
Services Allocation Planner for Dynamic Reconfiguration

Bogumil Zieba

Thales Nederland B.V., Haaksbergerstraat 49, Hengelo (O) 7550 GD, The Netherlands
bogumil.zieba@nl.thalesgroup.com

http://www.thales-nederland.nl

Abstract
The system consists of collection of services, running on
several of nodes. The workload generated by services may
cause nodes overload, which negatively impacts the
response time of services. The reconfiguration of the system
incrementally transforms one system state to the other. The
goal of the reconfiguration is to transform the system state
into one, which all services meet their response time.
Finding the appropriate reconfiguration that satisfies all
timing requirements is the dynamic, preemptive scheduling
problem. We consider this problem as the planning
problem, where plan consists of consequent steps of the
reconfigurations actions. Classical planning algorithms
cannot be applied to this problem because of the incomplete
information. We used the concept of the conformant
planning (Smith and Weld 98), which refers to planning
with incomplete information that achieves the goal from any
initial state compatible with the available information. The
planner consists of the plan generator and the plan selector.
The generator creates a collection of plans. The selector
selects that one, which in the most probable degree
transforms system to the state that satisfies all timing
requirements. The selected plan is applied to the system.
The simulation results proved the concept of our approach.

Introduction

The context of the research is distributed, mission-critical
systems, where the functioning of an organization or
success of a carried mission depends on the predictable
and reliable system operation. National interests are
becoming increasingly dependent on the continuous,
proper functioning of large-scale, heterogeneous, and
decentralized computing enterprises. Examples of such
systems abound, ranging from military command and
control to vital national security assets such as the financial
and banking system (Wolfy et al.). The critical character of
such applications introduces high quality requirements
(ultra-quality (Rechtin and Maier 97) for these systems.
The specification on the mission-critical systems requires
that the systems behave correctly i.e. exhibits desired
functionality in all circumstances (Muhl 02). This can be
achieved by providing systems with mechanisms that
protect it before the occurrences of events that could have
impact negatively on system behavior e.g. in terms of

Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

system performance. Proactive reconfiguration adds,
removes, and replaces components and interconnections to
cause a system to assume postures that achieve enterprise-
wide intrusion tolerance goals, such as increased resilience
to specific kinds of attacks or increased preparedness for
recovery from specific kinds of failures (Wolfy et al.). The
example of this kind of mechanism is presented in (Zieba
et al. 05).

Computational model
The problem statement of the research is very much
dependent on the assumed computational model. It
consists of distributed services that are run on the
computing nodes. One service is run on one node. The
location where service is run can be changed at runtime.
The crucial requirement for this computational model is
the time-constraints. It states that the system shall execute
a collection of transactions in such a way that all time-
critical constraints meet their specified deadline. The
service needs computational, and communication
resources to execute. These needs are specified as the
required QoS (Quality of Service), which are defined
during the design phase by a service-developer. This
concept is based on the statement that not all services need
the same performance from the resources over which they
run. Thus, services may indicate their specific
requirements to the resources, before they actually start
transmitting data (Fluckiger 95). The service-developer
specifying required QoS ensures that the service always
meets its response time. This time is defined as the time
that elapses between service invocation/read data and
completion of the service request/write.
 The context of this research is the distributed system
that exhibits high-level of the dynamism. The computing
nodes and services may leave and join at the arbitrary
moments. The system configuration needs to be adaptable
to cope with changes in the environment and in the
computing platform.
 These dynamic situations are subject of uncertain
services behavior. For example, in the case of a dynamic
reduction of available resources, services may not meet
their response time because of insufficient amount of the
available resources. We have considered the following
events that cause that services do not meet their response
time:

Configuration n Configuration n+1

Reconfiguration
operations

S5

S3

S4 S4

S5

S3S1
S1

 Figure 2. Example of evolving from system configuration n to
n+1

1) Required QoS by service-developer is not provided.
This can occur because of the insufficient resource
availability.

2) Computing node overload. The overload is a condition
that a need for resources exceeds devices capabilities,
causing undesirable consequences. Factors influencing
for overload are:
a. Background workload (e.g. operating system

processes). We assume that the background
workload is the constant value on each computer
node.

b. Workload generated by services.
The important remark is that service response time
depends on the amount of the input data. Too frequent
input data delivery can cause a situation in which service
does not meet its response time. Specifying policies
according to the input data can prevent this situation. For
example, DDS1 specification describes policy named:
TIME_BASED_FILTER. This policy specifies that the
service does not receive more frequent data that specified
value; regardless of how frequent they are available
(DDS_SPEC 04). Figure 1 presents the concept of the
computational model.

