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Abstract 
Domain ontologies contain information about the important 
concepts in a domain, the associated attributes and the 
relationships between various concepts. The manual 
creation of domain ontologies is an expensive and time 
consuming process. In this paper, we present an approach to 
the automatic extraction of domain ontologies from domain-
specific text. This approach uses dependency relations 
between terms to represent text as a graph. The graph based 
ranking algorithm HITS is used to identify domain 
keywords and to structure them as concepts and attributes. 
Experiments on two different domains, digital cameras and 
wines, show that our method performs well in comparison 
to other approaches.  

Introduction 
Domain ontologies contain information about the 
important concepts in a domain, the associated attributes 
and the relationships between various concepts. A concept 
can be defined as a key idea in a domain. The term concept 
may refer to a physical component or to a property. Each 
concept may have associated attributes and attribute 
values. A concept may be related to one or more other 
concepts.  
 
In order to create a good ontology for a particular domain, 
it is necessary to first identify the important keywords or 
domain terms. This list of keywords provides an 
unstructured summary of the main topics in the domain.  
Keywords for the digital camera domain may include 
“camera”, “battery”, “flash” and “zoom” whereas 
keywords for the wine domain may include “red wine”, 
“white wine”, “grape” and “winery”. These keywords may 
be further structured as concepts, associated attributes and 
attribute values (See Figure 1 for the structuring of these 
concepts and attributes in the Wine ontology 
http://www.daml.org/ontologies/76). 
 
As part of our ongoing efforts to build a system that can 
construct an ontology from domain specific text, we have 
designed an algorithm that automatically identifies domain 

keywords and structures them into “concept-attribute 
value” pairs. This algorithm uses term-based statistics and 
semantic role information to identify these domain 
keywords. 
 
Graph based algorithms have been employed with great 
success in many related research areas. They can be used 
to identify the “important” regions in a graph.  
 
Link analysis has been demonstrated as an effective 
technique for identifying the important hubs and 
authorities of the Web [2,6].  Recently, Mihalcea et al [8,8] 
have applied graphical models for analyzing the links of 
linguistic units, such as terms and sentences.  They explore 
the linkage of terms with a text window for extracting 
important terms and present promising empirical results.  
Motivated by this work, we further explore whether 
dependency structure provides better graphs for extracting 
domain terms and whether the hubs and authority scores of 
nodes can reflect any structuring of the terms into main 
concepts, attributes and values. 
 
Previous work on structuring of terms includes taxonomy 
extraction [5,3] and classification of certain semantic 
relations [4,14,15].  Such classification generally relies on 
linguistic features or patterns either manually constructed 
or (semi-) automatically constructed based on training 
data.  Avancini et al. present an automatic approach to 
expand initial domain lexicons by mining the implicit 
associations between terms and domains [1].  Their 
approach, called term categorization, employs techniques 
used in text categorization; however, empirical results 
show that the performance of term categorization is much 
lower than that of text categorization.  Our work on term 
structuring can be considered as the first step toward 
distinguishing between primary terms and secondary terms 
in term pairs and toward providing input to finer 
classification tasks, such as identifying type-of or part-of 
relations. 
 
In the following section, the approach that we use is 
explained in detail. The next section describes the 
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Another type of relation often used in information retrieval 
is term co-occurrence or terms occurring within a fixed-
size window of each other. Statistics for this kind of 
relation are much easier to measure than dependency 
relations since they do not require parsing of the text and 
hence are also not prone to parsing errors. 

evaluation mechanism. In the final section, we present a 
discussion of the results and error analysis. 

Link Analysis of Text 
One of the goals of the ontology project is to process 
unstructured domain text into semantically meaningful 
structures. Toward this end, we created a system that goes 
through unstructured domain specific text and identifies 
the important keywords. Terms are chosen as keywords 
based on their frequency in the domain specific text 
collection and also based on their semantic roles.  

 
A significant proportion of domain-specific terms are noun 
phrases or compound nouns as observed in [12].  Based on 
this observation, we decided to study noun phrases for this 
preliminary study. Therefore, of all the term dependency 
relations we could have used in our experiments, we chose 
head noun-modifier relations.   

