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ABSTRACT 
In this paper, we describe research and application of 
relational graph mining in IRS investigations.  One key 
scenario in this domain is the iterative construction of 
models for identifying tax fraud.  For example, an 
investigator may be interested in understanding variations in 
schemes involving individuals sending money off-shore.  
This domain lends itself naturally to a graph representation 
with entities and their relationships represented as node and 
edges, respectively.  There are two critical constraints in this 
application which make it unsuitable for existing work on 
relational graph mining.  First, our data set is large (20 
million nodes, 20 million edges, in 500GB) and includes 
multiple types of entities and relationships.  Second, due to 
both the size, and the active nature of this data, it is 
necessary to do the mining directly against the database.  
Extracting and maintaining a separate data store would be 
impractical and costly to maintain.  We focus on describing 
our approach to one of the core tasks in this process: 
allowing the investigator to mine potentially illegal activity 
by iteratively suggesting and refining loosely defined 
scenarios.  Our current methodology combines three 
components: (1) a graph representation language which 
allows flexibility for inexact matches, (2) custom data 
structures, combined with dynamically generated sequences 
of SQL queries, to perform efficient mining directly against 
the database, and (3) exploiting cost-based optimization 
information to help improve our results search.  A prototype 
solution has been deployed and used by the IRS and has 
resulted in both identification of criminal activity and 
accolades for ease of use and efficacy.  

1. Introduction 
Among its missions, the US Internal Revenue Service 
(IRS) is charged with enforcing the nation’s tax laws.  In 
this capacity, it is necessary to sift through a great deal of 
individual and organization tax filings in an effort to 
identify fraudulent tax claims.  According to one former 
Treasury official (Burman, 2003), “The IRS could net 
almost $28 billion from tax fraud and errors that are 
identified and ripe for collection.”  Of course, the general 
nature of business financial transactions, coupled with the 

complex tax laws, makes identifying fraud difficult.  
Corporation and individuals can be involved in extremely 
complex financial partnerships and revenue exchanges, 
most of which are perfectly legal.  Trusts, partnerships, and 
subchapter S corporations are often of interest, because 
they don’t pay taxes.  Instead, the tax liability simply flows 
through to the beneficiaries, partners, or shareholders.  
Identifying subsets of these entities that are engaged in 
abusive tax shelters is the focus of this work.  Towards that 
end, here are some example questions a fraud investigator 
might ask: 

• Show me all individuals in a partnership with 
<companyX> (some previously identified suspect 
company) 

• Show me all individuals in more than 10 partnerships 
(unusual for an individual to do this) 

• Show me common filing patterns and exceptions to 
those (a bit more exploratory – what happens a lot, 
and what are the variations in this) 

• Show me situations where there are other taxpayers 
that have a closely held partnership used to funnel 
money to a trust that sends the money offshore 

• What role do offshore trusts play in known tax fraud? 
The purpose is to find Taxpayer Identification Numbers 

(TINs) for individuals and entities that are involved in 
suspicious relationships. The results can be used to direct 
the investigation to relevant collections of returns.  After 
review by domain experts, the results can be passed on as 
workload to revenue agents, or the results can be further 
analyzed and filtered using other data mining techniques 
for refining the target patterns.  

The IRS analysts often conceptualize tax return data as 
large networks or graphs.  Various individual and business 
entities form the nodes, while, for example, the K-1 reports 
of gains and loss allocations are edges.  The approach 
adopted to address this situation involves relational link 
analysis.  By representing the domain as a graph structure, 
it is possible to both better capture the complex relations 
formed in order to avoid taxes and also present this 



information back to the IRS investigators in a more natural 
way. Figure 1 illustrates one tax avoidance scheme - 
sending gains off-shore using tiers of flow-through entities, 
which include trusts, partnerships and subchapter S 
corporations.  Note some terms that will used throughout 
our discussion: AGI = Adjusted Gross Income, K1 is a 
schedule on various forms (e.g. 1041) used to record the 
allocation of gains and losses for “flow-through” entities: 
trusts, partnerships, and S corporations..  A tax haven is a 
country that offers favorable tax laws for American 
taxpayers, with secrecy provisions preventing scrutiny by 
American tax administration authorities. 

