
Relational Graph Analysis with Real-World Constraints: An Application
in IRS Tax Fraud Detection

Eric Bloedorn, Neal J. Rothleder, David DeBarr, Lowell Rosen

The MITRE Corporation
7515 Colshire Dr.

McLean, VA 22102-7508
703.983.5274 (Bloedorn)

{bloedorn, neal, debarr, lrosen}@mitre.org

ABSTRACT
In this paper, we describe research and application of
relational graph mining in IRS investigations. One key
scenario in this domain is the iterative construction of
models for identifying tax fraud. For example, an
investigator may be interested in understanding variations in
schemes involving individuals sending money off-shore.
This domain lends itself naturally to a graph representation
with entities and their relationships represented as node and
edges, respectively. There are two critical constraints in this
application which make it unsuitable for existing work on
relational graph mining. First, our data set is large (20
million nodes, 20 million edges, in 500GB) and includes
multiple types of entities and relationships. Second, due to
both the size, and the active nature of this data, it is
necessary to do the mining directly against the database.
Extracting and maintaining a separate data store would be
impractical and costly to maintain. We focus on describing
our approach to one of the core tasks in this process:
allowing the investigator to mine potentially illegal activity
by iteratively suggesting and refining loosely defined
scenarios. Our current methodology combines three
components: (1) a graph representation language which
allows flexibility for inexact matches, (2) custom data
structures, combined with dynamically generated sequences
of SQL queries, to perform efficient mining directly against
the database, and (3) exploiting cost-based optimization
information to help improve our results search. A prototype
solution has been deployed and used by the IRS and has
resulted in both identification of criminal activity and
accolades for ease of use and efficacy.

1. Introduction
Among its missions, the US Internal Revenue Service
(IRS) is charged with enforcing the nation’s tax laws. In
this capacity, it is necessary to sift through a great deal of
individual and organization tax filings in an effort to
identify fraudulent tax claims. According to one former
Treasury official (Burman, 2003), “The IRS could net
almost $28 billion from tax fraud and errors that are
identified and ripe for collection.” Of course, the general
nature of business financial transactions, coupled with the

complex tax laws, makes identifying fraud difficult.
Corporation and individuals can be involved in extremely
complex financial partnerships and revenue exchanges,
most of which are perfectly legal. Trusts, partnerships, and
subchapter S corporations are often of interest, because
they don’t pay taxes. Instead, the tax liability simply flows
through to the beneficiaries, partners, or shareholders.
Identifying subsets of these entities that are engaged in
abusive tax shelters is the focus of this work. Towards that
end, here are some example questions a fraud investigator
might ask:

• Show me all individuals in a partnership with
<companyX> (some previously identified suspect
company)

• Show me all individuals in more than 10 partnerships
(unusual for an individual to do this)

• Show me common filing patterns and exceptions to
those (a bit more exploratory – what happens a lot,
and what are the variations in this)

• Show me situations where there are other taxpayers
that have a closely held partnership used to funnel
money to a trust that sends the money offshore

• What role do offshore trusts play in known tax fraud?
The purpose is to find Taxpayer Identification Numbers

(TINs) for individuals and entities that are involved in
suspicious relationships. The results can be used to direct
the investigation to relevant collections of returns. After
review by domain experts, the results can be passed on as
workload to revenue agents, or the results can be further
analyzed and filtered using other data mining techniques
for refining the target patterns.

The IRS analysts often conceptualize tax return data as
large networks or graphs. Various individual and business
entities form the nodes, while, for example, the K-1 reports
of gains and loss allocations are edges. The approach
adopted to address this situation involves relational link
analysis. By representing the domain as a graph structure,
it is possible to both better capture the complex relations
formed in order to avoid taxes and also present this

information back to the IRS investigators in a more natural
way. Figure 1 illustrates one tax avoidance scheme -
sending gains off-shore using tiers of flow-through entities,
which include trusts, partnerships and subchapter S
corporations. Note some terms that will used throughout
our discussion: AGI = Adjusted Gross Income, K1 is a
schedule on various forms (e.g. 1041) used to record the
allocation of gains and losses for “flow-through” entities:
trusts, partnerships, and S corporations.. A tax haven is a
country that offers favorable tax laws for American
taxpayers, with secrecy provisions preventing scrutiny by
American tax administration authorities.

