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Abstract 
We outline a approach for closely integrating classical 
automated planning with scheduling in a manner designed to 
maximize the opportunity for leveraging the strengths of 
each.  A fundamental capability needed to implement the 
system is an efficient resource-lifted planning graph, and we 
introduce the process for achieving it here.  We report 
experimental evidence that the  resource-abstracted model 
functions well and provides an effective means of 
constraining the entailed search space via propagation 
through the planning graph of the set of valid resource 
instances for each proposition. 

1. Introduction 

The work reported here constitutes an important first step 
upon which we intend to base a novel integrated 
planning/scheduling system. We are pursuing an approach 
to solving a set of problem goals situated in time that 
separates casual reasoning needed for selecting actions to 
achieve goals (ala classical planning) from the resource 
allocation and situating actions in time (ala scheduling) in 
order to exploit strengths of both methodologies. Such an 
integrated planning/scheduling system might function as as 
a stand-alone temporal planner in its own right, but would 
also be well-suited for exploiting automated planning 
techniques in the service of solving sub-problems within a 
larger scheduling problem scenario [Smith & Zimmerman, 
2004].  

Automated planning can be described as the process of 
determining what actions to take and in what order so as to 
progress from an initial world state to a desired goal state.  
For a planning problem, besides the goals and the initial 
state, the input must define a set of domain operators, 
describing for each operator the set of effects produced 
when the action executes in a state containing certain 
preconditions.  Planning focuses on making decisions about 
action (operator) choices, where choosing an action 
typically leads to a cascading series of entailed choices and 
these choices may interact in an arbitrary variety of 
complex ways (e.g. action duration, consistency with 
previously assigned actions, resource requirements). In the 
course of selecting actions automated planners implicitly 
assign resources via the same algorithm.     

Scheduling can be viewed as the problem of assigning 
limited resources to tasks over time to optimize one or more 

objectives.  In a scheduling problem, input demands 
provide top-level goals (e.g., produce 10 widgets by next 
Friday, transport package p from location a to location b by 
Thursday), and one or more activities (typically known at 
the outset) must be executed to satisfy a given demand. 
Activities require resources to execute and the scheduler 
must reason about which of a set of available resources 
should be assigned to perform each activity. These 
allocation decisions may be subject to an arbitrarily 
complex variety of constraints, such as precedence, 
resource capacity, activity performance duration, and other 
auxiliary conditions (sub-goals) entailed by the assignment 
of a given resource. 

Planners and schedulers solve different though related 
problems, but each brings particular strengths to bear based 
on common aspects of their problem class.   As scheduling 
systems extend their capabilities to handling some forms of 
sub-goaling and planning systems begin addressing more 
complex temporal problems with explicit resources there is 
an obvious incentive to examine integrations aimed at 
overcoming the weaknesses inherent in the biases of each 
approach. 

We are pursuing an integrated planning/scheduling 
system, which we will refer to as GOzone, that combines a 
variation on classical, non-temporal Graphplan (G) [Blum 
& Furst, 1997] with Ozone [Smith et.al. 1996] a mature 
scheduling framework that employs a robust simple 
temporal network (STN). The closely integrated 
planning/scheduling system first seeks a parallel plan by 
building and searching on a specialized form of Graphplan's 
planning graph data structure in which resource objects are 
represented by variables that can represent equivalent 
resource instances. When the graph is extended to the first 
level where a classical solution is found GOzone enters a 
closely integrated scheduling and planning phase. We 
anticipate exploring various scheduling strategies for this 
phase to both allocate resources to support plan actions and 
to situate them in time. The anticipated payoff in this 
architecture is that by separating the causal reasoning as 
cleanly as possible from the temporal and resource-
allocation reasoning, we can exploit proven and well-
understood approaches in each mode.  

This paper reports on the design, implementation, and 
testing of a resource-lifted planning graph structure that is 
foundational to this closely integrated planning/ scheduling 
system.  Resource lifting represents a key step towards 



wresting the implicit resource allocation process away from 
a planning algorithm so that the more specialized resource 
allocation capabilities of the scheduler can be brought to 
bear.  Whereas the original planning graph structure is 
composed of alternating levels of grounded state 
propositions and actions, we have designed and 
implemented a constructor that creates a lifted version of 
the planning graph in which any object belonging to a class 
(or type) identified by the user as a resource is converted to 
an appropriate resource variable. These resource variables 
will appear in the context of the propositions that are 
preconditions and effects of domain actions such as (at ?r1 
Paris) where ?r1 might correspond to 'airplane'. 

