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Abstract 
Single auction-based methods are known to be efficient for 
multi-robot problem solving. In this work, we investigate 
performance of our general multi robot coordination 
framework for multi robot multi target exploration problem 
under uncertainties in dynamic environments. Our 
framework offers a real time single item allocation method 
featuring different mechanisms for failure recovery. In 
multi robot exploration problem, a different version of well 
known NP-hard MTSP (Multiple Traveling Salesman 
Problem), each target is visited by at least one robot in its 
open tour. Overall objective function for cost optimization 
while visiting targets varies by different exploration 
domains. In this work, we present performance results for 
total cost minimization objective. There are many efficient 
centralized heuristic methods for generating close to 
optimal solutions. These heuristics may be used to allocate 
targets to robots. However, when the environment is 
dynamic and/or unknown, initially assigned targets may 
need to be reallocated during run time. In our framework, 
redundant calculations are eliminated by means of 
incremental assignments based on up-to-date situations of 
the environment. Offered precautions in the framework 
maintain the quality of solutions as close to optimal as 
possible. Experiments are conducted on simulations. The 
comparison of the proposed method is made with Prim 
Allocation method. 

Introduction 
Search and rescue operations, space exploration, 
reconnaissance/surveillance applications require effective 
multi robot exploration. Overall objective cost function of 
the robot team may be different in these domains. While 
time is a hard constraint in search and rescue operations, in 
space operations, the objective may be minimizing the 
overall cost value which is proportional to the total energy 
consumed by robots.   
 We propose a framework for heterogeneous teams of 
robots coordinating to complete complex missions that 
require diverse capabilities and collective work without a 
central planner/decision maker. Robots are always in valid 
plans satisfying constraints on interdependencies among 
tasks. Different objective functions can be optimized by 
this framework when effective cost functions and 
constraints are supplied. The framework also consists of 

precaution routines for failure recovery. Details of the 
proposed framework and mechanisms can be found in 
(Sariel 2005).  
 In this work, we investigate performance of some 
heuristic functions combined with our framework for multi 
robot exploration problem as a case study. This application 
domain is selected to analyze the deviations of results 
generated by the framework from optima. Optimal results 
can be easily obtained by effective integer programming 
formulation. For this particular case problem, robot team is 
homogeneous; tasks do not require different robot 
capabilities and can be executed independently.      
 Single robot multi target exploration problem (as a 
different version of TSP) is an NP-hard problem. For multi 
robot case, allocations of targets to robots are also very 
affective on the quality of the solution. After allocations 
are made, the problem turns into a TSP problem for each 
robot. When the knowledge of the robot is not certain or 
the environment is dynamic, initially allocated targets to 
robots are subject to chance. Therefore calculations for 
allocating all targets may become redundant. Our 
framework eliminates these redundant calculations by 
means of incremental assignments based on up-to-date 
situations of the environment. Moreover, robot systems are 
open to failures either in communication or robots. 
Especially robot failures may cause some of the initially 
allocated targets become unallocated, and these situations 
should be considered. Our framework can handle such 
situations by precaution routines. Communication failures 
may prevent initial allocations from being optimal. Our 
framework can also detect these situations and maintains 
high solution quality by dynamic target selection and task 
exchange schemes.  

Related Work 
Both combinatorial and single auction methods are studied 
for multi robot exploration problem in literature. In 
GRAMMPS (Brummit 1998), one of the earliest works on 
MTSP (Multi Traveling Salesman Problem) problem, 
mission planner works centrally either on one of the robots 
or as an operator. Mission planner selects the 
corresponding robot for each target. The system can 
regenerate plans when the environment is changed. 
Authors claim that for the initial state of the system, the 