Figure 1. Structure of concepts and attributes in an online wine ontology displayed using the ontology 
viewer Protege 

 There are many kinds of relations between words in 
domain-specific natural language text that may be used to 
discover important domain terms. Some of these relations 
are term dependency relations. Dependencies are 
motivated by grammatical function, i.e., both syntactically 
and semantically. A word depends on another either if it is 
a complement or a modifier of the latter. 

Our hypotheses for detecting concepts and attributes are as 
follows: 
 
• A term that is modified often and in many different 

ways is an important “concept”.  We define a concept 
as being a central idea in a domain.  We see the 
number of ways a term is modified as a measure of the 
importance of that term.  A term that has numerous 
modifiers is probably a basic concept. 

 
Term dependencies can be identified using a dependency 
parser. The parser that we use in our experiments is 
MINIPAR [10] and it is described in detail in a later 
section. The dependency relationships that can be extracted 
include head noun-modifier, subject-verb, verb-object etc. 

 
• A term that occurs often as a modifier of one or more 

concepts is an important “attribute” of the concepts 
that it modifies.  Terms that are used to modify or  



describe concepts are probably important properties in 
the domain 

For each of these websites, a web crawling program was 
written that extracted (using wget) the html content from 
web pages related to the domain being studied.  The html 
markup was cleaned and the text was extracted.  The 
cleaned text was processed so that each sentence was on a 
different line and then put into an in-house XML document 
format.  

 
In order to test our hypotheses and to see if it was portable 
across domains, we had to create or find two or more 
domain specific corpora. The process of collection creation 
and text processing, i.e., gathering the data, extracting the 
relations to be studied and using those to select possible 
domain terms, is described in the following section.  

 
Lexical atoms 

  
Once the candidate terms have been identified, they are 
represented as nodes and edges in a graph.  A graph-based 
algorithm is used to rank the nodes by their importance.  

Many important domain terms happen to be phrases and 
not single words.  A phrase processing step is included in 
order to ensure that important phrases are not split up in 
the later steps of the algorithm.  A list of the most frequent 
compound noun phrases in the collection is compiled.  All 
phrases in this list are ranked by their mutual information 
content.  Mutual information is calculated as follows: 

 
After the list of concepts and attributes has been obtained, 
they are visualized using the tool TouchGraph [18].  

Text processing  
Mutual Information = P(phrase)/ПwεphrasesP(w)  

 The text collections used in these experiments are 
collections of customer reviews in the digital camera 
domain from www.epinions.com and for the wine domain 
from http://www.klwines.com. 

P(phrase) is the frequency of the phrase in the corpus and 
is approximated as the number of times the phrase appears 
in the corpus divided by the number of terms in the corpus. 
P(w) is the probability of a word appearing in the corpus  

Figure 2. Structuring of attributes and concepts from the digital camera domain using TouchGraph 

http://www.epinions.com/
http://www.klwines.com/


and is calculated as the number of times the word occurs 
over the number of terms in the corpus. 
 
The top 200 phrases are replaced in the collection by a new 
token, which is the terms in the phrase chunked together. 
E.g., Cabernet sauvignon is replaced with 
cabernet_sauvignon. 
 
 
Dependency parsing 
 
For dependency-based parsing, we use MINIPAR, which 
is a statistical parser trained based on the Penn Treebank 
[11].  The parser is freely downloadable [10]. 
 
MINIPAR identifies dependency relations and 
grammatical functions.  For example, for the sentence 
Automatic mode is basically idiot proof, MINIPAR 
produces the following parse: 
 
E0      (()     fin C   *       ) 
1       (Automatic      ~ A     2       mod     (gov mode)) 
2       (mode   ~ N     3       s       (gov be)) 
3       (is     be VBE  E0      i       (gov fin)) 
4       (basically      ~ A     3       guest   (gov be)) 
E2      (()     mode N  6       subj    (gov proof)     
(antecedent 2)) 
5       (idiot  ~ N     6       nn      (gov proof)) 
6       (proof  ~ N     3       pred    (gov be)) 
 
The parser fails in many instances when run on the test 
corpus because customer reviews often contains 
ungrammatical sentences, badly formatted text with 
unrecognized characters from the original Web documents, 
and out-of-vocabulary terms such as proper names, 
acronyms, technical terms etc.   
 
As the parser is pre-compiled and detailed documentation 
of the parser is not available, we did not try to correct the 
parsing errors.  We expect the laws of large numbers will 
help us get reasonable results. 
 
