
Towards Integrated Planning and Scheduling:
Resource Abstraction in the Planning Graph

Terry L. Zimmerman and Stephen F. Smith

The Robotics Institute, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh PA 15213

{wizim, sfs}@cs.cmu.edu

Abstract
We outline a approach for closely integrating classical
automated planning with scheduling in a manner designed to
maximize the opportunity for leveraging the strengths of
each. A fundamental capability needed to implement the
system is an efficient resource-lifted planning graph, and we
introduce the process for achieving it here. We report
experimental evidence that the resource-abstracted model
functions well and provides an effective means of
constraining the entailed search space via propagation
through the planning graph of the set of valid resource
instances for each proposition.

1. Introduction

The work reported here constitutes an important first step
upon which we intend to base a novel integrated
planning/scheduling system. We are pursuing an approach
to solving a set of problem goals situated in time that
separates casual reasoning needed for selecting actions to
achieve goals (ala classical planning) from the resource
allocation and situating actions in time (ala scheduling) in
order to exploit strengths of both methodologies. Such an
integrated planning/scheduling system might function as as
a stand-alone temporal planner in its own right, but would
also be well-suited for exploiting automated planning
techniques in the service of solving sub-problems within a
larger scheduling problem scenario [Smith & Zimmerman,
2004].

Automated planning can be described as the process of
determining what actions to take and in what order so as to
progress from an initial world state to a desired goal state.
For a planning problem, besides the goals and the initial
state, the input must define a set of domain operators,
describing for each operator the set of effects produced
when the action executes in a state containing certain
preconditions. Planning focuses on making decisions about
action (operator) choices, where choosing an action
typically leads to a cascading series of entailed choices and
these choices may interact in an arbitrary variety of
complex ways (e.g. action duration, consistency with
previously assigned actions, resource requirements). In the
course of selecting actions automated planners implicitly
assign resources via the same algorithm.

Scheduling can be viewed as the problem of assigning
limited resources to tasks over time to optimize one or more

objectives. In a scheduling problem, input demands
provide top-level goals (e.g., produce 10 widgets by next
Friday, transport package p from location a to location b by
Thursday), and one or more activities (typically known at
the outset) must be executed to satisfy a given demand.
Activities require resources to execute and the scheduler
must reason about which of a set of available resources
should be assigned to perform each activity. These
allocation decisions may be subject to an arbitrarily
complex variety of constraints, such as precedence,
resource capacity, activity performance duration, and other
auxiliary conditions (sub-goals) entailed by the assignment
of a given resource.

Planners and schedulers solve different though related
problems, but each brings particular strengths to bear based
on common aspects of their problem class. As scheduling
systems extend their capabilities to handling some forms of
sub-goaling and planning systems begin addressing more
complex temporal problems with explicit resources there is
an obvious incentive to examine integrations aimed at
overcoming the weaknesses inherent in the biases of each
approach.

We are pursuing an integrated planning/scheduling
system, which we will refer to as GOzone, that combines a
variation on classical, non-temporal Graphplan (G) [Blum
& Furst, 1997] with Ozone [Smith et.al. 1996] a mature
scheduling framework that employs a robust simple
temporal network (STN). The closely integrated
planning/scheduling system first seeks a parallel plan by
building and searching on a specialized form of Graphplan's
planning graph data structure in which resource objects are
represented by variables that can represent equivalent
resource instances. When the graph is extended to the first
level where a classical solution is found GOzone enters a
closely integrated scheduling and planning phase. We
anticipate exploring various scheduling strategies for this
phase to both allocate resources to support plan actions and
to situate them in time. The anticipated payoff in this
architecture is that by separating the causal reasoning as
cleanly as possible from the temporal and resource-
allocation reasoning, we can exploit proven and well-
understood approaches in each mode.