 We then constrain the search space in a sound and 
complete manner by propagating the resource instances 
present in the initial world state propositions forward 
through all actions that require them. This results in a range 
of resource values for each proposition containing a 
resource variable in a given planning graph level.  

We motivate the role of this resource-lifted planning 
graph in enabling effective use of scheduling and 
characterize the reduced planning graph size that results as 
well as the tradeoff in loss of consistency-enforcing 
constraints (mutexes). In the remainder of the paper we will 
first outline the approach to integrated planning/ scheduling 
we envision for GOzone and the role played by a resource-
lifted planning graph. We then describe the methodology 
developed for implementing the resource abstraction such 
that it will effectively support the scheduling methods that 
we anticipate using when the GOzone system is fully 
implemented. We subsequently provide preliminary 
empirical evidence of the performance of the resource-lifted 
planning graph both with and without propagating the 
resource instances. In the section on related works we 
outline other studies that have implemented resource-lifting, 
and then we conclude with a discussion of the larger picture 
for this work and outline the anticipated direction for full 
implementation of the GOzone integrated planning/ 
scheduling system. 

2. A Proposed Approach to Integrated 
Planning-Scheduling 

Before turning to the resource-lifting process that is the 
focus of this paper, we here provide a high level description 
of the GOzone system it will support as well as a particular 
class of temporal goal satisfaction problem to illustrate the 
approach. 

2.1 Problem Description 

The temporal, resource-based planning/scheduling 
problem of interest has the following features: 

• A set of goals Goals, each tagged with its latest finish 
time (lft) and a release time, in the general case.  

• A simple time, typed planning domain theory:  Ops 
:Actions extended ala PDDL 2.1 to include durations, 

preconditions must hold true for the entire duration (not 
strictly necessary, but this simplifies the algorithm) 

• A set of resources possibly situated in a hierarchy of 
classes.  Each resource’s timeline may contain prior 
commitments or be empty at the start of planning. 

• A list of object types in the domain that constitute 
resources (either provided by the user and identified via 
an automated method [c.f. Fox & Long, 2000] )  

• Each initial state proposition and each action 
precondition and effect has at most one resource term. In 
addition each action references at most one resource (not 
strictly necessary, but we adopt it for simplicity). 

2.2 Motivation for the Approach 

 Given a temporal, resource-dependent planning problem, 
we seek to partition the solution search, as cleanly as 
possible, into aspects that are handled well by classical 
planning methods and those best handled by resource 
allocation strategies and temporal constraint networks. In 
this spirit we propose to address action selection issues 
having to do with causal ordering and goal satisfaction via 
purely classical planning (i.e. no explicit representation of 
time) while handling problem aspects primarily associated 
with resource availability and non-causal temporal 
constraints via scheduling techniques. These aspects are in 
fact connected; as discussed below the connection can vary 
greatly depending on the problem. There has been some 
work in such approaches in the planning community and 
the question of how to effectively separate these aspects 
remains an open issue [Srivastava 2000]. 

Causal reasoning ensures that for every action in a plan, 
its enabling preconditions are satisfied by some effect of 
another action that temporally precedes it. By themselves, 
causal relationships enforce a necessary set of orderings 
amongst actions in order to satisfy problem goals. In 
addition, they provide some constraints for assessing 
concurrency among actions. Resource reasoning ensures 
that all the resources needed for execution of an action are 
available for allocation without any resource conflicts. In 
addition to the temporal aspects associated with resource 
availability, there are a variety of other temporal 
characteristics; action duration, exogenous events, goal 
deadlines and maintenance goals that modern scheduling 
approaches handle effectively. 

The classical planning graph first introduced as the key 
structure for Graphplan [Blum & Furst, 1997] embodies a 
succinct set of constraints on the search space for it's 
regression search strategy. A large body of subsequent 
research has shown that it can be mined for powerful 
heuristics to guide both classical and temporal state-space 
planners as well as partial-order planners without 
conducting search directly on the planning graph itself 
[Bonet & Geffner, 1999; Nguyen & Kambhampati, 2000; 
Gerevini & Serina, 2002].  More recent work has shown 
that by employing a succinct search trace, the PEGG 
planner can extract from the planning graph near-optimal 
plans in times that are competitive with the heuristic state-



space planners [Zimmerman & Kambhampati, 2005].  
Moreover, having found one plan on a k-length graph, the 
search trace can be leveraged to quickly generate an 
arbitrarily large number of k-length plans [Zimmerman & 
Kambhampati, 2002].  Though we do not provide the 
details in this paper, we expect to exploit both heuristics 
derived from the planning graph and the capabilities 
provided by PEGG’s search trace enhanced methodology.  