An XML parser in Perl was developed for the MINIPAR 
output. The parsing program converts the data from the 
dependency parser into XML format. The resulting XML 
file stores the noun-modifier, subject-verb and verb-object 
relations found in the collection. The program analyzes 
each sentence and extracts the relevant relations being 
studied. These relations are accumulated in a hash table. 
After all the text has been analyzed, the information is 
written out in the following XML format.  
 
The parent array <terms> is a collection of many <term> 
entries. Each entry of the type <term> has the following 
associated fields: 
 
• <name> : The root form of this term 
 

Each of the following has a <name> subfield with the 
associated root form and a <count> subfield with the 
number of terms the relation was observed 
 
1. <subject_verb> : The root form of a verb that has this 

term as a subject 
2. <object_verb>  : The root form of a verb that has this 

term as an object 
3. <modifier> : The root form of a term used to modify 

this term 
4. <target> : The root form of a term that is modified by 

this term 
 
A snippet of the XML file that is produced by the program 
is shown below. 
 
<terms> 
   <term> 
  <name>mode</name> 
   <subject_verb><name>is</name> 
          <count>378</count></subject_verb> 
   … 
   <object_verb><name>select</name> 
         <count>32</count></object_verb> 
   … 
   <modifier><name>automatic</name> 
    <count>727</count></modifier> 
   <modifier><name>manual</name> 
                     <count>578</count></modifier> 
   … 
 </term> 
 <term>…</term> 
 … 
</terms> 
 
The XML file generated as described above is used as the 
input to the next step in the algorithm. 
 

Graphical representation of dependencies 
 
The dependencies extracted from the collection are 
represented as nodes and edges in a graph. Using a 
diagram to represent text has a number of advantages. 
When we examine the graphical representation of text we 
utilize our visual cognitive apparatus which has an 
advantage over our text-reading abilities. The two-
dimensional representation of a diagram is a lot more 
expressive than text, which is typically scanned from the 
left to the right and the top to the bottom.  
 
Diagrams can be viewed following different directions to 
gain distinct insights, while the use of a larger symbol set 
makes them more expressive. In addition, one can obtain 
different levels of detail from the same diagram: a bird's 
eye view will easily convey a system's structure, while 
examining a class in detail can reveal its collaborators. 
Finally, a diagram can allow us to identify patterns; again 



two-dimensional pattern-matching is an activity we 
humans are particularly good at.  
 
A compelling reason for us to use a graphical 
representation for these dependencies is that this allows the 
use of graph-based ranking algorithm to identify the 
important sections of the graph. 
 
As mentioned previously in this report, we chose noun 
phrases for this preliminary study. We focus on the noun-
modifier relations and, for the time being, ignore the 
subject-verb and verb-object relations. Nouns and 
modifiers are represented by nodes in the graph. If a noun-
modifier relation exists between a pair of nodes, the nodes 
are connected by directed edge from the modifier to the 
noun, ie. Modifier→Noun. Directing the edges from the 
modifier to the noun is more intuitive. Also, a preliminary 
test showed that directing edges in this way, as opposed to 
Noun → Modifier, gave better results. For example, the 
noun-modifier relations extracted from “manual mode”, 
“auto mode” and “mode button” are represented as 
follows. 
 

 
Figure 3. Representing noun-modifier relations as 
nodes and edges in a graph 
 
Each edge is also associated with an edge weight that 
corresponds to the number of times a relation occurs in the 
corpus. The relations extracted from the collection are 
converted into a graphical representation as described 
above.  The keywords are selected from the nodes in this 
graph. 

Graph based algorithms 
 
Graph-based ranking algorithms are used to decide the 
importance of a vertex in a graph based on information 
computed recursively from the entire graph.  These 
algorithms have been successfully used in several web-
based tasks. Google’s PageRank [2] is an example of 
graph-based algorithms used in the web domain. They 
have also been shown to be effective for natural language 
processing applications [8] such as sentence and keyword 
extraction.  We applied one such algorithm, HITS, to our 
noun-modifier dependency graphs.  
 