In the case where one or more service does not meet their
response time, the reconfiguration is performed. The goal
of the reconfiguration is to allow a system to evolve
incrementally from one state to another at run-time, as
opposed to at design-time, while introducing little (or
ideally no) impact on the system’s execution. In this way,
systems do not have to be taken off-line, rebooted or
restarted to accommodate changes (Wegdam 03). The
reconfiguration needs to transform to the system state, in
which all services meet their response time.
 The system state is defined as the physical services
location in a certain moment. It is represented by values of
the total exceeded response time, the total overload in the

1 OMG Data-Distribution Service (DDS) is an emerging
specification for publish/subscribe middleware.

entire system, and total value of all components
satisfaction by provided QoS.
The reconfiguration is the dynamic reallocation of services
(change of physical location). The system state is
incrementally transformed to another system state by
performing: service, migration or stopping, replacement
(Figure 2).
On the presented example, the system state n is

transformed to the state n+1 by performing following
reconfiguration steps:
Step1) Replacement service S1 with S3
Step2) Migration of service S5

 Problem definition

We consider finding allocation of services, which satisfies
all services timing requirements as the dynamic,
preemptive scheduling problem. In dynamic scheduling
(on-line) the decision is made at run time on the basis of
the current request for service. Dynamic schedulers are
adaptable to an evolving time task scenario and have to
consider only the actual task request and execution time
parameters (Mullender93). The scheduler is preemptive
because interrupts the execution of the service. The
preemption is only done in case of safety assertion that
exceeds the scope of this paper.
The dynamic reconfiguration is an intrusive process to the
system. The costs of the reconfiguration according to
(Santos 01) can be distinguished into:
− Direct costs, which overheads usually CPU time,

memory, space and communication bandwidth
− Indirect costs - change of the allocation introduces some

delay in the system of reconfiguration process
We state that the allocation algorithm shall propose the
reconfiguration that provides services allocation that
satisfies all timing requirements, and in minimal degree is
intrusive to the system.

Formal Problem Definition
Software services are indexed from 1… nums, and nodes
are indexed from 1…numn. The problem considers
allocation of nums services to numn nodes.

Figure .1 Computational model

SERVICE Input data Output data

Response time

T
IM

E
_B

A
SE

D
_F

IL
T

E
R

RESOURCES

R
eq

ui
re

d
Q

oS

Pr
ov

id
ed

 Q
oS

The allocation of the services si (where i is the service
number, and i ∈ 1… nums) to the node j (where j is the
node number, and j ∈1… numn) is denoted as pair (si,j).

Services allocation is the system state. It is denoted by
vector S, where S=[(s1, j), (s2, j),…,(snums, j)].

Each service si running on the computer node j has
resource expenditure.
The function cost(si,j)∈[0,1] (where si=j) returns resource
expenditure of service si on the node j. For example, let us
assume that service (number 1) expenditures of 33 MB
memory on the node 2, which has 512 MB of total
memory. Then function cost(1,2) returns value 0.065
(which is: 33/512).

Each service si requires QoS denoted by qosri.
Each node j provides QoS, denoted by qospj.
Function satisfaction(qosri, qospj)∈[0,1] returns value,
which expresses degree of services satisfaction by
provided QoS. Let us assume that service (number 1)
requires 35MB of memory. When the node 2 provides it
30MB, function: satisfaction(1,2j) would return 0,85
(because of 30/35).

The value total_satisfaction is the sum of all services’s
satisfactions.

Each computing node j is characterized by values:
− Resources capacity1, defined by value capj.
− Background workload denoted

The overload event occurs on the computing node j, when
sum of all services costs run on that node, exceeds value of
the resource capacity.
We defined the function overload(j)∈[0,1] as follows:

The value total_overload is the sum of overloads on each
node in the system.

The function idle(j)∈[0,1] returns value that expresses
idle on the node j. It is defined as follows:

idle(j)=1-overload(j);

jα

∑
=

=
nums

j
isdeadlineSdeadlinetotal

1

)()(_

∑
=

=
nums

j
jidleidletotal

1
)(_

1 capacity is the maximum resource that can be assigned
(allocated) to services.

The value total_idle is the sum of nodes low loads.

The function deadline(si) returns the value describing how
much each service exceeds its response time.
The value total_deadline is the sum of values returned by
function deadline(si) for each service.