allocations may be sub-optimal. But in later steps when the 
number of open missions decreases, the system can find 
close to optimal solutions. By using the simulated 
annealing algorithm, a randomized search over all possible 
allocations is made. In their latest work, Dias and Stentz 
propose a market based scheme introducing leader 
approach for combinatorial task exchanges (Dias 2002). 
These leaders are responsible for multi-party multi-task 
optimizations for obtaining optimal results. In 
combinatorial auctions, different combinations of tasks are 
offered and bidders bid by considering all tasks in these 
combinations.  However this method may become 
intractable for large instances or dynamic situations in 
which calculations should be made frequently. Especially 
when the environment is dynamic, allocations may become 
sub-optimal. Then a combinatorial exchange mechanism is 
necessary to maintain optimality. Computational 
requirements for combinatorial auctions increase 
drastically for dynamic environments. 
 Prim Allocation method is a single auction based 
allocation method. All the targets are assigned to the robots 
initially. Whenever world knowledge is changed, targets 
are reassigned accordingly with the same algorithm 
(Lagoudakis 2004). MSF (Minimum Spanning Forest) of 
all the targets and robots are constructed by this algorithm. 
Then routes of robots are constructed for each robot by 
depth first traversal of the MST�s (Minimum Spanning 
Tree) and adding shortcuts. Since this algorithm is based 
on Prim Algorithm, its worst case performance is bounded 
by 2*OPT. The distances are considered from any of the 
nodes in robot routes while considering a new target to 
assign. Additional cost of visiting a target is not 
considered. Therefore some allocations may be sub-
optimal.    

TSP Heuristics  
Although TSP problem is NP-hard there are many efficient 
heuristic methods in literature generating k-OPT solutions. 
Some of the heuristic methods use triangle inequality 
principle given in Eq. 1. The triangle inequality principle 
for cities i, j and k assumes that the shortest distance (c) 
between two cities is a straight line (direct route). 

jkijik ccc +≤  Eq.1 

In the following heuristic function definitions, T is a partial 
tour and k is a city not on T, and {i, j} is one of the edges 
of T. 

Minimum Spanning Tree Heuristic (MST) 
In this method, either Prim algorithm or Kruskal algorithm 
may be used to generate MST for the given set of cities. 
Then a depth first search of T is constructed. After 
introducing shortcuts into the depth first search, it is 
ensured that cities are visited only once. 

Nearest Merger Heuristic (NMH) 
This method corresponds to the Kruskal�s minimum 
spanning tree algorithm. The algorithm starts with n partial 
tours, each consisting of a single city. Then successively 
merges the tours until a single tour containing all the cities 
is obtained.  Each time trees to be merged are chosen so 
that min {cij: i∈T and j∈T�} is as small as possible.  

Nearest Neighborhood Heuristic (NNH)  
The algorithm starts with an empty tour T. Cities k and j, 
for which c(j,k) minimized are found.  {i, j} is replaced by 
{i, k} and {k, j} to obtain a new tour including k. The 
algorithm continues until all the cities are added to T.  

Nearest Insertion Heuristic (NIH)   
The algorithm starts with an empty tour T. Cities k and j, 
for which c(j,k) minimized are found. {i, j} is the edge of T 
which minimizes c(i, k) + c(k, j) - c(i, j), and it is replaced 
by {i, k} and {k, j} to obtain a new tour including k. The 
algorithm continues until all the cities are added to T. 

Cheapest Insertion Heuristic (CIH) 
The algorithm starts with an empty tour T. If T does not 
include all cities, for each k, the edge {i, j} of T which 
minimizes c(T, k) = c(i, k) + c(k, j) - c(i, j) is found. Then 
city k minimizing c(T, k) is found. If {i, j} is the edge of T 
for which c(T, k) is minimized, it is replaced by {i, k} and 
{k, j} to obtain a new tour including k. The algorithm 
continues until all the cities are added to the T. 

Farthest Insertion Heuristic (FIH) 
The algorithm starts with an empty tour T. City k, which is 
the farthest of all the cities out of T, is inserted to T. The 
algorithm continues until all the cities are added to the T. 

Christofides Algorithm (CA) 
MST of the given set of cities is constructed. Minimum 
matching M* for the set of all odd-degree vertices in T is 
constructed. An Eulerian tour for the Eulerian Graph that 
is the union of the T and M* is found, and it is converted 
into a tour using shortcuts. 
 
Except from FIH and NNH, all the algorithms presented 
above has a worst case solution bounded by 2*OPT. The 
worst case solution of the NNH is bounded by (log 
n)*OPT. CA solution is bounded by 1.5*OPT.  

Multi Robot Exploration Problem 
Multi robot exploration problem is a different version of 
MTSP (Multiple Traveling Salesman Problem). In this 
problem, each target (i.e. nodes or cities of TSP) should be 
visited by at least one robot in its open tour. Even in single 
robot TSP problem, there is a trade-off between the 



solution quality and the computational requirements for 
generating optimal solutions. If the environment is 
dynamic and/or knowledge of the robots is not certain, 
allocations made initially may result in sub-optimal 
solutions in later steps because of the decisions based on 
uncertain information and estimates.  A very simple 
illustrative example is given in Fig. 1. In (a) the estimated 
distances among targets and robots are seen. With this 
knowledge, r1: t3 and r2: t1, t2 assignment gives a total cost 
of 13. However when the obstacle is detected, all the 
allocations should be changed as r1: t1, t2 and r2: t3.  