Figure 1: Example Tax Entity Graph

The investigators here are subject matter experts in tax

law and investigations. They understand the power of
advanced analytical tools, but have no particular expertise
in databases, SQL, or data mining. They need tools which
provide them an intuitive way to identify suspect activity
and pursue investigations in real time.

1.1 Requirements and Constraints
The application possesses a few requirements and
constraints which we found difficult to satisfy using
existing graph or link analysis approaches. First, mining
and analysis should take place directly against the database.
Due to budget, logistics, expertise, and size of the data, it is
impractical to expect to generate and work from data
extracts or maintain a separate, transformed data store.
Our initial prototype looked at one year of K-1 data
(approximately 20 million records), capturing over 20
million nodes and 20 million edges, resulting in 500GB of
storage across numerous database tables. The IRS stores

multiple years of these records and hopes to use them in
future analysis. Since the data grows constantly over time,
static snapshots are insufficient. An additional requirement
is the ability to handle multiple types of entities and
relationships, as well as their attributes in the analysis.
Table 1 shows some examples of the types of nodes, edges,
and properties of these which need to not only be
represented, but easily integrated into the analysis.

Entities
(nodes)

Relationships (edges) Attributes
(properties)

Individual Gains (in dollars) Initial filing year

Partnership Loss (in dollars) Type of loss/gain

Trust Subsidiary Address

Table 1. Types of Nodes, Edges, and Attributes

Finally, whatever approach is adopted must have a
useful interface. It must be natural to the user (not
requiring specialized coding skills, for example), respond
with results in a few minutes, and provide context around
solutions (rather than a simple list of suspect names, for
example).

It is important to note that there are many other real-
world applications that share some or all of these
requirements. For example, other law enforcement and
intelligence services have similar needs and constraints in
their investigations. The tools and methodology described
in this paper are easily transferable.

1.2 The General Framework
With the requirements of this application area in mind, we
are developing the REGAL framework (RElational Graph
AnaLysis) as a research and application platform. Figure 2
illustrates the current high-level plans for this framework.
It currently calls for five main components sitting between
the user and the database.

REGAL is being investigated and prototyped in such a
way as to allow staged deployment and usage. In the
remainder of this paper, we focus on two specific
components:

Graph representation language – simple design
which also allows flexibility for inexact matches
GraphMatch – Custom data structures, implemented
in Perl, combined with dynamically generated
sequences of SQL queries, to perform efficient
mining directly against the database. This approach
also makes use of cost-based optimization
information, provided from the relational Database
Management System (DBMS), to help improve the
results search.

User
Interface

User
Interface

User

Graph
Representation

Language (GRL)

GraphMatch
(exact and inexact)

Frequent Sub-structure
Discovery

Profiling and
Classification

DB

User Interface A graph-based graphical user interface which
facilitates investigations about tax fraud.

Graph
Representation
Language (GRL)

Intermediate representation of general graph
structures. Permits incomplete graph
specifications (for inexact matching) as well
as general graph queries.

GraphMatch Supports the search and identification of both
exact and inexact matching to a given sub-
graph structure.

Frequent sub-
structure
discovery

Identifies frequently occurring graph sub-
structures. Supports the identification of
loosely defined structures.

Profiling and
Classification

Given a group of graph structures sharing
some known label (e.g., fraud), identifies
distinguishing features, substructures, and
attributes.