This paper reports on the design, implementation, and
testing of a resource-lifted planning graph structure that is
foundational to this closely integrated planning/ scheduling
system. Resource lifting represents a key step towards

wresting the implicit resource allocation process away from
a planning algorithm so that the more specialized resource
allocation capabilities of the scheduler can be brought to
bear. Whereas the original planning graph structure is
composed of alternating levels of grounded state
propositions and actions, we have designed and
implemented a constructor that creates a lifted version of
the planning graph in which any object belonging to a class
(or type) identified by the user as a resource is converted to
an appropriate resource variable. These resource variables
will appear in the context of the propositions that are
preconditions and effects of domain actions such as (at ?r1
Paris) where ?r1 might correspond to 'airplane'.

 We then constrain the search space in a sound and
complete manner by propagating the resource instances
present in the initial world state propositions forward
through all actions that require them. This results in a range
of resource values for each proposition containing a
resource variable in a given planning graph level.

We motivate the role of this resource-lifted planning
graph in enabling effective use of scheduling and
characterize the reduced planning graph size that results as
well as the tradeoff in loss of consistency-enforcing
constraints (mutexes). In the remainder of the paper we will
first outline the approach to integrated planning/ scheduling
we envision for GOzone and the role played by a resource-
lifted planning graph. We then describe the methodology
developed for implementing the resource abstraction such
that it will effectively support the scheduling methods that
we anticipate using when the GOzone system is fully
implemented. We subsequently provide preliminary
empirical evidence of the performance of the resource-lifted
planning graph both with and without propagating the
resource instances. In the section on related works we
outline other studies that have implemented resource-lifting,
and then we conclude with a discussion of the larger picture
for this work and outline the anticipated direction for full
implementation of the GOzone integrated planning/
scheduling system.

2. A Proposed Approach to Integrated
Planning-Scheduling

Before turning to the resource-lifting process that is the
focus of this paper, we here provide a high level description
of the GOzone system it will support as well as a particular
class of temporal goal satisfaction problem to illustrate the
approach.

2.1 Problem Description

The temporal, resource-based planning/scheduling
problem of interest has the following features:

• A set of goals Goals, each tagged with its latest finish
time (lft) and a release time, in the general case.

• A simple time, typed planning domain theory: Ops
:Actions extended ala PDDL 2.1 to include durations,

preconditions must hold true for the entire duration (not
strictly necessary, but this simplifies the algorithm)

• A set of resources possibly situated in a hierarchy of
classes. Each resource’s timeline may contain prior
commitments or be empty at the start of planning.

• A list of object types in the domain that constitute
resources (either provided by the user and identified via
an automated method [c.f. Fox & Long, 2000])

• Each initial state proposition and each action
precondition and effect has at most one resource term. In
addition each action references at most one resource (not
strictly necessary, but we adopt it for simplicity).

2.2 Motivation for the Approach

 Given a temporal, resource-dependent planning problem,
we seek to partition the solution search, as cleanly as
possible, into aspects that are handled well by classical
planning methods and those best handled by resource
allocation strategies and temporal constraint networks. In
this spirit we propose to address action selection issues
having to do with causal ordering and goal satisfaction via
purely classical planning (i.e. no explicit representation of
time) while handling problem aspects primarily associated
with resource availability and non-causal temporal
constraints via scheduling techniques. These aspects are in
fact connected; as discussed below the connection can vary
greatly depending on the problem. There has been some
work in such approaches in the planning community and
the question of how to effectively separate these aspects
remains an open issue [Srivastava 2000].

Causal reasoning ensures that for every action in a plan,
its enabling preconditions are satisfied by some effect of
another action that temporally precedes it. By themselves,
causal relationships enforce a necessary set of orderings
amongst actions in order to satisfy problem goals. In
addition, they provide some constraints for assessing
concurrency among actions. Resource reasoning ensures
that all the resources needed for execution of an action are
available for allocation without any resource conflicts. In
addition to the temporal aspects associated with resource
availability, there are a variety of other temporal
characteristics; action duration, exogenous events, goal
deadlines and maintenance goals that modern scheduling
approaches handle effectively.