The HITS algorithm [6] developed by Kleinberg gives 
each node in the graph a hub score and an authority score.  
A hub is a document that points to many important 

documents. An authority is a document that is pointed to 
by many important documents. For our problem, and as 
per our hypothesis, an authority corresponds to a domain 
concept and a hub corresponds to an attribute. Nodes are 
ranked by their authority score and the top ranked ones are 
chosen as important concepts in the domain.  The HITS 
scores for each node are calculated as follows: 
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The advantage of using HITS to calculate the hub and 
authority scores is that this algorithm was designed for 
directed graphs. However this version of the HITS 
algorithm does not take into account edge weights. 
Therefore a relation that occurs very rarely in the 
collection is treated on par with a relation that occurs 
often. Our solution to this problem is to consider only the 
edges above a threshold weight. This threshold can be 
tuned for each domain. automati manual 

Graph construction 
mode The list of hubs and authorities from the previous step is 

used to structure the keywords into concepts and attributes.  
For each authority term, the list of its modifiers (In(Vterm)) 
is pruned so that only those remain that are either present 
in the ranked list of hubs or occur above a threshold 
frequency. A small section of the resulting graph for the 
digital camera domain is shown below in F  using 
the visualization tool TouchGraph 
http://www.touchgraph.com. 

button 
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In the section of the graph that appears in Figure 3, there 
are two nodes, “card” and “battery” with a large number of 
incoming edges.  These are important concepts in this 
domain.  Some of the attribute values for battery are AA, 
AAA, lithium_ion, alkaline etc.  The aforementioned 
attribute values can actually be classified into two based on 
the class of the attribute value, namely into “size” and 
“chemical_type”.  However we do not tackle that problem 
in this work. A more detailed explanation of this issue is 
presented in the section on future work. 
 
The attribute values for “card” include 8_MB, 128_MB, 
compact_flash etc.  The term “card” in this domain 
implicitly refers to a memory card.  Since the dependencies 
are drawn from online customer reviews, the official term 
“memory card” is not used often and, therefore, is not 
extracted by our algorithm. 



Evaluation 
In order to test the robustness of our approach we tested it 
on real world data.  The data that we used for our 
experiments was drawn from the World Wide Web. We 
created two domain-specific collections 
 
1. Digital camera reviews from http://www.epinions.com 
 
2. Wine-related articles from http://www.klwines.com 
 
Each of these collections was processed and parsed as 
described earlier. The extracted dependencies were 
converted into a graphical structure. The link structure was 
analyzed and the hubs and authorities were identified. 
 
Two types of evaluation were performed. The list of 
extracted concepts and attributes was evaluated for  
 

• keyword extraction 
• keyword structuring for ontology creation 

 
The second type of evaluation required a hand-crafted 
Gold Standard ontology which was created as described in 
the following section.  

Gold standard 
Since creating a domain ontology from scratch is a 
painstaking and time consuming process, we started from 
an ontology that already exists.  
 
An online wine ontology [16] in the OWL format was the 
starting point for the gold standard. This ontology was 
modified by the removal of some classes and by the 
addition of attributes to some classes. The predefined 
version of some class names, attribute names and attribute 
values were replaced by the surface forms that commonly 
occur in text. 

Evaluation measures and results 
The algorithm presented in this paper was evaluated with 
respect to two tasks: keyword extraction and ontology 
creation.  The results are presented in separate tables for 
each task.  The method that has the highest precision has 
its name displayed in bold font in the corresponding result 
table. 
 
The keyword and concept extraction approach was applied 
to the digital camera corpus.  For the first task, the list of 
terms was shown to a human expert who judged whether 
each term was a domain key word or not.  Terms were 
ranked by keyword score, which was assigned by the 
algorithm.  This score was the sum of the hub and 
authority scores returned by the HITS algorithm.  Several 
other combinations of the hub and authority scores were 
tested but did not give better performance than 

HITSA+HITSH. The hubs and authorities extracted by our 
method were compared to the list of top terms extracted 
using Clarit Thesauri extraction [9].  The Clarit terms were 
ranked using the Rocchio method.  Precision at rank n was 
defined as the number of domain keywords seen in the 
ranked list at rank n.  As you can see from the results in 
Table 1, HITS performed better than Rocchio on this task.  
 

n
seenkeywordsofNumbernrankatecision =Pr  

 
 

Top term Precision@20 

Rocchio 70% 

HITSA+HITSH 80% 

Table 1.  Precision on keyword extraction for HITS 
and Rocchio in the digital camera domain 