Figure 2: REGAL Framework and Components

2. Related Work
Graphs representations are extremely general and widely
studied data structures from mathematics (Tutte, 1984),
(McKay, 2005) to social network analysis theory
(Wasserman, 1994) to software engineering (Hall and
Kennedy, 1992). Despite this work, some seemingly basic
operations on graphs are non-trivial. For example, a
‘simple’ operation like matching a small graph against a
larger graph (subgraph isomorphism) belongs to the class
of NP-Complete problems (Garey and Johnson, 1979).
A number of researchers and vendors provide tools that
address some aspects of this problem. The SRI LAW
project (Berry et al., 2004) demonstrates a platform with
similarities to REGAL. Their graph matching
representation is somewhat different, enabling a hierarchy
of classes in the nodes, and permitting a more limited
vocabulary of constraints. One key constraint of LAW is
its limited ability to scale, however. The authors estimate
query times of approximately 1.6 hours for a graph
containing seven million edges. This is an unacceptable
response time for realistic usage (the authors note this).
(Blau, Immerman, and Jensen, 2002) also describe a
similar graph mining system which includes a very rich
graph description language (including both query and
update). One key way in which they gain greater
scalability is to retrieve elements of the database only as
they are needed. To do this, they employ Proximity, a

system that uses an open source vertical DBMS called
MonetDB to store and retrieve graph data via the QGraph
language. Unfortunately, in the types of domains that
REGAL is designed for, it is important for deployment to
use the RDBMS already in place. (Kuramochi and Karypis,
2004) have looked at the problem of finding frequent
subgraphs in large graphs, but do so for graphs that do not
include directed edges, and they search for non-
overlapping subgraphs. IRS investigators want to find all
matches of possible fraud regardless of edge overlap I2’s
Analyst Notebook
(http://www.i2.co.uk/Products/Analysts_Notebook/) and
Visual Analytic’s Visual Links
(http://www.visualanalytics.com/Products/Visualinks.cfm)
are popular tools for storing and visualizing information
about entities and relationships. They provide connectivity
to a database for storage, but do not support the querying
for subgraphs within a larger graph that we are describing
here. There are also some commercial tools which support
graph analysis. A number of commercial and research
efforts are underway to support storage and traversal of tree
structured data (e.g. Oracle supports for querying tree
structures using the ‘connect-by’ clause) and (Comai et al.,
1999). However, this feature is not useful for full graphs
with cycles, or bi-directional paths which are common in
tax data.

 We believe the ability to exploit available domain
knowledge in relational representations will enable us to
achieve greater scalability, improve predictive accuracy
and find more interesting results. Others have noted that
available domain knowledge is useful for constraining
problems and making them more tractable: (Kuramochi and
Karypis, 2004) note that their FSG (Frequent SubGraph
discovery) algorithm is more efficient for translating graph
structures to simpler representations when edge and vertex
labels are present. ILP methods, such as (Dzeroski, 2003),
are well suited for exploiting available domain knowledge,
but this was not pursued because of the database
connectivity requirement and the size of our domain.

3. Graph Representation and Graph
Matching

Taken together, the graph representation language (GRL)
and graph matching (GraphMatch) components make a
natural first phase of implementation within the REGAL
framework. They can be implemented and tested in a
stand-alone way and still provide a generous value-add
beyond the capabilities of the IRS investigators. The goal
of GRL and GraphMatch is a general scenario description
language and accompanying execution engine, that mirror
the expert’s thinking. The IRS experts regularly employ a
link/node (graph) conceptualization, and then mine the
database by “querying” a wide variety of general scenarios.
The goal is to identify both specific Taxpayer Identification

Numbers (TINs) involved in likely fraud, as well as related,
but characteristically different, scenarios used to commit
fraud. With GRL and GraphMatch, this is a relatively
simple and fast process. The remainder of the section
describes GRL, the GraphMatch algorithm, and the
associated performance considerations.