The classical planning graph first introduced as the key
structure for Graphplan [Blum & Furst, 1997] embodies a
succinct set of constraints on the search space for it's
regression search strategy. A large body of subsequent
research has shown that it can be mined for powerful
heuristics to guide both classical and temporal state-space
planners as well as partial-order planners without
conducting search directly on the planning graph itself
[Bonet & Geffner, 1999; Nguyen & Kambhampati, 2000;
Gerevini & Serina, 2002]. More recent work has shown
that by employing a succinct search trace, the PEGG
planner can extract from the planning graph near-optimal
plans in times that are competitive with the heuristic state-

space planners [Zimmerman & Kambhampati, 2005].
Moreover, having found one plan on a k-length graph, the
search trace can be leveraged to quickly generate an
arbitrarily large number of k-length plans [Zimmerman &
Kambhampati, 2002]. Though we do not provide the
details in this paper, we expect to exploit both heuristics
derived from the planning graph and the capabilities
provided by PEGG’s search trace enhanced methodology.

2.3 Search Process Overview

The search for a temporal, resource-consistent solution is
conducted in two search phases.

1) Phase 1: Finding a ‘classical’ solution. This does not
consider temporal constraints or (most) resource
constraints. Here the planning graph is incrementally
extended and search until a valid classical solution to
the problem is extracted.

2) Phase 2: Finding a temporal, resource-consistent
solution. This can be conducted using one or more of
the following strategies:

i. Attempt to schedule the classical solution using
available resources and the temporal network. If
this fails, exploit PEGG’s ability to quickly
generate additional plans, rank them based on
the conflicts responsible for the scheduling
failure, and attempt to schedule in order.

ii. Conduct a ‘temporally mapped’ search from
actions on the classical planning graph to the
Ozone temporal network and resource timelines
in order to find a temporally valid solution. This
process essentially performs regression search
on the planning graph (employing a subset of its
mutex constraints) but augments the constraint
checking to include durations and resource
availability. (Elaboration of this process is
beyond the scope of this paper.)

In the process of either of the phase 2 strategies, the
PEGG search algorithm may terminate search on a k-
length plangraph to seek a k+1 step plan based on
search-trace based heuristics.

Significant experimentation effort is expected to revolve
around the interesting possibilities for the phase 2 solution
search.

3. Enabling the Scheduling Phase: a Resource-
Lifted Planning Graph

Planners that exploit a planning graph generally employ
grounded actions (with an instance of a given action for
each different resource alternative) in order to maximize the
degree of constraint propagation (via binary mutexes). In
classical (non-temporal) planning, these constraints
embodied in the planning graph serve to efficiently trim the
search space explored during the regression search on the
graph (even if only a ‘relaxed plan’ is sought for heuristic
purposes). However, given actions with durations and

goals with deadlines the role and effectiveness of such
mutexes becomes problematic [Smith & Weld, 1999]. The
GOzone architecture is such that it can benefit from the
power of mutex constraints for constraining search on the
classical planning graph in Phase 1 of its search, but if we
search on a fully grounded graph the action selection
process inherently ends up also allocating resources. This
motivates a plangraph construction approach that abstracts
any action resource requirements. One means of achieving
this is to use a ‘resource lifted’ representation for
propositions and actions -i.e. When an action can be
executed using any of several identical resources, we
represent all these instances with a single action in the
plangraph. With this representation the allocation of a
specific resource and its temporal positioning can be
reserved for the scheduling methods.

3.1 Grounded vs. Lifted representations:
The tradeoffs

There has been a fair amount of work associated with
identifying resources and using lifted representations [Fox
& Long, 2000, Srivastava, et. al. 2001] and there are well-
known tradeoffs. For example, constraint propagation is
typically less powerful in lifted representations, in part
because fewer violations can be identified. In the plangraph
context this translates as fewer identifiable mutexes and
possibly more difficult implementation of memoization
(nogood learning). Exploiting mutexes is a powerful means
of trimming the search space for standard Graphplan, so
with a lifted plangraph we would be interested in any means
of regaining some of what has been lost. If we abstract just
the resource requirements from action instantiation1 we will
lose all mutexes associated with concurrent use of the same
resource and any propagation that might result. However
the scheduling methods that attempt to allocate selected
actions will, of course, enforce such constraints. and we
expect this to be a winning tradeoff.