 
Figure 1: Example Tax Entity Graph 

 
The investigators here are subject matter experts in tax 

law and investigations.  They understand the power of 
advanced analytical tools, but have no particular expertise 
in databases, SQL, or data mining.  They need tools which 
provide them an intuitive way to identify suspect activity 
and pursue investigations in real time. 

1.1 Requirements and Constraints 
The application possesses a few requirements and 
constraints which we found difficult to satisfy using 
existing graph or link analysis approaches.  First, mining 
and analysis should take place directly against the database.  
Due to budget, logistics, expertise, and size of the data, it is 
impractical to expect to generate and work from data 
extracts or maintain a separate, transformed data store.  
Our initial prototype looked at one year of K-1 data 
(approximately 20 million records), capturing over 20 
million nodes and 20 million edges, resulting in 500GB of 
storage across numerous database tables.  The IRS stores 

multiple years of these records and hopes to use them in 
future analysis.  Since the data grows constantly over time, 
static snapshots are insufficient.  An additional requirement 
is the ability to handle multiple types of entities and 
relationships, as well as their attributes in the analysis.  
Table 1 shows some examples of the types of nodes, edges, 
and properties of these which need to not only be 
represented, but easily integrated into the analysis. 
 

Entities 
(nodes) 

Relationships (edges) Attributes 
(properties) 

Individual Gains (in dollars) Initial filing year 

Partnership Loss (in dollars) Type of loss/gain  

Trust Subsidiary Address  

Table 1. Types of Nodes, Edges, and Attributes 

Finally, whatever approach is adopted must have a 
useful interface.  It must be natural to the user (not 
requiring specialized coding skills, for example), respond 
with results in a few minutes, and provide context around 
solutions (rather than a simple list of suspect names, for 
example). 

It is important to note that there are many other real-
world applications that share some or all of these 
requirements.  For example, other law enforcement and 
intelligence services have similar needs and constraints in 
their investigations.  The tools and methodology described 
in this paper are easily transferable.  

1.2 The General Framework 
With the requirements of this application area in mind, we 
are developing the REGAL framework (RElational Graph 
AnaLysis) as a research and application platform.  Figure 2 
illustrates the current high-level plans for this framework.  
It currently calls for five main components sitting between 
the user and the database. 

REGAL is being investigated and prototyped in such a 
way as to allow staged deployment and usage.  In the 
remainder of this paper, we focus on two specific 
components:  

Graph representation language – simple design 
which also allows flexibility for inexact matches 
GraphMatch – Custom data structures, implemented 
in Perl, combined with dynamically generated 
sequences of SQL queries, to perform efficient 
mining directly against the database.  This approach 
also makes use of cost-based optimization 
information, provided from the relational Database 
Management System (DBMS), to help improve the 
results search. 
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User Interface  A graph-based graphical user interface which 
facilitates investigations about tax fraud. 
 

Graph 
Representation 
Language (GRL) 

Intermediate representation of general graph 
structures.  Permits incomplete graph 
specifications (for inexact matching) as well 
as general graph queries. 
 

GraphMatch Supports the search and identification of both 
exact and inexact matching to a given sub-
graph structure. 
 

Frequent sub-
structure 
discovery 

Identifies frequently occurring graph sub-
structures.  Supports the identification of 
loosely defined structures. 
 

Profiling and 
Classification 

Given a group of graph structures sharing 
some known label (e.g., fraud), identifies 
distinguishing features, substructures, and 
attributes. 

Figure 2: REGAL Framework and Components 

2. Related Work 
Graphs representations are extremely general and widely 
studied data structures from mathematics (Tutte, 1984), 
(McKay, 2005) to social network analysis theory 
(Wasserman, 1994) to software engineering (Hall and 
Kennedy, 1992). Despite this work, some seemingly basic 
operations on graphs are non-trivial.  For example, a 
‘simple’ operation like matching a small graph against a 
larger graph (subgraph isomorphism) belongs to the class 
of NP-Complete problems (Garey and Johnson, 1979).   
A number of researchers and vendors provide tools that 
address some aspects of this problem.  The SRI LAW 
project (Berry et al., 2004) demonstrates a platform with 
similarities to REGAL.  Their graph matching 
representation is somewhat different, enabling a hierarchy 
of classes in the nodes, and permitting a more limited 
vocabulary of constraints.    One key constraint of LAW is 
its limited ability to scale, however.  The authors estimate 
query times of approximately 1.6 hours for a graph 
containing seven million edges.  This is an unacceptable 
response time for realistic usage (the authors note this).  
(Blau, Immerman, and Jensen, 2002) also describe a 
similar graph mining system which includes a very rich 
graph description language (including both query and 
update).  One key way in which they gain greater 
scalability is to retrieve elements of the database only as 
they are needed.  To do this, they employ Proximity, a 