3.1 Graph Representation Language
The representation language used in REGAL is called
Graph Representation Language (GRL). It is used as the
canonical storage of all graph and graph queries used by
the REGAL components. It serves as an abstraction layer
for the database storage, and as a common communication
protocol between REGAL components. All user input is
translated into GRL, and graph output from the mining
components are returned in GRL format. It is quite
straightforward, easy to read, and easy to dynamically
construct. In addition to these obvious needs, GRL was
designed for this application with two additional
requirements in mind: (1) It must allow representation of
underspecified graphs, (think of these as descriptions of
graph classes). In this way, graph queries can be
constructed to represent, for example, “A partnership node
linked within 3 edges to a trust node with at least $3000 in
earnings”. (2) It must require minimum translation into
SQL in order to facilitate interaction of queries with the
database. All the components in REGAL use dynamically
constructed SQL to retrieve data directly from the
database. It is critical, therefore, that the representation
language we use translate relatively seamlessly. As

discussed in Section 2, none of the existing graph
representations are designed with this functionality in mind.

The GRL language is fairly straightforward: one line is
used for each node and one line for each edge. The syntax
of the various GRL statements is shown below in Table 2.
For example, this statement

n 0 individual where AGI > $500,000

refers to a NodeType of individual with a constraint on the
node attribute AGI. The various NodeTypes are defined in
an external configuration file and they are associated with
the actual database tables containing individual tax return
data. The NodeCondition specified in Table 2 follows the
syntax of the where clause of an SQL select statement.

To illustrate GRL further, consider the scenario shown
previously in Figure 1. It can be represented with the
following GRL code:

n 0 individual where AGI > 500000
n 1 partnership where INIT_YEAR
n 2 trust
n 3 trust
n 4 haven
d 1 0 k1 where LOSS > 70000
d 1 2 k1 where GAIN > 100000
d 2 3 k1 where GAIN > 100000
d 3 4 k1 where GAIN > 100000

The lines beginning with “n” define the nodes in the graph
structure, and each node is assigned a unique reference
number.

GRL statement type Statement Syntax
Node n nodeID nodetype where nodeCondition

Directed Edge d fromNodeID toNodeID edgetype[:n:m] where edgeCondition

Undirected Edge u nodeID1 NodeID2 edgetype[n:m] where edgeCondition

“No” edge !d fromNodeID toNodeID edgetype where edgeCondition

Node-to-Node join j nodeID1 nodeID2 where joinCondition;

Node-to-Edge join j nodeID edgeID where joinCondition

Edge-to-Edge join j edgeID1 edgeID2 where joinCondition

node ID is a unique integer.

nodeType and edgeType are domain specific. They are defined by metadata in a configuration file, mapping GRL type names
to database table names.

fromNodeID and toNodeID are integers, corresponding to source and target nodes connected by an edge.

nodeCondition and edgeCondition follow the syntax of a SQL “where” clause. These conditions will be copied into the
dynamically generated SQL statements at runtime.

joinConditons follows SQL syntax for a table join, except that #nodeID or #edgeID is given in place of database table name.

Indirect paths are indicated by [min:max] following the edgeType declaration. The interval specifies the minimum and
maximum number of edges (of edgeType) which may be traversed.

Table 2: GRL Syntax

The lines beginning with “d” define directed links with the
from/to node numbers indicated. Attribute constraints for
both links and nodes can be indicated by a clause identical
in syntax with the SQL where clause. The “d 1 0” edge
specifies there is a payment between a partnership and an
individual, and that the total loss reported is greater than
$70,000. The “d 1 2” link describes a link between the
partnership and a trust, and likewise the "d 3 4" link
describes the link between a trust and an offshore tax haven

In addition to directed links designated by a “d”,
undirected links can be specified in the pattern be using a
“u”. The remaining specification is identical. Undirected
links allow a match regardless of the direction implied in
the underlying data.

3.1.1 Wildcards
The previous example involved a relatively simple scenario
in which most of the necessary graph structure was
specified. Due to the nature of the IRS investigations, it is
necessary to support looser graph structure definitions.