 
For the digital camera domain, a human expert judged 
whether the concepts extracted by our method matched 
concepts in the domain.  The list generated by the HITS 
algorithm was compared to what we call a non-iterative 
baseline (NoGraph) as well as the Rocchio method.  In the 
non-iterative method, terms are ranked by the number of 
immediate in-links (modifiers) to identify concepts and are 
ranked by the number of immediate out-links (targets) to 
identify attributes.  Results for this experiment are shown 
in  
Table 2.  The HITS algorithm gives better performance 
than Rocchio and the non-iterative method on both these 
tasks, suggesting that recursive information from the graph 
beyond immediate neighbors is beneficial.  The NoGraph 
method performs surprisingly well, indicating that noun-
modifier relations are a good feature for concept and 
attribute extraction. 
 

Method Concepts Attributes 

NoGraph 45% 55% 

Rocchio 50% 25% 

HITS 55% 60% 

 
Table 2.  Precision@20 for concept and attribute 

extraction at top 20 terms in the digital camera domain 
 
The algorithm described in this study was applied to the 
wine domain.  For evaluation purposes, the gold standard 
wine ontology was used for truth judgments instead of a 
human expert.  The results for keyword extraction in the 

http://www.klwines.com/


wine domain are in Tabl  and the results for concept and 
attribute extraction are in Table 4.  These tables include 
results for the NoGraph method and Rocchio method when 
appropriate.  

e 3

 
In the Window-n method in Table 4, a graph is created 
from text by drawing an edge from term t1 to term t2 if 
term t1 occurs immediately preceding t2 in the corpus.  The 
HITS algorithm is then applied to this graph and concepts 
and authorities are selected as described earlier.  This 
method was found to be inferior to the approach using 
term dependencies. 
 
For the HITS-phrases method, lexical atoms were 
identified and grouped together at the text processing 
stage. It was found that this did not improve the 
performance of the algorithm, but it reduced errors due to 
mistakes in chunking lexical atoms. 
 

Top term Precision@2
0 

Rocchio 75% 

Window-n 65% 

HITSA+HITSH-phrases 70% 

HITSA+HITSH 95% 

 
Table 3. Precision on keyword extraction for HITS and 

Rocchio in the wine domain 
 

Method Concepts Attributes 

NoGraph 65% 50% 

Rocchio 40% 65% 

Window-n 65% 60% 

HITS-phrases 60% 70% 

HITS 70% 75% 
 

Table 4. Precision@20 for concept and attribute 
extraction at top 20 terms in the wine domain 

Discussion and Future Work 
From our experiments, it appears that there is a 
performance advantage to using noun-modifier relations 
and link analysis to identify keywords, concepts and 
attributes in a domain.  Our hypotheses about concepts and 
attributes are supported by the results of our experiments. 
Words that occur in domain specific text as targets for 

many different modifiers are probably concepts and those 
that occur as modifiers for many different targets are 
probably attributes.  The HITS scores help to rank these 
candidate concepts and attributes.  
 
One aspect of this problem that we do not address is 
coverage. When designing a domain, ontology, it is 
important to cover all important areas of a domain. 
However one requires a comprehensive list of keywords 
from a domain in order to evaluate the coverage of a list of 
extracted keywords.  As part of future work, we hope to 
create such a list for the digital camera domain.  Once this 
list is created, we can evaluate our algorithm for coverage. 
 
The next step would be to classify the type of relation 
between a concept and an attribute.  This would enable the 
clustering of attribute values that share the same type of 
relation with a concept.  For example, the concept battery 
has the possible attribute values Lithium ion, NiMh and 
alkaline.  These attribute values are all of the class 
“Material” for the concept battery.  Similarly, the concept 
“Memory card” has the following attribute values from the 
class “capacity”: 16MB, 32MB, 64MB, 128MB and 
256MB.  There is ongoing work in this area. 
 
In this study, the grouping of lexical atoms did not 
improve performance.  However, there appears to be some 
benefit to using lexical atoms as this reduced errors caused 
by multi-word lexical atoms.  It is possible that a different 
threshold criteria or a different scoring metric for the 
lexical atoms may improve system performance over the 
current method. 
 
For this study, we focused our attention on noun-modifier 
relations.  The other types of dependencies that we 
extracted may also be used to help ontology creation.  The 
subject-verb and verb-object dependencies may be used to 
describe the relations between concepts.  This is another 
possible direction for future work. 
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