 A side benefit to moving to a lifted plangraph: graph
size and construction cost (and possibly the search space?)
can be greatly reduced. There are many larger problems that
become infeasible for plangraph-based planners due to the
shear cost of constructing the graph alone, so this can be a
significant benefit.

3.2 Resource Lifting Implementation

Given a set of user-specified resource types the planning
domain theory and the problem initial state is preprocessed
as outlined in Figure 1.2 We assume here for simplicity that
each action requires at most one resource and the user
identifies resources and resource classes in the domain

1 We don’t lift such things as alternate locations for an action-i.e.

we would still have separate actions in the PG for fly(airplane?
JFK LAK) and fly(airplane? JFK Paris) .

2 Resources do not generally appear in a problem goal state as the
final state of a resource is rarely of concern to the user specifying
a problem.

definition. The initial state is generated from the grounded
problem initial state by merging all propositions within a
resource equivalence class. That is, if there are two or more
propositions that are term-wise identical except for terms
identified as equivalent resources they are replaced by a
single init state proposition with the resource terms replaced
by variables.

We introduce here what proves to be an effective
efficiency; propagation of the resource “value set” forward
from propositions in the init state through actions that use
them as preconditions, to the effects of the actions. As
outlined in Figure 2, the resource instances in the
equivalence class for an init state proposition constitute the
resource set of all valid level 1 actions having the
proposition as a precondition, and are then added to the
value set for each effect proposition of the actions. Note
that more than one action may contribute to the value set for
a given level 1 proposition. Propagation continues in this
manner for subsequent levels.

The regression search then uses the action resource sets
to constrain the number of resources to consider in possible
instantiations of a lifted action. Only the resource instances
appearing in an action’s resource set at a given level are
feasible at that point. This can be particularly effective in
domains with mobile resources.

Resource variables in actions are generally not
instantiated (grounded) during plangraph construction, but
are bound to a specific resource only during the regression
search.

4. Preliminary Experimental Results

With the GOzone system still under development, we
report here on some experiments we’ve run to characterize
the size and performance of the lifted planning graph. The
standard and resource lifted planning graphs were built until
level-off (the level where no new actions or propositions
appear and no dynamic mutexes relax) for four problems in

different domains (3 of which are from the International
Planning Competition). Table 1 summarizes the most
important impacts on the planning graph; The rocket-ext-a
problem has 2 rockets as resources and the lifted version of
the graph is reduced by roughly 1/3 in size over the
standard graph. In addition converting the resources to
variables causes a 42% reduction in the number of binary
mutexes (dynamic and static). The logistics problem from
the AIPS-00 International Planning Competition (IPC) has
4 trucks and 1 airplane as resources. The ZenoTravel
problem features 3 aircraft as resources. The Depots

Problem
(domain)

Reduction in
Propositions

Reduction in
Actions

Reduction
in

Mutexes

rocket-ext-a 31% 27% 42%

logistics-10-0
(AIPS-00)

41% 30% 37%

zenotravel-3-7a
(AIPS-02)

33% 25% 44%

depotprob7654
(AIPS-02)

52% 39% 50%

Table 1. Comparison of the resource lifted planning
graph relative to the grounded graph

1. Build the first plangraph action level in standard
Graphplan fashion, adding actions for which consistent
bindings between initial state propositions and action
preconditions can be found.
• Resource types must match for a resource variable

to bind.
• Propagate precondition resource variable value

ranges to any appearance of the variable in an
action effect.