A wildcard, “*”, can be used in place of the NodeID to
refer to neighboring nodes in the specified or returned
graph structures. It permits REGAL to represent
statements about edge characteristics around a node. For
example, the GRL statement

d * 2 k1 where GAIN>1000 and count(*)>3

describes a scenario in which node 2 has at least 4
incoming edges, of type k1, each with a gain greater than
$1000. This is illustrated in a graph representation in
Figure 3.

1

Trust •

•

•

K1 Gain > $1000

K1 Gain > $1000 K1 Gain > $1000

K1 Gain > $1000

Partnership

2

Figure 3: Example match using a wildcard

These wildcards can also provide a means of referring to
the aggregate data describing the neighborhood about a
node. For example, the GRL statement

d * 2 k1 having sum(GAIN) > 30000

captures sub-structures in which a node (2) has incoming
k1 type links whose aggregate gain is greater than $30000.

Notice the use of SQL’s “group by.. having” syntax in
GRL (illustrated in Figure 4).

0

1

2

Partnership

Individual

Trust

•

Sum (K1 Gain) > $30000

Figure 4: Example match using wildcards and

3.1.2 Indirect Paths
In the examples thus far, all links between nodes involve a
single edge. A more interesting example might include
indirect paths: those involving links between nodes
consisting of an arbitrary path length. For example, the
payment from a partnership might pass through any number
of flow-through entitles before reaching an off-shore tax
haven. Thus there is an “indirect” linkage from the
partnership to the tax haven.

Figure 5: Example of indirect matching on edges

This variation is difficult to express with pure SQL.
However, consider the following GRL example:

n 0 individual where TPI > 500000
n1 partnership where INIT_YEAR

and FINAL_YEAR
n2 trust
n 3 haven
d 1 0 k1 where LOSS > 70000
d 1 2 k1 where Gain > 100000
d 2 3 k1:1:5 where GAIN > 100000

and CLOSE=1

Of particular note is the last line specifying a directed edge
from node 2 to node 3. Notice the colon notation after the
NodeType specification “k1:1:5”. This describes any
sequence of length 1-5 of type k1 edges.

3.1.3 Attribute Constraints
A GRL description can also constrain some relationship in
the attributes between a pair of nodes. For example, it is
fairly common to describe a situation in which the address
and zip code of two entities are identical. With GRL this is
accomplished with a join statement, denoted by “j”. Here
is an example:

n 0 partnership
n 1 scorp
n 2 individual
n 3 individual
d 0 2 k1 where loss < -10000
d 1 3 k1 where loss < -100000
j 0 1 where #0.ZIP = #1.ZIP

and #0.ADDRS = #1.ADDRS

This is a situation where an individual is linked to a
partnership with K-1 losses, another individual is linked to
an S-corporation with K-1 losses. The final GRL
statement, the join, specifies that the partnership and S-
corporation have the same address and zip-code. Notice
that the format of the join condition closely resembles a
join in SQL. This capability in GRL is useful, for example,
because it helps describe an initial “scenario of interest” for
an inflated basis transaction. These are known as the Son of
Bond and Option Sales Strategies (BOSS), where a break-
even straddle is used to generate large losses offsetting
gains from another source. While this scenario can be
generalized, it represents a starting point provided earlier
by the domain experts (assuming use of absolute value for
partnership allocations).

3.2 GraphMatch
GraphMatch is the component within REGAL that is
responsible for matching graph structures. Note that these
are any graph structures that can be represented in GRL.
Thus, they need not be fully-specified nodes and edges.
They can be classes of graphs, or queries for types of
graphs. In graph terminology, GraphMatch finds
subgraphs of the database that are isomorphic to the target

graph scenario. Of course, we’re dealing with a looser
definition of isomorphism than is generally used.