The reconfiguration r (indexed by 1… numr) is a
quadruple r=(a,sI,js,jr), where
a – reconfiguration action, e.g., service migration,

stopping
si – reconfigured services
jsen - node, which is the sender of the service
jrec- node, which is the receiver of the service

The performance of the reconfiguration r evolves system
state Sk to system state Sk+1.

Vector R consists of consequent reconfigurations r:
Rnumr=[r1,r2,…numr]
The function perf_reconf(S,Rnumr) performs consequent
reconfigurations, defined in vector Rnumr, on the system
state S. It returns vector Snumr that is the state of the system
after numr reconfigurations:

Snumr= perf_reconf (S,Rnumr)

The performance of numr consequent reconfigurations has
a cost expressed by the function total_reconcost (S0, Snumr).
It returns total cost of performance of reconfigurations
defined in vector Rnumr ,

We define the problem as finding the reconfiguration
expressed by the vector Rnum. Performance of this
reconfiguration shall:
− Minimize the value of total_deadline
− Minimize the value total_overload
− Minimize the value returned by function total_reconcost
− Maximize the value total_satisfaction

Approach

The problem of finding the appropriate reconfiguration
may be considered as the optimization problem. The
searching optimum is the reconfiguration that fulfils
assumed criteria. However some of the optimization
criteria may oppose e.g. minimize total exceeded response
time and minimize cost of the reconfigurations. Hence, the
problem of finding an optimal solution (sub-solution) is
stated as the multiobjective optimization problem. The goal
of multiobjective problem is to find variables, which
optimize the objective functions simultaneously; in this

)qosp ,on(qosrsatisfacti_ ji∑∑=
i j

onsatisfactitotal

=
+

=>+

=
∑

∑

=

=

 s i
),(cos

s),(cos ,1

)overload(j

1

1

jf
cap

jst

jifcapjst

i
j

nums

i
ji

ijj

nums

i
i

α

α

∑
=

=
nums

j
joverloadoverloadtotal

1
)(_

manner the solution is chosen from a so-called Pareto
optimal set (Azarm). The optimal solution of the stated
problem can be found by searching through all space of
possible services allocation. However, in this way stated
problem is NP complete. The computational complexity of
the search-based problem excludes this approach. Hence,
we re-stated the problem as the planning problem. Each
plan consists of the consequent steps of the actions
(reconfigurations actions). However classical planning
algorithms, which use description in some formal
language, usually first-order logic or a subset thereof
(Russell, Norvig 95) can not be applied to this problem
because of the incomplete information. In classical
planning, the initial state is completely known, and no
information is available from sensors. In planning with
incomplete information, the initial state is not known but
sensors information may be available at execution time
(Bonet and Gener 00). For example, the reason why the
service does not meet its response time cannot be fully
determined.
 Conformant planning, a term coined in (Smith and Weld
98), refers to planning with incomplete information but no
sensor feedback. A conformant plan is a sequence of
actions that achieves the goal from any initial state
compatible with the available information. The problem
has been addressed in (Smith and Weld 98) with an
algorithm based on the ideas of independent heuristics
over a number of problems. From a mathematical point of
view, the problem of conformant planning can be seen as
the problem of finding a sequence of actions that will map
an initial belief state into a target belief state. A belief state
in this context is a set of states: the initial belief b0 is the
set of possible initial states, and the target beliefs are the
sets that contain goal states only. Actions in this setting
map one belief state into another (Bonet and Gener 00).
 The problem of planning with incomplete information is
no longer a deterministic search problem in belief space.
Since the observations cannot be predicted, the effect of
actions over belief states becomes non-deterministic, and
the selection of actions must be conditional on the
observation gathered (Bonet and Gener 00). In order to
cope with incomplete information and not fully
observability we have introduced the planner based on the
belief approach. In this approach certainty (or belief) on a
given statement (or event) are represented using
probabilistic values, and combine beliefs on a set of
statements using probability theory.

Planner

The planner consists of following logical modules:
• Planner generator that creates a collection of plans.
• Planner selector that selects the plan. It evaluates

quality of plan. It chooses that one, which in the
highest degree transforms, system to the state that
satisfies all timing requirements.

The selected plan is applied to the system. The concept of
the planner is presented on the figure 3.

Figure 3. The planner concept.

Plan generator
The plan consists of limited number of reconfiguration
actions.