Figure 1. A simple illustrative example for reallocations (a) 
Robots do not have complete information on the locations of 
obstacles. t3 is assigned to r1; t1 and t2 are assigned to r2 (b) 
Obstacle is detected;  allocations should be changed.  
 
 Failures are also common in robot systems. Therefore in 
addition to the difficulties of dynamic environments, 
robots may also become inactive during runtime. That 
requires reallocation of all targets assigned to the failed 
robots when the world knowledge or the situation is 
changed. In this case, for maintaining optimality, 
information on the locations of the all active robots and 
unvisited targets should be reconsidered. As the frequency 
of updates on world information increases the calculations 
for reallocations may become intractable. Therefore 
applying an algorithm searching all over the target set and 
assigning all targets to robots may result in redundant 
calculations without benefit of solution quality.  
 Heuristic functions/algorithms used for finding near-
optimal tours are convenient for environments with 
uncertainties (Lawler 1985). In this case, computation is 
implemented for a local instance of the overall problem. It 
is more logical to make local search for situations with 
uncertainties. However it should be noted that there is not 
a polynomial time algorithm guaranteeing optimal 
solution. 
 All single TSP heuristic algorithms presented in the 
previous section are designed to generate a complete single 
TSP tour. For multi robot exploration problem, more than 
one TSP tour should be generated for each robot. 
Moreover assignments of the targets to robots affect the 
solution quality to a great extent.   

 Clustering methods generate classes of the targets for 
the given number of clusters. For this particular problem, 
initial cluster number can be selected as the number of 
robots or it may also allowed to be smaller than the number 
of robots related to the selected objective function. One 
problem with these algorithms is that they only take into 
consideration of the distances between target pairs. 
However costs of adding targets to routes of robots should 
be considered while generating clusters. This consideration 
may complicate the clustering approach. This approach 
may be used for initial selection of targets to be 
considered.  
 Vehicle Routing Problem (VRP) (Ghiani 2003) from 
transportation and logistics research is similar to multi 
robot exploration problem. Especially dynamic and 
stochastic multi-depot VRP problem solutions can be used. 
In multi-depot VRP, vehicles may be in different depots, 
as in our case robots may be in different locations initially.  

Prim Allocation Method 
Prim Allocation method (Lagoudakis 2004) inspired from 
Prim Algorithm generates a MSF (Minimum Spanning 
Forest) of the targets and robots. MSF consists of separate 
robot trees. These trees are constructed by adding each 
unallocated target to the closest robot path containing the 
node with the minimum distance to the target, until all 
targets are allocated. In other words, addition of a new 
target is implemented by considering the distances between 
the target and nodes of the robot routes instead of 
considering the last position of the robot. The target is 
auctioned and the robot offering the smallest bid value is 
selected to allocate that target. Before robots run and visit 
the targets, all the allocations are made. Whenever the 
world knowledge is changed, allocations for the remaining 
unvisited targets are made with the same algorithm.  

Real Time Single Auction Based Dynamic 
Allocation Scheme 

Our general framework (Sariel 2005) is for a 
heterogeneous robot team working on a complex mission 
consisting of tasks requiring different capabilities and 
cooperative work and having dependencies on each other 
(acyclic precedence relation). In this framework, optimal 
solutions are sought while handling with common failures 
in robot systems. This framework is based on distributed 
market based approach. However to maintain optimality 
additional routines such as dynamic target selection and 
task exchange schemes (called as coalition maintenance in 
the general definition) are added to the framework. 
 In this work, we investigate the performance of our 
framework for multi robot exploration problem with total 
cost minimization objective. In our approach, the targets 
are allocated in an incremental way. Robots visit targets 
and then offer auctions for the next best unvisited target 
for them. Locations of robots at the time of the auction are 
considered while calculating distances to targets for all 
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selectTarget for rj 
For each known and unvisited target ti  

if the target ti is not in one of the following types, skip 
The targets for which the robot is accepted for exchanging (with higher cost value than 
the robot has)  
Awarded targets by the auctioneers 
Free targets which are not under consideration 

  else add the target ti in a priority queue ordered by cost with the priorities in given order 
Select the minimum cost target in the priority queue 
 
if rj has already been allocated to a different target 

cancel visiting the target at hand 

if the selected target is a free target  
begin AuctionNegotitationProcess 

else  
set the new target as the current target and begin executing 

  if it is an awarded target  
  send �accept become a member� message to the auctioneer 