2.3 Search Process Overview 

The search for a temporal, resource-consistent solution is 
conducted in two search phases.  

1) Phase 1: Finding a ‘classical’ solution.  This does not 
consider temporal constraints or (most) resource 
constraints. Here the planning graph is incrementally 
extended and search until a valid classical solution to 
the problem is extracted.   

2) Phase 2: Finding a temporal, resource-consistent 
solution.  This can be conducted using one or more of 
the following strategies: 

i. Attempt to schedule the classical solution using 
available resources and the temporal network. If 
this fails, exploit PEGG’s ability to quickly 
generate additional plans, rank them based on 
the conflicts responsible for the scheduling 
failure, and attempt to schedule in order.  

ii. Conduct a ‘temporally mapped’ search from 
actions on the classical planning graph to the 
Ozone temporal network and resource timelines 
in order to find a temporally valid solution.  This 
process essentially performs regression search 
on the planning graph (employing a subset of its 
mutex constraints) but augments the constraint 
checking to include durations and resource 
availability. (Elaboration of this process is 
beyond the scope of this paper.) 

In the process of either of the phase 2 strategies, the 
PEGG search algorithm may terminate search on a k-
length plangraph to seek a k+1 step plan based on 
search-trace based heuristics. 

Significant experimentation effort is expected to revolve 
around the interesting possibilities for the phase 2 solution 
search. 

3. Enabling the Scheduling Phase: a Resource-
Lifted Planning Graph 

Planners that exploit a planning graph generally employ 
grounded actions (with an instance of a given action for 
each different resource alternative) in order to maximize the 
degree of constraint propagation (via binary mutexes). In 
classical (non-temporal) planning, these constraints 
embodied in the planning graph serve to efficiently trim the 
search space explored during the regression search on the 
graph (even if only a ‘relaxed plan’ is sought for heuristic 
purposes).  However, given actions with durations and 

goals with deadlines the role and effectiveness of such 
mutexes becomes problematic [Smith & Weld, 1999]. The 
GOzone architecture is such that it can benefit from the 
power of mutex constraints for constraining search on the 
classical planning graph in Phase 1 of its search, but if we 
search on a fully grounded graph the action selection 
process inherently ends up also allocating resources. This 
motivates a plangraph construction approach that abstracts 
any action resource requirements.  One means of achieving 
this is to use a ‘resource lifted’ representation for 
propositions and actions -i.e. When an action can be 
executed using any of several identical resources, we 
represent all these instances with a single action in the 
plangraph. With this representation the allocation of a 
specific resource and its temporal positioning can be 
reserved for the scheduling methods. 

3.1 Grounded vs. Lifted representations:             
The tradeoffs  

There has been a fair amount of work associated with 
identifying resources and using lifted representations [Fox 
& Long, 2000, Srivastava, et. al. 2001] and there are well-
known tradeoffs. For example, constraint propagation is 
typically less powerful in lifted representations, in part 
because fewer violations can be identified. In the plangraph 
context this translates as fewer identifiable mutexes and 
possibly more difficult implementation of memoization 
(nogood learning). Exploiting mutexes is a powerful means 
of trimming the search space for standard Graphplan, so 
with a lifted plangraph we would be interested in any means 
of regaining some of what has been lost. If we abstract just 
the resource requirements from action instantiation1 we will 
lose all mutexes associated with concurrent use of the same 
resource and any propagation that might result. However 
the scheduling methods that attempt to allocate selected 
actions will, of course, enforce such constraints. and we 
expect this to be a winning tradeoff. 

 A side benefit to moving to a lifted plangraph: graph 
size and construction cost (and possibly the search space?) 
can be greatly reduced. There are many larger problems that 
become infeasible for plangraph-based planners due to the 
shear cost of constructing the graph alone, so this can be a 
significant benefit. 

3.2 Resource Lifting Implementation 

Given a set of user-specified resource types the planning 
domain theory and the problem initial state is preprocessed 
as outlined in Figure 1.2  We assume here for simplicity that 
each action requires at most one resource and the user 
identifies resources and resource classes in the domain 
                                                 
1   We don’t lift such things as alternate locations for an action-i.e. 

we would still have separate actions in the PG for fly(airplane? 
JFK LAK) and fly(airplane? JFK Paris) . 