The initial state of the system is the input to the planner.
Services location and values describing satisfactions of
services by provided QoS are fully observable. Values of
resources overload and services responses times come
from measurements (incomplete information).
 The service migration, replacement, and stopping are
operators used by the planner to change the state of the
system. The migration is the process of moving the service
execution location from one computing node to another.
The service replacement is the mutual change of two
services execution location. It is realized as the sequence
of two simultaneous services migrations.
 The plan consists of several reconfiguration actions.
These are the output from the planner. The performance of
these reconfigurations actions shall bring the system into
the state, in which criteria stated in the problem statement
will be satisfied. For example, the plan can be expressed as
shown in the table 1.

O
ff

-l
in

e
co

m
pu

ta
tio

n

Plan generator

Fi
nd

in
g

th
e

re
co

nf
ig

ur
at

io
n

ac
tio

n

Compute beliefs over the system state

Combine beliefs in order to find
probabilistic distribution over the

reconfiguration actions

Choice of the reconfiguration action
dependent on probabilistic

Add the reconfiguration action to the plan

Plan selector

Plan of applied to the system

Predict the next system state

Step # Operation Service

id #
Node id#
(source)

Node id#
(dest.)

Step 1 migration 56 34 43
Step 2 migration 23 43 34
Step 3 stopping 5 3 3
Step 4 migration 28 2 7

Table 1 Example plan of the reconfiguration

Each reconfiguration action is a quadruple:

• Operator e.g. migration;
• Reconfiguring service;
• The source node - sender of the service
• The destination node - receiver of the service.

Uncertainty Handling
Data coming from measurements are discounted in the
process of information aging. The information aging
references to a situation, in which data describing certain
state does, not correspond to the current system state,
because of data delay collection (Santos 01). Through
information aging, data are assessed, in terms of time
delay. The assessment is expressed as the belief value of
the certain statement. When data are evaluated as a
“fresh”, high value of belief is assigned to this statement.
Obsolete information have low significant to the planner.
Hence, low beliefs values are assigned to such a statement.
For example, belief of the node overload depends not only
on values coming from measurement (e.g., cpu load, free
memory), but also from the time of information delivery.
The example of information-aging assessment is presented
in the figure 4.

Figure 4. Information aging graph

Exemplary assessment can be derived from following
equation:

Binfo-aging - Belief after information aging assessment

B - Belief before information aging assessment
τ - Time constant (in this example 5 sec.)

Beliefs definition

In the process of the information aging the values
representing the system state are mapped to the
probabilistic values represented by following beliefs:
− Belief of node overload: Boverj
− Belief of node idle: Bidlej
− Belief of satisfaction of each service on each node: Bsatij
− Belief that each service exceeds the response time: Bdeadlinei

Belief (Bovej) of overload node j is the fraction of values:
overload node j and total overload in the system:

Belief (Bidlej) of node j idle is the fraction of values: the
node idle and total idle in the system:

Belief (Bsatij) of satisfaction of service i by providing QoS
by the node j is the fraction of values: satisfaction of
service i and total satisfaction in the system.

Belief (Bdeadlinei) of exceeding response time by service i is
the fraction of values: value which expresses exceeding
response time by service i and value which expresses total
exceeding response time in the whole system.

Each of previously defined beliefs express the degree, how
certain value, describing service state, influences the whole
system behavior. The key concept is that those services,
which in the highest degree negatively influence the
system behavior, shall be firstly reconfigured.

Finding the reconfiguration action
We have previously defined the reconfiguration as the
quadruple r=(a,si,js,jr). At this stage, the planner assigns to
the each possible reconfiguration action the belief Br. This
belief expresses the performance suitability of each
reconfiguration action for the particular system state. For
example, lets assume that Br1 > Br2. This relation denotes
that performance of the reconfiguration r1 will set the
system state closer to the global system goal then
performance of the reconfiguration r2.

loadtotal_over
)(Boverj
joverload

=

sfactiontotal_sati
)qos ,on(qossatisfacti

B pjri
satij =

linetotal_dead
)deadline(s

B i
deadlinei =

total_idle
)(Bidlej
jidle

=

Btime *)exp(B
2

aging-info τ
−=

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12

Time [s]

B
el

ie
f

Belief Br is the weighted combination of the previously
defined beliefs: Boverj, Bidlej, Bsatij, Bdeadlinei. Figure 5 presents
how belief Br is set. This graph illustrates a dependency
among the beliefs representing the system state and beliefs,
which are calculated in order to find the reconfiguration
action.

Figure 5. Setting the belief Br

The belief that node j is the sender of the service (B
senderj

) is
derived from a weighted combination of two beliefs: belief that
node is overloaded (B

overj
) and belief of the service i satisfaction

running on node j: (B
satij

).