 

experimented heuristic cost functions with our framework. 
Therefore routes are constructed online based on the world 
knowledge at hand. In the problem definition, the robots 
are not supposed to come back to their initial locations, or 
the minimization of the distance between last target of the 
route and the initial location is not required; i.e. routes are 
not closed. Since the targets are incrementally assigned to 
robots in our framework, considering robots� up-to-date 
location information is a better approach than considering 
all targets from routes of robot in the cost calculation for 
our framework.  

Target Selection  
Targets and related tasks are considered in each step when 
the world knowledge is changed if the robot is already 
assigned to a target or in each step when the robot is idle. 
Situations in which world knowledge is updated are arrival 
of new online targets, changes in knowledge about 
environment and distance estimations accordingly, new 
cost value information on tasks under execution or 
detection of robot failures.  
 This procedure is called as selectTarget in our 
framework for the multi robot exploration problem. 
selectTarget method is the modified version of the 
selectAction method (Sariel 2005) of the general 
framework and is given in Fig. 2.   
 

Figure 2. Target Selection method 
 
The targets/tasks are prioritized based on the situations. If 
there are two targets at the same cost, the one with the 
highest priority, otherwise the minimum cost target is 
selected. The targets suitable to exchange have the highest, 
awarded targets by auctioneers have the second and the 
targets not being considered (free) have the lowest priority. 
The targets are pushed into a priority queue in which they 
are ordered based on their estimated costs and priorities. 
The minimum cost target (top element of the queue) is 
selected. If the robot is already assigned to a different 
target than the selected one, current task is canceled. If it is 
idle and the selected target is a free target, an auction 
negotiation process is initiated. Otherwise the target is set 

as the new assigned target and the robot begins executing 
it. If the target is an awarded target, a confirmation 
message is sent to the auctioneer. 
 Robots may consider targets at the same time in the 
general framework. However for obtaining optimal results 
for the given objective function, we just allowed only one 
robot to visit a target or offer an auction. If there is more 
than one robot offering an auction, the one having the 
smallest cost value continues auction negotiation process; 
other robots cancel their auction negotiation processes. 

Auction Negotiation Process 
In the auction negotiation process, the corresponding 
auctioned target is assigned to one of the robots (bidders) 
having the minimum cost value. Initially the auctioneer 
offers the auction. If the auction is invalid, a warning 
message is sent to the auctioneer. Invalidity may occur if 
the auctioneer has incomplete knowledge about the task 
status. Possible situations may be that the task related to 
the target is completed or it has already been executing. If 
the auction passes the validity check, the candidate robot 
becomes a bidder of the task, calculates the cost and sends 
the cost value as a bid. The other candidate robots behave 
as so. The auctioneer robot is also a bidder and generates a 
bid for the task at hand. It waits until the end of the 
deadline. If the auctioneer does not get bids from other 
robots until the deadline, it selects itself as the awarded 
bidder. Otherwise it ranks all the bids and selects the robot 
with the minimum cost/bid value.  
 A bidder robot may get confirmation from different 
auctioneers. However in the action selection step, it selects 
the minimum cost target for it. Therefore it sends a 
message to only one of these auctioneers.  
 It is allowed that more than one robot offer an auction 
for the same task. In this case, when the robots detect this 
conflict, the robot having the minimum cost value is the 
winner of this race. If the cost values are the same, the 
robot having the smaller identification number is the 
winner. This decision only provides to recover from the 
conflict. There may be other solutions but we avoid adding 
extra complexity to the negotiation process. Besides that, 
since these robots are in reliable communication range 
(they can detect that both them auctioned for the same 
task), the bid of each of them is considered in either case 
not affecting the optimality. 

Task Exchange Mechanism 
To keep consistency, each robot executing a task is 
responsible for broadcasting an execution message to 
inform others that the task is under execution, the robot is 
alive and about the cost value for that moment. Since in the 
decision stage, each robot taking these kinds of messages 
considers the cost value from each robot, if a robot detects 
that its cost is lower than the broadcasted cost of a task, it 
sends a task exchange message to the robot executing the 
task. The corresponding robot cancels its execution after 



receiving task exchange message and the sender of the 
message begins executing the task. 