 
2 Resources do not generally appear in a problem goal state as the 
final state of a resource is rarely of concern to the user specifying 
a problem. 



definition. The initial state is generated from the grounded 
problem initial state by merging all propositions within a 
resource equivalence class. That is, if there are two or more 
propositions that are term-wise identical except for terms 
identified as equivalent resources they are replaced by a 
single init state proposition with the resource terms replaced 
by variables.  

We introduce here what proves to be an effective 
efficiency; propagation of the resource “value set” forward 
from propositions in the init state through actions that use 
them as preconditions, to the effects of the actions.  As 
outlined in Figure 2, the resource instances in the 
equivalence class for an init state proposition constitute the 
resource set of all valid level 1 actions having the 
proposition as a precondition, and are then added to the 
value set for each effect proposition of the actions. Note 
that more than one action may contribute to the value set for 
a given level 1 proposition. Propagation continues in this 
manner for subsequent levels. 

The regression search then uses the action resource sets 
to constrain the number of resources to consider in possible 
instantiations of a lifted action. Only the resource instances 
appearing in an action’s resource set at a given level are 
feasible at that point. This can be particularly effective in 
domains with mobile resources. 

Resource variables in actions are generally not 
instantiated (grounded) during plangraph construction, but 
are bound to a specific resource only during the regression 
search.  

4. Preliminary Experimental Results 

With the GOzone system still under development, we 
report here on some experiments we’ve run to characterize 
the size and performance of the lifted planning graph.   The 
standard and resource lifted planning graphs were built until 
level-off (the level where no new actions or propositions 
appear and no dynamic mutexes relax) for four problems in 

different domains (3 of which are from the International 
Planning Competition). Table 1 summarizes the most 
important impacts on the planning graph; The rocket-ext-a 
problem has 2 rockets as resources and the lifted version of 
the graph is reduced by roughly 1/3 in size over the 
standard graph. In addition converting the resources to 
variables causes a 42% reduction in the number of binary 
mutexes (dynamic and static).  The logistics problem from 
the AIPS-00 International Planning Competition (IPC) has 
4 trucks and 1 airplane as resources.  The ZenoTravel 
problem features 3 aircraft as resources. The Depots  

Problem 
(domain) 

Reduction in 
Propositions 

Reduction in 
Actions 

Reduction 
in 

Mutexes 

rocket-ext-a 31% 27% 42% 

logistics-10-0 
(AIPS-00) 

41% 30% 37% 

zenotravel-3-7a 
(AIPS-02) 

33% 25% 44% 

depotprob7654 
(AIPS-02) 

52% 39% 50% 

Table 1.  Comparison of the resource lifted planning 
graph relative to the grounded graph 

1. Build the first plangraph action level in standard 
Graphplan fashion, adding actions for which consistent 
bindings between initial state propositions and action 
preconditions can be found.  
• Resource types must match for a resource variable 

to bind.  
• Propagate precondition resource variable value 

ranges to any appearance of the variable in an 
action effect. 

• Determine action-action mutexes in standard fashion 
with one exception: 
o Ignore mutexes tied to resource variables 

unless there’s only one value in each variable’s 
range 

2. The first plangraph proposition level is created from 
the union of the initial state and effects of newly added 
actions. 
• Determine prop-prop mutexes in standard fashion 

with one exception: 
o Ignore mutexes tied to resource variables 

unless there’s only one value in each variable’s 
range 

3. Combine all level 1 propositions that are identical after 
step 2 by unioning their value ranges in a single instance 
of the proposition. 

   Figure 2: Building a resource-lifted planning graph
 

1.  For each proposition, Pk, in the Init State that contains 
a term, objm  belonging to a resource class Rn: 

a. Replace the term with a resource variable 
unique to Rn 

b. Add objm to the value range of Pk 

2. Combine all Init State propositions that are identical 
after step 1 by adding their value ranges to a single 
instance of the proposition. 

3.  For each action, Ak, in the domain theory that 
contains a term, objm  in a precondition or effect 
belonging to a resource class Rn:  Replace the 
proposition term with a resource variable unique to Rn 

Figure 1: Preprocessing the problem and domain 
constraints for resource lifting 



problem from IPC-02, the 2 trucks and 5 hoists were 
declared resources resulting in the largest reduction overall; 
52% in the number of plangraph propositions over the 
standard graph and a 50% loss of mutex constraints. 