Since this application, like many others, has graph
structures too large to fit in main memory, and it is not
practical to transform and maintain the entire database in
some alternative, optimized form, GraphMatch makes a
series of direct calls to the database through dynamically
generated SQL queries. GraphMatch is currently written in
Perl, and works with the Oracle RDMS through the DBI
interface. These specific choices of Perl and Oracle are
somewhat arbitrary, however, and the techniques and
algorithms described here can be implemented in a variety
of programming languages coupled with other SQL-based
databases.

The basic algorithm is a search of the “main” graph (all
the tax information in the database) via repeated expansion
of currently matched nodes. Of course, implementing a
brute-force exhaustive search of the full graph is extremely
inefficient in practice, especially for large databases
(Washio and Motoda, 2003). In order to improve
performance, GraphMatch uses a number of heuristics to
prune the search space and generally speed performance.

1. Best-first search, with back-tracking, is used for a
more organized, efficient search.

2. SQL calls to the database include added constraints
to prune the number of nodes added to the search
queue.

3. Cost-based optimization information is exploited to
help rank the nodes in the search queue.

4. Domain-specific rules are added to the search to
help prune the search-space.

Summarizing intuitively, GraphMatch implements the
overall search strategy (ordering nodes, managing partial
solutions, generating output, etc.) while exploiting the
database engine (Oracle) to evaluate the goodness of
potential next nodes and retrieve candidate matches to
those nodes which satisfy the criteria imposed by the user
scenario.

3.2.1 Best-First Search with Back-Tracking
Best-first search with back-tracking is a general technique
for organizing the exhaustive search for a solution to a
combinatorial problem (Valiente, 1988). The technique
consists of keeping a queue of nodes, ordered according to
some “goodness” criteria. In each step of the search, the
best node is selected to expand in the search-tree. This
repeatedly extends a partial solution to the problem,
satisfying certain constraints, and shrinking the
representation of the partial solution whenever a partial
solution cannot be further extended. The extension of the
partial solution is done by calling a recursive procedure to
fill each new candidate node.

In this manner GraphMatch grows matches to the target
graph, one node at a time. At the same time it grows the
connecting links to all previously solved nodes. Failure to

grow a new node (i.e., failure to find any matching
structures in the existing graph matches thus far) results in
going back to the previous level in the solution tree and
going down the next branch. When all the nodes are filled
a complete solution is found. This is recorded and the
algorithm backtracks to the previous level and resumes.

3.2.2 Adding Constraints to Individual SQL Queries
At each step of the match process, GraphMatch attempts to
grow the existing partial solutions by one node. This
involves finding candidates in the database that meet all the
constraints imposed by both the next, best node selected
(see below for how this is done), and those imposed by the
partial solution grown to that point.

GraphMatch finds all the candidates for the individual
nodes by executing a program-generated SQL select
statement on the table hosting the instance data for the type
of node being filled. It uses the conditions in the where
clause for the GRL definition of the node. In addition to
the node constraint, the existence of edges or paths (e.g. K-
1 payments) to previously matched nodes must also be
satisfied. Candidates for subsequent nodes are found with
a SQL select statement with instance values of previous
node/link attributes substituted in for SQL bind variables.
Scenario patterns specified with indirect paths (see Section
3.1.2) require additional branching between the two levels
solution tree representing the beginning and endpoint of the
path.

3.2.3 Exploiting Cost-Based Information
Of course, in order to implement best-first search, it is
necessary to have a goodness function for ordering nodes
in the search queue. In ad-hoc experimentation of arbitrary
goodness functions, runtimes of GraphMatch (called with
identical arguments in the IRS dataset) varied between a
few minutes to a day or more. In informal observation, the
most efficient node ordering begins with the node with the
least number of candidates (adjacent nodes with matching
constraints) in the database. In GraphMatch, this critical
information was derived using Oracle’s native cost-based
optimization function, Explain Plan.