Bsenderj= wover *Boverj+ wsat *Bsatij

wsat – satisfaction belief weight
wover – overload belief weights

Weights values prioritize criteria of the allocation. The
priority of the allocation is linearly dependent on those
weights.
The belief that node j is the receiver of the service (Brecieverj)
is derived from a weighted combination of two beliefs:
belief of idle (Bidlej) and belief of the service i satisfaction
running on node j (Bsatij).

Brecieverj = widle * Bidlej + wsat *Bsatij

widle – idle belief weight

The belief that the service i is suitable for the
reconfiguration is derived from weighted combination of
two beliefs: belief that the service exceeds (Bdeadline) the
response time and belief of service i satisfaction (Bsatij),
running on node j.

Bservicej= wdeadline *Bdeadlinei+ wsati *Bsatij

wsati – satisfaction belief weight
wdealinei –response time belief weight
Finally, the planner combines derived beliefs of Bsenderj
Bservicei, Brecieverj to assign belief to every possible
reconfiguration action.

Br= Bsenderj + Bservicei + Brecieverj

The example of the probabilistic distribution is presented
in the table 2.

Table 2 Example of the probabilistic distribution over
reconfiguration actions

 The final step of finding the reconfiguration action is the
selection the action from the collection of all actions. This
selection is done based on the value of belief Br.
Several selection strategies are possible. The most simple
and intuitive strategy is the selection of action with a
maximal value of belief Br. However, we received more
satisfying results using a strategy, which randomly selects
action with likelihood linearly dependent on the value of
belief Br. The selected action is added to the plan as the
following step.
The plan generator updates beliefs representing the system
state, based on the prediction how the selected action may
influence the system state. This prediction of the new
system state is non-deterministic and dependent on the
heuristics of the computational model. Hence, we cannot
determine any generic model of new system state
predictor. The following, simple example shows how the
plan generator predicts the new system state in our
computational model. Let us consider that selected
reconfiguration action is the service 4 migration from node
2 to 3. Then planner updates beliefs over the system state.
It decreases load on the node 2 by load generated by
service 4 and adds it to the node 3.
After updates of beliefs values representing system state,
planner searches for the next reconfiguration action for the
new anticipated system state.

Plan selector
The presented reasoning of finding the reconfiguration
actions is not a deterministic process. Each generated plan
cannot be necessarily the solution of the problem (the new
allocation of the services may not schedule the optimal
response time). Different plans (consisting of different
reconfiguration actions) are generated based on the same

R
ec

on
fi

gu
r

at
io

n

O
pe

ra
ti

on

Se
rv

ic
e

id

N
od

e
id

(s

ou
rc

e)

N
od

e
id

(d

es
t.)

B
r

1 stopping 16 12 12 0.16
2 migration 32 43 34 0.25
3 migration 35 4 17 0.32
4 stopping 18 12 12 0.12
5 migration 3 27 9 0.15

1w wand)1,0(w,w oversatoversat ≤+∈

1w wand)1,0(w,w deadlineisatideadlineisati ≤+∈

1w wand)1,0(w,w satdlesat ≤+∈ idlei

values of beliefs representing the initial system state. The
amount of generated plans for each initial state is the input
parameter to the plan selector. The module of the plan
selector selects the plan (solution), among many generated
plans, which transforms an initial belief state into a target
belief state. The selection of the plan is performed, based
on the following criteria of plan assessment:

• Minimal (total_deadline) – minimal total value of
the exceeded response time.

• Minimal (total_overload) - minimal total value of
the overload in the system.

• Maximal (total_satisfaction) – maximal value of
components satisfaction by provided QoS.

• Minimal (total_reconcost) - minimal value of the
reconfiguration cost.

Simulation

We have developed the simulation program in order to
demonstrate the concept of the service allocation planner.
It simulates the behavior of the reconfiguration service for
the publish/subscribe middleware (Zieba 05 et al). The
service was designed in the “manager-agent” pattern
architecture. The agent monitors load on the nodes and
controls the services. The manager is the single,
centralized program, which takes decision about the
allocation of the services. The allocation algorithm is
implemented as the presented planner.
The simulator consists of the following parts:

• An emulator of the reconfiguration system. The
system consists of nodes, with syntactical
generated workloads, and services operating on
these nodes.

• The reconfiguration service, that changes
allocation of the services

• Service allocation planner, as presented in this
paper.

