.e., there exist less different alternatives to re-
solve resource conflicts). This is to be expected: increasing
the resource strength makes the scheduling problems more
robust with respect to resource failures, but decreases the
ease with which the scheduler can resolve resource conflicts.

Further Analysis of the Results
The experimental results described in this paper allow us to
draw some interesting conclusions on how different plan-
ning strategies can benefit loosely-coupled P&S.

Planners as Resource Allocators. First, we have ob-
served the characteristics of the various planning strategies
on resource allocation by analyzing the average resource
strength of the scheduling problems which result from the
planning procedure. In this context we have seen how two of

the most representative heuristic search based planners per-
form poorly with respect to resource allocation. Conversely,
BLACK BOX andLPG, which base the search space repre-
sentation on planning graphs, achieve much better results.
The results point to the fact that planning graph based repre-
sentations retain the intrinsic quality of favoring the extrac-
tion of plans with a higher degree of load balancing. Dually,
the search strategies employed byFF7 and CPT favor the
exploration of states achieved by means of a minimal use
of resources for execution. Notice that while it is true that
resource capacities are ignored by the planning phase, the
presence of resources for execution is not. There is no real
“reason” for a planner to prefer the use of many agents rather
than the strict amount necessary for causal satisfiability. Our
results show that nonetheless, the planning graph data struc-
ture, which is a compact representation of the entire search
space save the states pruned by mutex propagation, allows
planners such asBLACK BOX and LPG to “inadvertently”
provide solutions which make use of a greater number of re-
sources for execution, thus effectively doing a better job at
load balancing.

It is interesting to notice that a further uninformed explo-
ration of the solution space achieved with the enumerative
SAT-solver MCHAFF improves these results further. This
makes a case for employing an enumerative planner for the
purposes of loosely-coupled P&S, in which it is better to
have more “equivalent” scheduling problems in the presence
of invalidating run-time conditions.

The Bias of Planning on Restrictiveness. Our interest in
the restrictiveness of the scheduling problems produced by
the planners analyzed in this paper lies in the fact that it rep-
resents a way to put a number on the causal structure of the
precedence graph which constitutes the scheduling problem.
Also, measuring the restrictiveness is interesting because
this measure quantifies the degree to which the planner re-
strains the search space of the resulting scheduling problem.
If a planner obtains higher degrees of restrictiveness com-
pared to another planner on the same problems, then this is
an indication that the first planner invades the decision space
of the scheduler more than the latter. Our analysis has shown
thatBLACK BOX retains the capability of guiding its search
procedure towards a solution with lower degrees of restric-
tiveness, thus maintaining a lower commitment with respect
to the subsequent scheduling phase. These result confirm
a previous analysis (Pecora, Rasconi, & Cesta 2004) based
on different structural properties of the scheduling problem,
but which relied on the assumption that all resources were
binary (Ci = 1, ∀i). The use ofOS andRS has allowed us
to relax this assumption.

The Tradeoff Between Robustness and Resource Effi-
ciency. The results obtained by means of the enumera-

7Notice thatFF employs relaxed planning graph propagation to
compute the heuristic estimator. Nonetheless, the heuristic value
so obtained represents only an estimate of goal distance, and does
not incorporate any other information derivable from the planning
graph representation.



tive plannerMBLACK BOX show that exploring the neigh-
borhood of the fist satisfying assignment yields plans with
higher degrees of restrictiveness (higher values ofOS), but
also improved performance with respect to resource capac-
ity limitations (higher values ofRS). Indeed, this does not
come as a surprise. In fact, it is reasonable to expect a trade-
off between these two characteristics of the completePOPs.
On one hand, if the precedences between the tasks in the
scheduling problem allow a high number of valid execution
sequences (i.e., lowOS), then it is reasonable to expect that
the only way to safeguard against solutions which are frag-
ile with respect to resource failures is to obtain a constraint
network with higher restrictiveness in order to exclude these
fragile solutions. Dually, it is straightforward to see that in
order to increase the number of solutions to a P&S problem
it is necessary to revert to a completePOP which potentially
forebodes more resource contention peaks (lowerRS), but
at the same time allows the scheduler more degrees of free-
dom for computing a solution which makes efficient use of
the resources. In the light of these considerations, we can
see high restrictiveness (and resource strength) as a symp-
tom of robustness, while low restrictiveness (which entails
low resource strength) implies fragility.

It is important to keep in mind that in the context of
loosely-coupled P&S,OS andRS represent characteristics
of alternative causal solutions to a given P&S problem (i.e.,
alternative scheduling problems). We have shown that it
is possible to obtain a multitude of “equivalent” scheduling
problems (using different planners or an enumerative plan-
ner). If we can choose, within the context of one P&S prob-
lem, which scheduling problem to schedule for, the consid-
erations made above become quite important. Depending,
for instance, on the projected execution scenario, it may by
useful to immediately select the scheduling problem which
exhibits the appropriate tradeoff between (low) restrictive-
ness and (high) resource strength.

Conclusions and Future Work
The work described in this paper stems from the general
question of how to extend a strictly causal solver with time
and resource reasoning capabilities. In this context, we fo-
cus on a loosely-coupled P&S integration, that is, a frame-
work in which the output of a classical planner is piped into
a scheduler. This approach to P&S integration is suited for
applicative contexts which require scheduling decisions to
occur without the possibility of intervening on the planning
decisions, which have already taken place and are irrevo-
cable. Notice also that this component-driven approach is
attractive because of its ease of implementation using off-
the-shelf general purpose tools. In this context, the present
investigation, which extends the results obtained in (Pec-
ora, Rasconi, & Cesta 2004), is aimed at assessing the pros
and cons of different planning strategies within the loosely-
coupled framework.

The results described in this paper provide an assessment
of how suited different planning strategies are with respect
to two important characteristics of the resulting scheduling
problems. We have shown how restrictiveness and resource
strength, two well-known attributes of scheduling problems,

provide novel and interesting quality metrics for plan qual-
ity. The results of these measurements have exposed new
strengths and weaknesses of classical planners, which com-
plement commonly accepted criteria for plan quality such as
those employed in the planning competition, and may point
towards new application scenarios for current AI planning
technology.

We believe that the issues put forth in this paper forebode
interesting new directions of research for planning, such as
new planning strategies which explicitly take into account
the measures described in this paper, as well as investigating
other applicable measures for plan quality.
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