Precautions 
For dealing uncertainties because of the message losses, 
each robot keeps track of the models of known tasks 
(targets) and other robots in their world knowledge. Up-to-
date knowledge of the known tasks is maintained by 
representing each known situation in a FSM.  
 When robots get information from others they update 
their world knowledge accordingly. Whenever 
communication becomes unreliable, world knowledge of 
each robot may be inconsistent. The proposed framework 
ensures an update mechanism when conflicts are detected 
to reduce inconsistency. When robots receive inconsistent 
messages, they either warn others or correct themselves. 
These inconsistencies occur when robots are not informed 
about the tasks that are completed, under execution or 
under auction. It is assumed that robots are trusted and 
benevolent. 
 
Execution conflicts: 
If a parallel execution of the same task is detected, all 
robots executing the same task (for the same target) cancel 
their execution. This is for ensuring optimality. A new 
auction is generated to consider all the robots� costs. The 
robots are allowed to generate different auctions for the 
same task. However one of them continues the auction 
negotiation process. 
 The robot getting execution messages is informed about 
the task and assumes that the corresponding task is under 
execution for a period of time. If a robot cannot get any 
message related to a task for a period of time, the task is 
assumed to be free. The execution message is a clue that 
the executer robot is still alive and the task is being 
executed. The same type of update is performed when 
robots offer auctions for tasks. In this case the world 
knowledge is updated as the robot is not executing a task 
and the task is under consideration. 
 
Auction conflicts: 
Whenever a robot gets an auction message, it first checks 
the validity of the auction by considering the task 
information. If it is a valid auction, it always sends bid 
information to the auctioneer. Therefore a more suitable 
task for the robot may be selected in future, whether it is 
currently executing a task or not. Updates are implemented 
when execution, cancellation messages are received.  
 
Robot Failures: 
Since world knowledge of a robot is updated based on  
incoming information from others, if a robot executing a 
task fails, after a period of time other robots not receiving 
messages from the failed robot mark the related task as 
left/free to consider it in the target selection process. 

Cost Function and Heuristics:  
In the proposed framework, the general cost function cji for 
robot rj and target ti is calculated as summation of two 
separate components namely base distance cost (cji1) and 
additional cost (cji2) as in Eq. 2.  

21 jijiji ccc +=  Eq.2 

 These functions change based on the heuristic methods 
(HM). The base distance cost function for robot rj and 
target ti is calculated as given in Table 1 for different 
situations. It can be seen that when a robot is in target 
selection step, it always calculates the distance to target 
from the current location of itself. When another robot 
offers an auction for that target, it calculates the distance 
either from the current location (when idle) or from the 
assigned target tk (when not idle) and sends the cost 
information to the auctioneer.   
 

Table 1. Base distance cost 

1jic  Robot is idle Robot is already 
assigned to target tk 

Robot considering 
the target 

),( ij trdist  ),( ij trdist  

Target is auctioned 
by another robot 

),( ij trdist  ),( ik ttdist  

 
 Additional cost function (cji2) for robot rj and target ti 
depends on the selection of the heuristic method. We 
performed experiments on three different heuristic 
methods given in Table 2. These methods are Closest Cost 
(CC) Heuristic, Nearest Addition Cost (NAC) Heuristic 
and Farthest Addition Cost (FAC) Heuristic. We inspired 
from TSP heuristics while designing these cost functions.  

 
Table 2. Cost function components for different heuristic 

methods 
HM Base 

cost 2jic  

CC 1jic  0 

NAC 1jic  


 >−

otherwise
trdistttdistiftrdistttdist kjkikjki

0
),(),( ),(),(  

FAC α * 1jic  (1- α) * ))),(),,(max(),(( 2121 fjfjff trdisttrdistttdist −  

 
 TU is the unallocated target set, TUj ∈TU is the set of 
targets closest to robot rj. tk ∈ TU is the target with the 
minimum distance dist(ti, tk) to ti. In CC heuristic method, 
cji2 is 0. Therefore robots consider only distances to 
targets. NAC heuristic method provides one further look 
ahead for an additional cost of visiting target ti. If the 
distance between the next closest target tk to ti is greater 
than the distance from the robot location to ti that means 
selection of visiting target tk may cause additional cost 
given in the Table 2. FAC heuristic method consider tf1 
and tf2 in TUj which are the targets having the maximum 
dist(tf1, tf2) value. The basic idea behind this heuristic 
function is that if a circle is drawn containing all the 



targets in TUj, tf1 and tf2 are the targets determining the 
diameter of the circle and they should also be visited. This 
method forwards robots to these farthest targets to some 
degree. By introducing a constant (α) this additional cost 
consideration can be adjusted. We selected α as 2/3 in the 
experiments.    