GraphMatch implements a heuristic node goodness
function via this Explain Plan information. Calls are made
to the Oracle optimizer to determine the lowest cardinality
node (fewest rows returned). This is selected as the first
node. All possible order permutations with this as the first
node are generated and each possible ordering is evaluated
as a weighted sum of the total CPU costs for all of the node
queries that would be required to complete the solutions, if
that ordering was used. The ordering (permutation) that
has the lowest total cost is then selected and used to
execute the match. The weighted sum assumes that fewer
candidates remain near the bottom of the tree. This
heuristic approach seems to work well in the IRS data set.

3.2.4 Domain-Specific Constraints
The final heuristic exploited by GraphMatch is the
utilization of domain specific knowledge. For example, in
the world of tax fraud, a node (entity) which is connected
to a very large number of other nodes (entities) is typically
not of interest. Consider, for example, large home
mortgage lending institutions. These will obviously have
connections to an enormous number of individuals. With a
standard SQL join approach, expanding these institutional
nodes in the graph, and exploring potential isomorphic
matches among all its neighbors would be prohibitively
expensive. Logic bypassing these sections of the graph is
coded into GraphMatch to speed up execution.

3.3 Achieving Good Performance through Cost-
Based Execution Ordering
The order in which the nodes are filled has a big effect on
the overall execution time. For example, within the IRS
dataset, the same query can vary between a few minutes to
a day or more, just by the order in which the nodes are
processed by the backtracking code. Usually the most
efficient sequence is to start with the node that has the least
number of candidates. The next node filled (solution tree
level 2) must be adjacent. The expected runtime (CPU
cost) or expected rows returned (cardinality) computed by
Oracle's Explain Plan is important information for choosing
the order.

GraphMatch implements a heuristic node order
algorithm using this information. Calls are made to the
Oracle optimizer (Explain Plan) to determine the lowest
cardinality node (fewest rows returned). This is selected as
the first node. All possible order permutations with this as
the first node are generated and each possible ordering is
evaluated as a weighted sum of the total CPU costs for all
of the node queries that would be required to complete the
solutions, if that ordering was used. The ordering
(permutation) that has the lowest total cost is then selected
and used to execute the query. The weighted sum assumes
that fewer candidates remain near the bottom of the tree.
This heuristic approach seems to work well in the IRS data
set. However, the optimality of this approach is not proven
mathematically and so other approaches for ordering might
also work as well or better.

4. Prototype and Field Testing
The two components described in Section Error!
Reference source not found. (GRL and GraphMatch)
were deployed to the IRS recently. They are being used by
a small number of analysts, but already they credit this tool
with helping to identify entities suspected of abusively
sheltering millions of dollars from taxes. For obvious
reasons of security, details of the preliminary trial of
REGAL cannot be discussed.

5. Summary and Future Work
The REGAL framework brings new capabilities to
practical IRS fraud detection and other domains which
share a relational graph representation. Beyond the critical
capabilities of intuitive interface, and real-time results
processing, REGAL is designed to overcome some
common limitations of existing technology when faced
with real-world constraints. In particular, REGAL handles
extremely large data sets, integrates directly with a
relational database, represents multiple types of nodes and
edge, and allows very flexible, loosely defined graph
structures to be defined, queried, and mined.

The Graphical Representation Language (GRL) forms
the basis for storing and communicating graph information
among all the REGAL components and the user interface.
It is based in a very simple syntax to define typical node
and edge properties. It permits SQL syntax in many places,
however, in order to permit more complex descriptions –
including constraints on node attributes, edge attributes,
and aggregations among neighborhoods of nodes. The
GRL canonical form is compact, and is easily transformed
at run-time into SQL queries that can be passed directed to
the database.

REGAL’s GraphMatch component is responsible for
finding structures in the database which match given target
graph scenarios. It uses a depth-first search, with
backtracking, in which dynamically generated SQL queries
are made to the database to retrieve node information. In
order to improve performance, various domain-specific
constraints are built in, and the cost-based information
from the database is used to selected the nodes likely to
prune the search space by the greatest amount.