system that uses an open source vertical DBMS called 
MonetDB to store and retrieve graph data via the QGraph 
language.  Unfortunately, in the types of domains that 
REGAL is designed for, it is important for deployment to 
use the RDBMS already in place. (Kuramochi and Karypis, 
2004) have looked at the problem of finding frequent 
subgraphs in large graphs, but do so for graphs that do not 
include directed edges, and they search for non-
overlapping subgraphs. IRS investigators want to find all 
matches of possible fraud regardless of edge overlap I2’s 
Analyst Notebook 
(http://www.i2.co.uk/Products/Analysts_Notebook/) and 
Visual Analytic’s Visual Links 
(http://www.visualanalytics.com/Products/Visualinks.cfm) 
are popular tools for storing and visualizing information 
about entities and relationships.  They provide connectivity 
to a database for storage, but do not support the querying 
for subgraphs within a larger graph that we are describing 
here. There are also some commercial tools which support 
graph analysis.  A number of commercial and research 
efforts are underway to support storage and traversal of tree 
structured data (e.g. Oracle supports for querying tree 
structures using the ‘connect-by’ clause) and (Comai et al., 
1999). However, this feature is not useful for full graphs 
with cycles, or bi-directional paths which are common in 
tax data.   

 We believe the ability to exploit available domain 
knowledge in relational representations will enable us to 
achieve greater scalability, improve predictive accuracy 
and find more interesting results. Others have noted that 
available domain knowledge is useful for constraining 
problems and making them more tractable: (Kuramochi and 
Karypis, 2004) note that their FSG (Frequent SubGraph 
discovery) algorithm is more efficient for translating graph 
structures to simpler representations when edge and vertex 
labels are present. ILP methods, such as (Dzeroski, 2003), 
are well suited for exploiting available domain knowledge, 
but this was not pursued because of the database 
connectivity requirement and the size of our domain. 

3. Graph Representation and Graph 
Matching 

Taken together, the graph representation language (GRL) 
and graph matching (GraphMatch) components make a 
natural first phase of implementation within the REGAL 
framework.  They can be implemented and tested in a 
stand-alone way and still provide a generous value-add 
beyond the capabilities of the IRS investigators.  The goal 
of GRL and GraphMatch is a general scenario description 
language and accompanying execution engine, that mirror 
the expert’s thinking.  The IRS experts regularly employ a 
link/node (graph) conceptualization, and then mine the 
database by “querying” a wide variety of general scenarios.  
The goal is to identify both specific Taxpayer Identification 



Numbers (TINs) involved in likely fraud, as well as related, 
but characteristically different, scenarios used to commit 
fraud.  With GRL and GraphMatch, this is a relatively 
simple and fast process.  The remainder of the section 
describes GRL, the GraphMatch algorithm, and the 
associated performance considerations.  

3.1 Graph Representation Language 
The representation language used in REGAL is called 
Graph Representation Language (GRL).  It is used as the 
canonical storage of all graph and graph queries used by 
the REGAL components.  It serves as an abstraction layer 
for the database storage, and as a common communication 
protocol between REGAL components.  All user input is 
translated into GRL, and graph output from the mining 
components are returned in GRL format.  It is quite 
straightforward, easy to read, and easy to dynamically 
construct.  In addition to these obvious needs, GRL was 
designed for this application with two additional 
requirements in mind: (1) It must allow representation of 
underspecified graphs, (think of these as descriptions of 
graph classes).  In this way, graph queries can be 
constructed to represent, for example, “A partnership node 
linked within 3 edges to a trust node with at least $3000 in 
earnings”.  (2) It must require minimum translation into 
SQL in order to facilitate interaction of queries with the 
database.  All the components in REGAL use dynamically 
constructed SQL to retrieve data directly from the 
database.  It is critical, therefore, that the representation 
language we use translate relatively seamlessly.  As 

discussed in Section 2, none of the existing graph 
representations are designed with this functionality in mind. 