Experimental Results 
The experiments are conducted on a 100*100 grid 
environment with 20 targets and 1-4 robots. Target and 
robot locations are assigned randomly for each run. The 
results are presented as average of 50 runs for each set. In 
the experiments, the performance of the heuristic methods 
are measured on a static environment and compared with 
Prim Allocation method. Additionally result of a sample 
run in which robots do not have complete information on a 
dynamic environment is given as an illustrative example. 
The distances are taken as symmetric in our problem 
meaning that the distance between any two points are the 
same in both ways. The optimal results are obtained by 
CPLEX program. The integer programming formulation 
for obtaining optimal results can be found in (Lagoudakis 
2004). 

Figure 3. Performance results of the heuristic approaches 
combined with the framework and the Prim Allocation, averaged 

over 50 runs given with standard deviation 
  
Results are presented as average percentage deviation from 
optimal values with standard deviation in Figure 3. As can 
be seen from the graphs, all heuristic methods combined 
with our framework outperform Prim Allocation method. 
The reason for even closest cost heuristic (CC) generates 
better results is taking into account of the up-to-date 
location of the robot. Although initially some targets are 
close to a robot, they may become farther when the robot 
moves or vice versa. FAC heuristic is the most successful 
of all, it generates close to optimal results even for 
experiment with one robot (it should be noted that in this 
case, the problem is a single TSP problem). NAC heuristic 

performance approaches to the other two successful 
heuristics (CC and FAC) for the experiment with 4 robots. 
Deviation from optimum decreases when the number of 
robots increases because of the increase in density and the 
decrease in distances for all approaches. 
 Reconfigurations in a dynamic environment 
implemented by the proposed framework can be seen in 
Figure 4. In this scenario, there are 6 targets and 3 robots 
in the environment. Robots are shown as small squares. 
Targets are marked as crosses. World knowledge of robots 
is not certain. In (a) the environment and in (b) world 
knowledge of robots is given. Robots begin executing the 
tasks. In (c) robot r1 detects the obstacle and marks the 
target as unreachable. In (d) robot r3 detects the obstacle in 
which case the target is reachable. However robot r2 has 
the smallest cost for this target. Then robot r3 cancels the 
execution. Robot r2 considers all the targets and decides on 
the closest target (e). Robot r2 fails in (f). Robots r1 and r2 
detect this failure. Robot r1 completes the mission.      

Conclusion 
In this work we investigate performance of our general 
framework for a multi-robot team in an exploration 
problem. Overall mission is exploring a set of targets with 
minimization of total cost objective. The system can 
handle real time communication and robot failures.  
 Experiments on different heuristic cost functions 
combined with the framework validate that the results are 
close to optimal. Decisions on each new situation and 
allocations of targets in an incremental way make the 
results closer to optimal. Recovery solutions provided by 
precaution routines for different kinds of failures ensure 
the approach is complete. The approach is also suitable for 
dynamic version of the problem in which targets are 
generated on-line. 
 Some stochastic approaches may be used for forwarding 
to robots or for their decision making. Robots may select 
high cost calculations guaranteeing optimality by using 
Linear Programming methods if it is certain that the 
environment will not change. However the situations are 
subject to change for dynamic environments, and it is more 
reasonable to perform a local search by using a heuristic 
function as in presented in this work. Currently combined 
tests with communication and robot failures for dynamic 
environments are being experimented. In this work, we 
analyzed performance on an objective function for 
minimizing the total cost. As a future work, we are going 
to perform experiments for different objective functions on 
multi robot exploration problem in different domains.  
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        (a) Initial State of the Scene: 6 targets and 3 robots                      (b) World Knowledge of the robots: uncertainties are circled  
   

  
 
 
 
 
 
 
 

       (c) Robot r1 detects that the target is unreachable (d) Robot r3 detects the obstacle and cancels the task  
 

 
 
 
 
 
 
 
 

          (e) Robot r2 begins to visit targets on its way                                 (f) Robot r2 fails 
 
 
 
 
 
 
 
 

 
(g) Robots r1 and r2 detect the failure. Robot r1 completes the mission 

 
Figure 4. A sample scenario in a dynamic environment  
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