• Determine action-action mutexes in standard fashion
with one exception:
o Ignore mutexes tied to resource variables

unless there’s only one value in each variable’s
range

2. The first plangraph proposition level is created from
the union of the initial state and effects of newly added
actions.
• Determine prop-prop mutexes in standard fashion

with one exception:
o Ignore mutexes tied to resource variables

unless there’s only one value in each variable’s
range

3. Combine all level 1 propositions that are identical after
step 2 by unioning their value ranges in a single instance
of the proposition.

 Figure 2: Building a resource-lifted planning graph

1. For each proposition, Pk, in the Init State that contains
a term, objm belonging to a resource class Rn:

a. Replace the term with a resource variable
unique to Rn

b. Add objm to the value range of Pk

2. Combine all Init State propositions that are identical
after step 1 by adding their value ranges to a single
instance of the proposition.

3. For each action, Ak, in the domain theory that
contains a term, objm in a precondition or effect
belonging to a resource class Rn: Replace the
proposition term with a resource variable unique to Rn

Figure 1: Preprocessing the problem and domain
constraints for resource lifting

problem from IPC-02, the 2 trucks and 5 hoists were
declared resources resulting in the largest reduction overall;
52% in the number of plangraph propositions over the
standard graph and a 50% loss of mutex constraints.

The practical implications of these results are an
expected reduction in memory demands for large problems
and faster planning graph construction (In fact we found the
lifted graphs for the modest size problems of Table 1 were
constructed ~24% faster than the standard planning graphs).
On the downside, the lost of the mutex constraints has the
potential to translate into less constrained search on the
planning graph.

In order to get a feel for the impact of the lifted resource
implementation in the absence of a completed
planner/scheduler, we solved the Table 1 problems on both
the grounded planning graph (with standard Graphplan) and
on the resource-lifted graph. “Solving” the problems in the
latter case involves a 2-phase search process; upon
extraction of a resource-abstracted set of plan actions a
consistent, resource-grounded set of actions must be found
based on the possible values (resource instances) for the
resource variables in the abstract plan. If this 2nd phase fails
then the 1st phase must be resumed and/or the planning
graph expanded until a valid solution is found.

 We implemented this 2-phase approach by adding a
simple, naive backtracking search to the Graphplan-style
regression search that tries all combinations of resource
instances for abstracted actions in a plan until either a
resource-consistent plan is found or the search is passed
back to Phase 1.

Table 2 then, compares the runtime for extracting a valid
solution on the grounded planning graph (using Graphplan)
against two variations of resource-lifting; one without the
value constraining propagation described in Section 3.2 and
one with it active.3 Note that all planning processes
reported here will return a step-optimal plan. Not
surprisingly the resource-lifted search processes take
considerably longer than search on the grounded planning
graph. This is attributable to at least 3 factors

• The lifted graphs have fewer mutexes to constrain
the search space (see Table 1)

• The 2-phase approach needed to find a grounded
solution on the lifted planning graphs is inefficient
as configured.

• The problems all involve multiple search episodes
before Graphplan extends the graph to a length with
an extant solution. The phase 1 search on the
resource-lifted planning graphs finds ‘solutions’
multiple times in these intermediate episodes and
enters the phase 2 search to no avail for each such
partial solution.

3 The “enhanced” Graphplan reported here as well as the phase 1of
the resource-lifted search processes all employ a number of
efficiency enhancements relative to the original Graphplan, such
as EBL and DDB (see [Zimmerman & Kambhampati, 2005]).

This is not, in itself, a serious concern since GOzone will
focus on finding a temporally consistent solution and time
spent in finding such a classical solution is likely to be a
small fraction of the final solution search time. Moreover,
the Ozone scheduler should be able to handily outperform
the naive backtracking phase 2 search implemented for this
simple study.

Of greater interest is the boost that comes from the
resource value propagation introduced in Section 3.2. This
augmentation reduces the solution search time by factors of
from 1.5 to 2.1 over these problems. This advantage should
increase for larger problems with more resources that are
asymmetrically distributed.