The GRL language is fairly straightforward: one line is 
used for each node and one line for each edge.  The syntax 
of the various GRL statements is shown below in Table 2. 
For example, this statement 
 
n 0 individual where AGI > $500,000 

 
refers to a NodeType of individual with a constraint on the 
node attribute AGI.  The various NodeTypes are defined in 
an external configuration file and they are associated with 
the actual database tables containing individual tax return 
data.  The NodeCondition specified in Table 2 follows the 
syntax of the where clause of an SQL select statement. 

To illustrate GRL further, consider the scenario shown 
previously in Figure 1.  It can be represented with the 
following GRL code: 

 
n 0 individual where AGI > 500000 
n 1 partnership where INIT_YEAR 
n 2 trust  
n 3 trust 
n 4 haven 
d 1 0 k1 where LOSS > 70000 
d 1 2  k1  where GAIN > 100000 
d 2 3 k1 where GAIN > 100000 
d 3 4 k1  where GAIN > 100000 

 
The lines beginning with “n” define the nodes in the graph 
structure, and each node is assigned a unique reference 
number.   

 

GRL statement type Statement Syntax 
Node n  nodeID  nodetype  where  nodeCondition 

Directed Edge d  fromNodeID  toNodeID  edgetype[:n:m]  where edgeCondition 

Undirected Edge u  nodeID1  NodeID2  edgetype[n:m]  where edgeCondition 

“No” edge !d  fromNodeID  toNodeID  edgetype where edgeCondition 

Node-to-Node join j nodeID1 nodeID2  where joinCondition; 

Node-to-Edge join j nodeID edgeID where joinCondition 

Edge-to-Edge join j edgeID1 edgeID2 where joinCondition 

node ID is a unique integer. 

nodeType and edgeType are domain specific.  They are defined by metadata in a configuration file, mapping GRL type names 
to database table names. 

fromNodeID and toNodeID are integers, corresponding to source and target nodes connected by an edge. 

nodeCondition and edgeCondition  follow the syntax of a SQL “where” clause.  These conditions will be copied into the 
dynamically generated SQL statements at runtime. 

joinConditons follows SQL syntax for a table join, except that #nodeID or #edgeID is given in place of database table name. 

Indirect paths are indicated by [min:max] following the edgeType declaration. The interval specifies the minimum and 
maximum number of edges (of edgeType) which may be traversed. 

Table 2: GRL Syntax 

 



The lines beginning with “d” define directed links with the 
from/to node numbers indicated. Attribute constraints for 
both links and nodes can be indicated by a clause identical 
in syntax with the SQL where clause. The “d 1 0” edge 
specifies there is a payment between a partnership and an 
individual, and that the total loss reported is greater than 
$70,000. The “d 1 2” link describes a link between the 
partnership and a trust, and likewise the "d 3 4" link 
describes the link between a trust and an offshore tax haven 

In addition to directed links designated by a “d”, 
undirected links can be specified in the pattern be using a 
“u”.  The remaining specification is identical.  Undirected 
links allow a match regardless of the direction implied in 
the underlying data. 

3.1.1 Wildcards 
The previous example involved a relatively simple scenario 
in which most of the necessary graph structure was 
specified.  Due to the nature of the IRS investigations, it is 
necessary to support looser graph structure definitions. 

A wildcard, “*”, can be used in place of the NodeID to 
refer to neighboring nodes in the specified or returned 
graph structures.  It permits REGAL to represent 
statements about edge characteristics around a node.  For 
example, the GRL statement 

 
d * 2 k1 where GAIN>1000 and count(*)>3 

 
describes a scenario in which node 2 has at least 4 
incoming edges, of type k1, each with a gain greater than 
$1000.  This is illustrated in a graph representation in 
Figure 3. 
 

1 
 

Trust • 

• 

• 

K1 Gain > $1000 

K1 Gain > $1000 K1 Gain > $1000 

K1 Gain > $1000 

Partnership 

2 
 

 
Figure 3: Example match using a wildcard 

These wildcards can also provide a means of referring to 
the aggregate data describing the neighborhood about a 
node.  For example, the GRL statement 

 
d * 2 k1 having sum(GAIN) > 30000 
 

captures sub-structures in which a node (2) has incoming 
k1 type links whose aggregate gain is greater than $30000.  