Future work on REGAL will include research and
development on the remaining core components. A
prototype graphical user interface (GUI) is already in
progress. This will permit much more user independence.
Work has also begun on algorithm design for the Frequent
Sub-structure Discovery. Of course, this component will
work directly with the database and make use of the
GraphMatch component. While our practical results and
feedback have been remarkable, and the informal
performance evaluation and testing that has been
completed thus far has been thorough enough to build
confidence for our current approach, it is worthwhile to
explore a more rigorous performance evaluation and
testing, particularly as compared with alternate algorithms
and existing tools. Limiting this testing thus far has been
acceptable as the focus of this work is on advancing the
capabilities of the field in real-world, practical
applications.

A prototype system of GRL and GraphMatch has been
deployed and used by IRS in their fraud investigations. It
has resulted in both identification of criminal activity and
accolades for ease of use, value-add, and efficacy. It is

easy to envision how this work could be applied in other
domains such as law enforcement and intelligence analysis.

6. Acknowledgements
Dave DeBarr was partially supported in this work by a
contract from the IRS under contract TIRNO-99-D-00005
task 103. The remainder of the work was supported
through MITRE internal research funding. The views and
conclusions contained in this paper are solely those of the
authors.

7. References
Berry, P., Harrison, I., Lowrance, J., Rodrigues, A.,
Ruspini, E., Thomere, J., and Wolverton, M., “Link
Analysis Workbench, SRI International”. Technical
Report: AFRL-IF-RS-TR-2004-247, Air Force Research
Laboratory, September, 2004.

Blau, H., Immerman, N. and Jensen, D. A visual language
for querying and updating graphs. University of
Massachusetts Amherst Computer Science Technical
Report 2002-037. 2002.

Burman, L., “Statement of Leonard E. Burman before the
United States House of Representatives Committee on the
Budget; On Waste, Fraud, and Abuse In Federal
Mandatory Programs”, July 9, 2003.
http://www.taxpolicycenter.org/publications/template.cfm?
PubID=900641

Comai S., Damiani, E., Fraternali, P., Paraboschi, , S.,
Tanca, L., “XML-GL: a Graphical Language for Querying
and Restructuring XML Documents”, Computer Networks,
Vol. 31 (1999).

Dzeroski, S., “Multi-Relational Data Mining: An
Introduction”, SIGKDD Explorations Newsletter of the
ACM Special Interest Group on Knowledge Discovery and
Data Mining, Vol 5, Issue 1, July 2003

Garey, M. and Johnson, D. Computers and Intractability:
A guide to the Theory of NP-Completeness. W. H.
Freeman and Company, New York, 1979.

Hall, M. W. and Kennedy, K. Efficient call graph analysis.
Letters on Programming Languages and Systems 1, 3.
http://citeseer.ist.psu.edu/hall92efficient.html, 1992.

Kuramochi, M., and Karypis, G., “Finding Frequent
Patterns in a Large Sparse Graph”, Proceedings of the
Fourth SIAM Data Mining Conference, 2004

McKay, B. Nauty User’s Guide (version 2.2),
http://cs.anu.edu.au/people/bdm/nauty/nug.pdf. Computer
Science Department, Australian National University, ACT
0200, Australia, 2005

Tutte, W.T. Graph theory. Encyclopedia of Mathematics
and its Applications v 21, Addison-Wesley Publishing Co.,
Reading, Mass., 1984.

Valiente, G. Algorithms on Trees and Graphs, Spring-
Verlag, 1988.

Washio, T and Motoda, H. State of the Art in Graph-based
Data Mining. SIGKDD Explorations Newsletter of the

ACM Special Interest Group on Knowledge Discovery and
Data Mining, Vol 5, Issue 1, July 2003

Wasserman, Stanley and Katherine Faust. Social Network
Analysis: Methods and Applications. Cambridge:
Cambridge University Press. 1994