Results
The simulated scenario demonstrates the concept of the
service allocation planner. It consists of 10 nodes and 50
services. One of the nodes has a failure. The
reconfiguration system re-instantiates 7 services operating
on this failure nodes on the rest of available nodes.
We set the plan generator to maximal 20 reconfiguration
actions and maximal 20 generated plans.
The figure 6 presents how performance of number of
reconfiguration actions influences the system state. Each
of dots represents the state of the system after performance
of reconfiguration action. In the initial system state
response time of all services is exceeded in 0,05 sec. The
value of the overload is normalized (between 0-1), and at
the beginning is 1. After 19th of reconfiguration action the
exceeded response time and the total system overload are
zero.

The plan selector compares plans in order to select the best
plan (solution), see figure 7 for details. Each dots denotes
the output of each plan. Only plans 4th, 2nd, and 9th
completely eliminate values of exceeded response time and
total overload. Plan 9th is achieved after performance of 19
reconfiguration actions, 4th after 17 actions, and 2nd after 16
actions. In this case, we define the reconfiguration cost as
the amount of the performed reconfigurations actions. All
of these mentioned before plans achieve goal of the
reconfiguration, but selector chooses the 2nd because the
reconfiguration cost is the lowest.

T
ot

al
 e

xc
ee

de
d

re
sp

on
se

 ti
m

e

Normalized value
of total overload

Number of reconfiguration actions

Figure 7. Comparison of the generated plans

Normalized value
of total overload

T
ot

al
 e

xc
ee

de
d

re
sp

on
se

 ti
m

e

Reconfiguration action number

Figure 6. Performance of the reconfigurations actions in the plan

Conclusion

In this paper, we presented the services allocation planner
for the dynamic reconfiguration. The classical planning
algorithms cannot be applied to this problem because of
the incomplete information. We deal with this issue using
the conformant planning. The finally selected plan consists
of a sequence of reconfigurations actions that achieves the
goal from any initial state compatible with the available
information. The goal of the planner is finding the
reconfiguration that eliminates exceeded services response
time. Satisfying all timing requirements is the dynamic,
preemptive scheduling problem. The reasoning about
finding the most appropriate reconfiguration actions and
plan evaluation was explained. The simulation results
illustrate the concept of the planner.

Acknowledgements

This work was supported by European Research Program:
Marie Curie Host Fellowship under the contract number:
HPMI-CT-2002-00221

References

Azarm S.- Multiobjective Optimum Design, website:
http://www.glue.umd.edu/~azarm/optimum_notes/multi/multi.ht
ml

Bonet B., Gener H. 2000- Planning with Incomplete Information

as Heuristic Search in Belief Space

DDS_SPEC 2004- Data Distribution Service for Real-Time
Systems Specification, ptc/03-07- 07

Engelmore, R., and Morgan, A. eds. 1986. Blackboard Systems.
Reading, Mass.: Addison-Wesley.

Fluckiger, F., 1995 - Understanding Networked Multimedia(Ed,
ITU) Prentice Hall, , pp. 338.

Muhl G. - Large-Scale Content-Based Publish/Subscribe Systems
– Dissertation Vom Fachbereich Informatik der Technischen
Universitat Darmstadt 2002;

Mullender S. 93 – Distributed Systems, ACM Press New York
Bonet B., H. Geffner, 2000 - Planning with Incomplete
Inforamtion as Heurisitc Search in Belief Space.

Rechtin E., Maier M. W. 97 - ,The art. of systems architecting
1997 by CRC Press, Inc, ISBN: 0-8493-7836-2

Russell S.J, Norvig P. – Artificial Intelligence – A Modern
Approach – Prentice-Hall International, Inc, 1995

Santos L.P.P 01- Application Level Tun Time Load Management
A Bayesian Approach – PhD Thesis, Universidade Do Minho
2001

Smith, D., Weld, D. 1998. Conformant graph plan. In
Proceedings AAAI-98, 889{896. AAAI Press.

Wegdam M. 03 – Dynamic Reconfiguration and Load
Distribution in Service Middleware – PhD thesis, University of
Twente, CTIT Ph.D-thesis series, No. 03-50, ISSN 1381-3617;
No. 03-5, 26 June 2003.

Wolfy A.L., Heimbignery D, Knightz J., Devanbu P., Gertz M.,
Carzaniga A. - Bend, Don’t Break: Using Reconfiguration to
Achieve Survivability.

Zieba B., Glandrup M., Sinderen M., Wegdam M. 05-
Reconfiguration Service for Publish/Subscribe Middleware
Systems - Submitted for Euro-Par 2005