Notice the use of SQL’s “group by.. having”  syntax in 
GRL (illustrated in Figure 4). 

 

0 

1 

2 

Partnership 

Individual 

Trust 

• 

Sum (K1 Gain) > $30000 

 
Figure 4: Example match using wildcards and  

3.1.2 Indirect Paths 
In the examples thus far, all links between nodes involve a 
single edge.  A more interesting example might include 
indirect paths: those involving links between nodes 
consisting of an arbitrary path length.  For example, the 
payment from a partnership might pass through any number 
of flow-through entitles before reaching an off-shore tax 
haven.  Thus there is an “indirect” linkage from the 
partnership to the tax haven.  

 
Figure 5: Example of indirect matching on edges 

This variation is difficult to express with pure SQL. 
However, consider the following GRL example:  

 



n 0 individual where TPI > 500000 
n1 partnership where INIT_YEAR 

and FINAL_YEAR 
n2 trust 
n 3 haven 
d 1 0 k1 where LOSS > 70000 
d 1 2 k1 where Gain > 100000 
d 2 3 k1:1:5  where GAIN > 100000 

and CLOSE=1 
 

Of particular note is the last line specifying a directed edge 
from node 2 to node 3.  Notice the colon notation after the 
NodeType specification “k1:1:5”. This describes any 
sequence of length 1-5 of type k1 edges. 

3.1.3 Attribute Constraints 
A GRL description can also constrain some relationship in 
the attributes between a pair of nodes.  For example, it is 
fairly common to describe a situation in which the address 
and zip code of two entities are identical.  With GRL this is 
accomplished with a join statement, denoted by “j”.  Here 
is an example: 
 
n 0 partnership 
n 1 scorp 
n 2 individual 
n 3 individual 
d 0 2 k1 where loss < -10000 
d 1 3 k1 where loss < -100000 
j 0 1 where #0.ZIP = #1.ZIP 

and  #0.ADDRS = #1.ADDRS 
 

This is a situation where an individual is linked to a 
partnership with K-1 losses, another individual is linked to 
an S-corporation with K-1 losses.  The final GRL 
statement, the join, specifies that the partnership and S-
corporation have the same address and zip-code. Notice 
that the format of the join condition closely resembles a 
join in SQL.  This capability in GRL is useful, for example, 
because it helps describe an initial “scenario of interest” for 
an inflated basis transaction. These are known as the Son of 
Bond and Option Sales Strategies (BOSS), where a break-
even straddle is used to generate large losses offsetting 
gains from another source.  While this scenario can be 
generalized, it represents a starting point provided earlier 
by the domain experts (assuming use of absolute value for 
partnership allocations). 

3.2 GraphMatch 
GraphMatch is the component within REGAL that is 
responsible for matching graph structures.  Note that these 
are any graph structures that can be represented in GRL.  
Thus, they need not be fully-specified nodes and edges.  
They can be classes of graphs, or queries for types of 
graphs.  In graph terminology, GraphMatch finds 
subgraphs of the database that are isomorphic to the target 

graph scenario.  Of course, we’re dealing with a looser 
definition of isomorphism than is generally used.   

Since this application, like many others, has graph 
structures too large to fit in main memory, and it is not 
practical to transform and maintain the entire database in 
some alternative, optimized form, GraphMatch makes a 
series of direct calls to the database through dynamically 
generated SQL queries.  GraphMatch is currently written in 
Perl, and works with the Oracle RDMS through the DBI 
interface.  These specific choices of Perl and Oracle are 
somewhat arbitrary, however, and the techniques and 
algorithms described here can be implemented in a variety 
of programming languages coupled with other SQL-based 
databases. 

The basic algorithm is a search of the “main” graph (all 
the tax information in the database) via repeated expansion 
of currently matched nodes.  Of course, implementing a 
brute-force exhaustive search of the full graph is extremely 
inefficient in practice, especially for large databases 
(Washio and Motoda, 2003).  In order to improve 
performance, GraphMatch uses a number of heuristics to 
prune the search space and generally speed performance. 