The practical implications of these results are an 
expected reduction in memory demands for large problems 
and faster planning graph construction (In fact we found the 
lifted graphs for the modest size problems of Table 1 were 
constructed ~24% faster than the standard planning graphs).  
On the downside, the lost of the mutex constraints has the 
potential to translate into less constrained search on the 
planning graph. 

In order to get a feel for the impact of the lifted resource 
implementation in the absence of a completed 
planner/scheduler, we solved the Table 1 problems on both 
the grounded planning graph (with standard Graphplan) and 
on the resource-lifted graph.  “Solving” the problems in the 
latter case involves a 2-phase search process; upon 
extraction of a resource-abstracted set of plan actions a 
consistent, resource-grounded set of actions must be found 
based on the possible values (resource instances) for the 
resource variables in the abstract plan.  If this 2nd phase fails 
then the 1st phase must be resumed and/or the planning 
graph expanded until a valid solution is found. 

 We implemented this 2-phase approach by adding a 
simple, naive backtracking search to the Graphplan-style 
regression search that tries all combinations of resource  
instances for abstracted actions in a plan until either a 
resource-consistent plan is found or the search is passed 
back to Phase 1. 

Table 2 then, compares the runtime for extracting a valid 
solution on the grounded planning graph (using Graphplan) 
against two variations of resource-lifting; one without the 
value constraining propagation described in Section 3.2 and 
one with it active.3  Note that all planning processes 
reported here will return a step-optimal plan. Not 
surprisingly the resource-lifted search processes take 
considerably longer than search on the grounded planning 
graph.  This is attributable to at least 3 factors 

• The lifted graphs have fewer mutexes to constrain 
the search space (see Table 1) 

• The 2-phase approach needed to find a grounded 
solution on the lifted planning graphs is inefficient 
as configured. 

• The problems all involve multiple search episodes 
before Graphplan extends the graph to a length with 
an extant solution.  The phase 1 search on the 
resource-lifted planning graphs finds ‘solutions’ 
multiple times in these intermediate episodes and 
enters the phase 2 search to no avail for each such 
partial solution. 

                                                 
3 The “enhanced” Graphplan reported here as well as the phase 1of 
the resource-lifted search processes all employ a number of 
efficiency enhancements relative to the original Graphplan, such 
as EBL and DDB (see [Zimmerman & Kambhampati, 2005] ). 

This is not, in itself, a serious concern since GOzone will 
focus on finding a temporally consistent solution and time 
spent in finding such a classical solution is likely to be a 
small fraction of the final solution search time.  Moreover, 
the Ozone scheduler should be able to handily outperform 
the naive backtracking phase 2 search implemented for this 
simple study. 

Of greater interest is the boost that comes from the 
resource value propagation introduced in Section 3.2.  This 
augmentation reduces the solution search time by factors of 
from 1.5 to 2.1 over these problems.  This advantage should 
increase for larger problems with more resources that are 
asymmetrically distributed.  

5. Related Work 

Perhaps the most relevant previous work is associated 
with the development of RealPlan [Srivastava et.al. 2001, 
Srivastava 2000],a classical planning framework in which 
resource allocation is decoupled from planning and handled 
via scheduling in a subsequent phase. The system employs 
a version of Graphplan to generate an initial classical plan 
on a resource abstracted planning graph and passes this to 
the scheduling phase, which treats the resource allocation as 
a Constraint Satisfaction Problem (CSP) RealPlan can 
implement either a master-slave or peer-to-peer relationship 
between the planner and scheduler components, with the 
latter mode employing feedback to the planner when 
scheduling fails to allocate the generated plan actions.  

The resource-lifted planning graph employed by 
RealPlan is similar to the approach reported here in that 
resource variables are substituted for objects identified by 
the user as resources.  However, the system does not 
support identifying a possibly hierarchical set of resource 
types that are then used to automatically create classes of 
lifted propositions.  Nor does RealPlan conduct the the 
resource value set propagation that we introduced here as 

Problem 
(domain) 

Graphplan 
(enhanced) 

Resource-
Lifted:  

No Value 
Constr. Prop 

Resource-
Lifted:  

w/ Constr. 
Propagation

rocket-ext-a 3.5 12.2 5.7 

logistics-10-0 
(AIPS-00) 30.0 144. 75.9 

zenotravel-3-8a 
(AIPS-02) 972 1488 1001 

depotprob7654 
(AIPS-02) 32.5 81 49 

Table 2.  Runtime comparison (in sec) of solution 
extraction on two versions of the resource lifted 
planning graph relative to Graphplan’s search on a 
grounded graph. 



an efficient boost to constrain the search space. Perhaps 
most importantly, RealPlan is purely a classical planner and 
is not concerned with temporal planning or, alternately, 
scheduling resources over time.  