5. Related Work

Perhaps the most relevant previous work is associated
with the development of RealPlan [Srivastava et.al. 2001,
Srivastava 2000],a classical planning framework in which
resource allocation is decoupled from planning and handled
via scheduling in a subsequent phase. The system employs
a version of Graphplan to generate an initial classical plan
on a resource abstracted planning graph and passes this to
the scheduling phase, which treats the resource allocation as
a Constraint Satisfaction Problem (CSP) RealPlan can
implement either a master-slave or peer-to-peer relationship
between the planner and scheduler components, with the
latter mode employing feedback to the planner when
scheduling fails to allocate the generated plan actions.

The resource-lifted planning graph employed by
RealPlan is similar to the approach reported here in that
resource variables are substituted for objects identified by
the user as resources. However, the system does not
support identifying a possibly hierarchical set of resource
types that are then used to automatically create classes of
lifted propositions. Nor does RealPlan conduct the the
resource value set propagation that we introduced here as

Problem
(domain)

Graphplan
(enhanced)

Resource-
Lifted:

No Value
Constr. Prop

Resource-
Lifted:

w/ Constr.
Propagation

rocket-ext-a 3.5 12.2 5.7

logistics-10-0
(AIPS-00) 30.0 144. 75.9

zenotravel-3-8a
(AIPS-02) 972 1488 1001

depotprob7654
(AIPS-02) 32.5 81 49

Table 2. Runtime comparison (in sec) of solution
extraction on two versions of the resource lifted
planning graph relative to Graphplan’s search on a
grounded graph.

an efficient boost to constrain the search space. Perhaps
most importantly, RealPlan is purely a classical planner and
is not concerned with temporal planning or, alternately,
scheduling resources over time.

4. Discussion and Conclusions

As indicated at the outset, our broader, long term
objective is the development of an integrated
planner/scheduler, which combines a Graphplan planning
mechanism (operating on a classical planning graph
representation) with a incremental, constraint-based
scheduling procedure (operating on a simple temporal
network representation). We refer to this envisioned
framework as GOzone, reflecting our current
implementation effort to integrate a variation of the
Graphplan (G) planning algorithm [Zimmerman &
Kambhampati 2005] with the Ozone scheduling framework
[Smith et.al. 1996]. In GOzone, the planning graph
representation provides a basic mechanism for enforcing the
causal constraints implicit in the satisfaction of various
pending goals, while resources are allocated to extracted
activity sequences over time via posting of additional
sequencing constraints in an underlying temporal network.

Our emphasis in this paper on lifted planning graph
representations aims at separating these complementary
concerns. Given the non-temporal nature of classical
planning graphs, a grounded representation of resources
always runs the risk of generating highly sub-optimal action
sequences in domains where action durations vary non-
trivially. A lifted representation, alternatively, allows the
planner to concentrate on establishing necessary causal
relationships between activities that must be executed and
minimizes this possibility; reasoning about activity
durations is instead deferred to the scheduler and carried
out in the context of resource allocation decisions with
respect to an explicit temporal model.

We see several advantages to our proposed planner/
scheduler configuration:

Hybrid problem solving - By partitioning concerns as just
summarized, we exploit distinct planning and scheduling
techniques where they are best suited and avoid the
combinatorics of a single integrated search space and
solver.

Natural handling of limited resource availability and
exogenous events – From a planning perspective,
accommodation of exogenous events that limit resource
usage and activity execution typically requires special
treatment. Such events are naturally accommodated and
enforced within the temporal constraint network
representations employed by contemporary constraint-based
schedulers such as Ozone.

Flexible reasoning about resource configuration – From
a scheduling perspective, satisfaction of state-dependent
constraints on resource usage (e.g., being at the right
location, being adequately warmed up, etc.) typically
requires simplifying modeling assumptions, which

eliminate non-circumscribed solution possibilities. The
capability to manage such state-dependent constraints is
flexibly accommodated in a general way via goal expansion
by contemporary planning approaches such as Graphplan.