1. Best-first search, with back-tracking, is used for a 
more organized, efficient search. 

2. SQL calls to the database include added constraints 
to prune the number of nodes added to the search 
queue. 

3. Cost-based optimization information is exploited to 
help rank the nodes in the search queue. 

4. Domain-specific rules are added to the search to 
help prune the search-space. 

Summarizing intuitively, GraphMatch implements the 
overall search strategy (ordering nodes, managing partial 
solutions, generating output, etc.) while exploiting the 
database engine (Oracle) to evaluate the goodness of 
potential next nodes and retrieve candidate matches to 
those nodes which satisfy the criteria imposed by the user 
scenario.  

3.2.1 Best-First Search with Back-Tracking 
Best-first search with back-tracking is a general technique 
for organizing the exhaustive search for a solution to a 
combinatorial problem (Valiente, 1988). The technique 
consists of keeping a queue of nodes, ordered according to 
some “goodness” criteria.  In each step of the search, the 
best node is selected to expand in the search-tree.    This 
repeatedly extends a partial solution to the problem, 
satisfying certain constraints, and shrinking the 
representation of the partial solution whenever a partial 
solution cannot be further extended. The extension of the 
partial solution is done by calling a recursive procedure to 
fill each new candidate node. 

In this manner GraphMatch grows matches to the target 
graph, one node at a time. At the same time it grows the 
connecting links to all previously solved nodes. Failure to 



grow a new node (i.e., failure to find any matching 
structures in the existing graph matches thus far) results in 
going back to the previous level in the solution tree and 
going down the next branch.  When all the nodes are filled 
a complete solution is found.  This is recorded and the 
algorithm backtracks to the previous level and resumes.  

3.2.2 Adding Constraints to Individual SQL Queries 
At each step of the match process, GraphMatch attempts to 
grow the existing partial solutions by one node.  This 
involves finding candidates in the database that meet all the 
constraints imposed by both the next, best node selected 
(see below for how this is done), and those imposed by the 
partial solution grown to that point.  

GraphMatch finds all the candidates for the individual 
nodes by executing a program-generated SQL select 
statement on the table hosting the instance data for the type 
of node being filled. It uses the conditions in the where 
clause for the GRL definition of the node.  In addition to 
the node constraint, the existence of edges or paths (e.g. K-
1 payments) to previously matched nodes must also be 
satisfied.  Candidates for subsequent nodes are found with 
a SQL select statement with instance values of previous 
node/link attributes substituted in for SQL bind variables.  
Scenario patterns specified with indirect paths (see Section 
3.1.2) require additional branching between the two levels 
solution tree representing the beginning and endpoint of the 
path.  

3.2.3 Exploiting Cost-Based Information 
Of course, in order to implement best-first search, it is 
necessary to have a goodness function for ordering nodes 
in the search queue.  In ad-hoc experimentation of arbitrary 
goodness functions, runtimes of GraphMatch (called with 
identical arguments in the IRS dataset) varied between a 
few minutes to a day or more.  In informal observation, the 
most efficient node ordering begins with the node with the 
least number of candidates (adjacent nodes with matching 
constraints) in the database.  In GraphMatch, this critical 
information was derived using Oracle’s native cost-based 
optimization function, Explain Plan.  

GraphMatch implements a heuristic node goodness 
function via this Explain Plan information.  Calls are made 
to the Oracle optimizer to determine the lowest cardinality 
node (fewest rows returned). This is selected as the first 
node. All possible order permutations with this as the first 
node are generated and each possible ordering is evaluated 
as a weighted sum of the total CPU costs for all of the node 
queries that would be required to complete the solutions, if 
that ordering was used.  The ordering (permutation) that 
has the lowest total cost is then selected and used to 
execute the match.  The weighted sum assumes that fewer 
candidates remain near the bottom of the tree. This 
heuristic approach seems to work well in the IRS data set.  

3.2.4 Domain-Specific Constraints 
The final heuristic exploited by GraphMatch is the 
utilization of domain specific knowledge.  For example, in 
the world of tax fraud, a node (entity) which is connected 
to a very large number of other nodes (entities) is typically 
not of interest.  Consider, for example, large home 
mortgage lending institutions.  These will obviously have 
connections to an enormous number of individuals.  With a 
standard SQL join approach, expanding these institutional 
nodes in the graph, and exploring potential isomorphic 
matches among all its neighbors would be prohibitively 
expensive.  Logic bypassing these sections of the graph is 
coded into GraphMatch to speed up execution. 