4. Discussion and Conclusions 

As indicated at the outset, our broader, long term 
objective is the development of an integrated 
planner/scheduler, which combines a Graphplan planning 
mechanism (operating on a classical planning graph 
representation) with a incremental, constraint-based 
scheduling procedure (operating on a simple temporal 
network representation). We refer to this envisioned 
framework as GOzone, reflecting our current 
implementation effort to integrate a variation of the 
Graphplan (G) planning algorithm [Zimmerman & 
Kambhampati 2005] with the Ozone scheduling framework 
[Smith et.al. 1996]. In GOzone, the planning graph 
representation provides a basic mechanism for enforcing the 
causal constraints implicit in the satisfaction of various 
pending goals, while resources are allocated to extracted 
activity sequences over time via posting of additional 
sequencing constraints in an underlying temporal network.  

Our emphasis in this paper on lifted planning graph 
representations aims at separating these complementary 
concerns. Given the non-temporal nature of classical 
planning graphs, a grounded representation of resources 
always runs the risk of generating highly sub-optimal action 
sequences in domains where action durations vary non-
trivially.  A lifted representation, alternatively, allows the 
planner to concentrate on establishing necessary causal 
relationships between activities that must be executed and 
minimizes this possibility; reasoning about activity 
durations is instead deferred to the scheduler and carried 
out in the context of resource allocation decisions with 
respect to an explicit temporal model. 

We see several advantages to our proposed planner/ 
scheduler configuration: 

Hybrid problem solving - By partitioning concerns as just 
summarized, we exploit distinct planning and scheduling 
techniques where they are best suited and avoid the 
combinatorics of a single integrated search space and 
solver. 

Natural handling of limited resource availability and 
exogenous events – From a planning perspective, 
accommodation of exogenous events that limit resource 
usage and activity execution typically requires special 
treatment. Such events are naturally accommodated and 
enforced within the temporal constraint network 
representations employed by contemporary constraint-based 
schedulers such as Ozone. 

Flexible reasoning about resource configuration – From 
a scheduling perspective, satisfaction of state-dependent 
constraints on resource usage (e.g., being at the right 
location, being adequately warmed up, etc.) typically 
requires simplifying modeling assumptions, which 

eliminate non-circumscribed solution possibilities. The 
capability to manage such state-dependent constraints is 
flexibly accommodated in a general way via goal expansion 
by contemporary planning approaches such as Graphplan. 

At the same time, realization of the GOzone framework 
presents several interesting research and development 
challenges: 

Integrating “plan step” reasoning with durative actions 
– Despite the use of a lifted planning graph representation, 
significant questions remain with regard to how well 
activity sequences that are generated according to a “plan 
step” notion of time can be integrated into resource time 
lines that depend on the actual temporal extent of various 
activities. Our intuition, for example, is that propagation of 
resource ranges in the lifted planning graph can restrict 
search in meaningful ways, but this remains to be shown. 

Dealing with deadlines and release times – Another 
related issue concerns the association of deadlines (or other 
time constraints) with various goals to be accomplished; 
they should clearly impact the generation of requisite 
activity sequences. We are pursuing an approach that uses 
activity duration during the backward search through the 
planning graph, but there are other possibilities that may 
prove more effective. 

Incremental, continuous operation – One of the 
hallmarks of constraint-based scheduling techniques is their 
incrementality; to accommodate new activities over time 
while keeping previously scheduled activities in place, and 
to locally respond to constraint conflicts introduced by 
unexpected execution results. The Graphplan planning 
framework alternatively depends on moving forward from a 
pre-stated initial state. Another open issue concerns how 
this requirement can be reconciled with a continuously 
changing execution state and the desire to keep existing 
schedules in place to the extent possible. For example, once 
a schedule has been established, can this information 
somehow be fed back into the planning graph (or into the 
planning graph construction process) to constrain 
subsequent causal reasoning? 

Our current research is aimed at answering these general 
questions. 
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