At the same time, realization of the GOzone framework
presents several interesting research and development
challenges:

Integrating “plan step” reasoning with durative actions
– Despite the use of a lifted planning graph representation,
significant questions remain with regard to how well
activity sequences that are generated according to a “plan
step” notion of time can be integrated into resource time
lines that depend on the actual temporal extent of various
activities. Our intuition, for example, is that propagation of
resource ranges in the lifted planning graph can restrict
search in meaningful ways, but this remains to be shown.

Dealing with deadlines and release times – Another
related issue concerns the association of deadlines (or other
time constraints) with various goals to be accomplished;
they should clearly impact the generation of requisite
activity sequences. We are pursuing an approach that uses
activity duration during the backward search through the
planning graph, but there are other possibilities that may
prove more effective.

Incremental, continuous operation – One of the
hallmarks of constraint-based scheduling techniques is their
incrementality; to accommodate new activities over time
while keeping previously scheduled activities in place, and
to locally respond to constraint conflicts introduced by
unexpected execution results. The Graphplan planning
framework alternatively depends on moving forward from a
pre-stated initial state. Another open issue concerns how
this requirement can be reconciled with a continuously
changing execution state and the desire to keep existing
schedules in place to the extent possible. For example, once
a schedule has been established, can this information
somehow be fed back into the planning graph (or into the
planning graph construction process) to constrain
subsequent causal reasoning?

Our current research is aimed at answering these general
questions.

Acknowledgments: The work reported in this paper has
been supported in part by the National Science Foundation
under contract # 9900298, by the Department of Defense
Advanced Research Projects Agency under contract #
FA8750-05-C-0033 and by the CMU Robotics Institute.

References
Blum, A. and Furst, M.L. 1997. Fast planning through planning

graph analysis. Artificial Intelligence. 90(1-2). 1997.

Bonet, B. & Geffner, H. 1999. Planning as heuristic search: New
results. In Proceedings of ECP-99.

Long, D. and Fox, M. 2000 "Automatic Synthesis and Use of
Generic Types in Planning." Proceedings of AIPS 2000. 2000.
pp. 196-205

Gerevini, A. & Serina, I., 2002. LPG: A planner based on local
search for planning graphs with action costs. In Proceedings
of AIPS-02.

Nguyen, X. & Kambhampati, S. 2000. Extracting effective and
admissible state space heuristics from the planning graph. In
Proceedings of AAAI-00.

Smith, D. and Weld, D. 1999. Temporal Planning with Mutual
Exclusion Reasoning. Proceedings of IJCAI-99.

Smith, S.F., O. Lassila and M. Becker, “Configurable, Mixed-
Initiative Systems for Planning and Scheduling”, in Advanced
Planning Technology, (ed.) A. Tate, AAAI Press, Menlo
Park, CA, May, 1996, ISBN 0-929280-98-9.

Smith, S.F. & Zimmerman, T.L. 2004. “Planning Tactics within
Scheduling Problems”, Workshop on Integrating Planning Into
Scheduling, ICAPS-04, June. 2004.

Srivastava, B., Kambhampati, S. and Do, M. 2001. Planning the
Project Management Way: Efficient Planning by Effective
Integration of Causal and Resource Reasoning in RealPlan.
Artificial Intelligence Journal, 131 (p.73-134), 2001.

Srivastava, B. 2000. Efficient Planning by Effective Resource
Reasoning. PhD dissertation, Arizona State University.

Zimmerman, T., Kambhampati, S. 2002. Generating parallel
plans satisfying multiple criteria in anytime fashion. In 6th
Intl. Conf. on AI Planning and Scheduling, Workshop on
Planning and Scheduling with Multiple Criteria,. April, 2002.

Zimmerman, T. and Kambhampati, S. 2005. "Using Memory to
Transform Search on the Planning Graph", Journal of
Artificial Intelligence Research, Volume 23, pages 533-585.