3.3 Achieving Good Performance through Cost-
Based Execution Ordering 
The order in which the nodes are filled has a big effect on 
the overall execution time. For example, within the IRS 
dataset, the same query can vary between a few minutes to 
a day or more, just by the order in which the nodes are 
processed by the backtracking code.  Usually the most 
efficient sequence is to start with the node that has the least 
number of candidates.  The next node filled (solution tree 
level 2) must be adjacent. The expected runtime (CPU 
cost) or expected rows returned (cardinality) computed by 
Oracle's Explain Plan is important information for choosing 
the order.  

GraphMatch implements a heuristic node order 
algorithm using this information. Calls are made to the 
Oracle optimizer (Explain Plan) to determine the lowest 
cardinality node (fewest rows returned). This is selected as 
the first node. All possible order permutations with this as 
the first node are generated and each possible ordering is 
evaluated as a weighted sum of the total CPU costs for all 
of the node queries that would be required to complete the 
solutions, if that ordering was used.  The ordering 
(permutation) that has the lowest total cost is then selected 
and used to execute the query.  The weighted sum assumes 
that fewer candidates remain near the bottom of the tree. 
This heuristic approach seems to work well in the IRS data 
set.  However, the optimality of this approach is not proven 
mathematically and so other approaches for ordering might 
also work as well or better. 

4. Prototype and Field Testing 
The two components described in Section Error! 
Reference source not found. (GRL and GraphMatch) 
were deployed to the IRS recently. They are being used by 
a small number of analysts, but already they credit this tool 
with helping to identify entities suspected of abusively 
sheltering millions of dollars from taxes. For obvious 
reasons of security, details of the preliminary trial of 
REGAL cannot be discussed.  



5. Summary and Future Work 
The REGAL framework brings new capabilities to 
practical IRS fraud detection and other domains which 
share a relational graph representation.  Beyond the critical 
capabilities of intuitive interface, and real-time results 
processing, REGAL is designed to overcome some 
common limitations of existing technology when faced 
with real-world constraints.  In particular, REGAL handles 
extremely large data sets, integrates directly with a 
relational database, represents multiple types of nodes and 
edge, and allows very flexible, loosely defined graph 
structures to be defined, queried, and mined.  

The Graphical Representation Language (GRL) forms 
the basis for storing and communicating graph information 
among all the REGAL components and the user interface.  
It is based in a very simple syntax to define typical node 
and edge properties.  It permits SQL syntax in many places, 
however, in order to permit more complex descriptions – 
including constraints on node attributes, edge attributes, 
and aggregations among neighborhoods of nodes.  The 
GRL canonical form is compact, and is easily transformed 
at run-time into SQL queries that can be passed directed to 
the database. 

REGAL’s GraphMatch component is responsible for 
finding structures in the database which match given target 
graph scenarios.  It uses a depth-first search, with 
backtracking, in which dynamically generated SQL queries 
are made to the database to retrieve node information.  In 
order to improve performance, various domain-specific 
constraints are built in, and the cost-based information 
from the database is used to selected the nodes likely to 
prune the search space by the greatest amount. 

Future work on REGAL will include research and 
development on the remaining core components.  A 
prototype graphical user interface (GUI) is already in 
progress.  This will permit much more user independence.  
Work has also begun on algorithm design for the Frequent 
Sub-structure Discovery.  Of course, this component will 
work directly with the database and make use of the 
GraphMatch component.  While our practical results and 
feedback have been remarkable, and the informal 
performance evaluation and testing that has been 
completed thus far has been thorough enough to build 
confidence for our current approach, it is worthwhile to 
explore a more rigorous performance evaluation and 
testing, particularly as compared with alternate algorithms 
and existing tools.  Limiting this testing thus far has been 
acceptable as the focus of this work is on advancing the 
capabilities of the field in real-world, practical 
applications. 

A prototype system of GRL and GraphMatch has been 
deployed and used by IRS in their fraud investigations.  It 
has resulted in both identification of criminal activity and 
accolades for ease of use, value-add, and efficacy.  It is 

easy to envision how this work could be applied in other 
domains such as law enforcement and intelligence analysis. 
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