
Domain Term Extraction and Structuring via Link Analysis

Nasreen AbdulJaleel1

Amazon.com
1200 12th Avenue South, Suite 1200

Seattle WA 98144-2734
 nasreenaj@gmail.com

Yan Qu

Clairvoyance Corporation
5001 Baum Boulevard, Suite 700

Pittsburgh, PA 15213-1854
 yqu@clairvoyancecorp.com

1 The work was done by the first author during an internship
at Clairvoyance Corporation.

Abstract
Domain ontologies contain information about the important
concepts in a domain, the associated attributes and the
relationships between various concepts. The manual
creation of domain ontologies is an expensive and time
consuming process. In this paper, we present an approach to
the automatic extraction of domain ontologies from domain-
specific text. This approach uses dependency relations
between terms to represent text as a graph. The graph based
ranking algorithm HITS is used to identify domain
keywords and to structure them as concepts and attributes.
Experiments on two different domains, digital cameras and
wines, show that our method performs well in comparison
to other approaches.

Introduction
Domain ontologies contain information about the
important concepts in a domain, the associated attributes
and the relationships between various concepts. A concept
can be defined as a key idea in a domain. The term concept
may refer to a physical component or to a property. Each
concept may have associated attributes and attribute
values. A concept may be related to one or more other
concepts.

In order to create a good ontology for a particular domain,
it is necessary to first identify the important keywords or
domain terms. This list of keywords provides an
unstructured summary of the main topics in the domain.
Keywords for the digital camera domain may include
“camera”, “battery”, “flash” and “zoom” whereas
keywords for the wine domain may include “red wine”,
“white wine”, “grape” and “winery”. These keywords may
be further structured as concepts, associated attributes and
attribute values (See Figure 1 for the structuring of these
concepts and attributes in the Wine ontology
http://www.daml.org/ontologies/76).

As part of our ongoing efforts to build a system that can
construct an ontology from domain specific text, we have
designed an algorithm that automatically identifies domain

keywords and structures them into “concept-attribute
value” pairs. This algorithm uses term-based statistics and
semantic role information to identify these domain
keywords.

Graph based algorithms have been employed with great
success in many related research areas. They can be used
to identify the “important” regions in a graph.

Link analysis has been demonstrated as an effective
technique for identifying the important hubs and
authorities of the Web [2,6]. Recently, Mihalcea et al [8,8]
have applied graphical models for analyzing the links of
linguistic units, such as terms and sentences. They explore
the linkage of terms with a text window for extracting
important terms and present promising empirical results.
Motivated by this work, we further explore whether
dependency structure provides better graphs for extracting
domain terms and whether the hubs and authority scores of
nodes can reflect any structuring of the terms into main
concepts, attributes and values.

Previous work on structuring of terms includes taxonomy
extraction [5,3] and classification of certain semantic
relations [4,14,15]. Such classification generally relies on
linguistic features or patterns either manually constructed
or (semi-) automatically constructed based on training
data. Avancini et al. present an automatic approach to
expand initial domain lexicons by mining the implicit
associations between terms and domains [1]. Their
approach, called term categorization, employs techniques
used in text categorization; however, empirical results
show that the performance of term categorization is much
lower than that of text categorization. Our work on term
structuring can be considered as the first step toward
distinguishing between primary terms and secondary terms
in term pairs and toward providing input to finer
classification tasks, such as identifying type-of or part-of
relations.

In the following section, the approach that we use is
explained in detail. The next section describes the

http://www.daml.org/ontologies/76

Another type of relation often used in information retrieval
is term co-occurrence or terms occurring within a fixed-
size window of each other. Statistics for this kind of
relation are much easier to measure than dependency
relations since they do not require parsing of the text and
hence are also not prone to parsing errors.

evaluation mechanism. In the final section, we present a
discussion of the results and error analysis.

Link Analysis of Text
One of the goals of the ontology project is to process
unstructured domain text into semantically meaningful
structures. Toward this end, we created a system that goes
through unstructured domain specific text and identifies
the important keywords. Terms are chosen as keywords
based on their frequency in the domain specific text
collection and also based on their semantic roles.

A significant proportion of domain-specific terms are noun
phrases or compound nouns as observed in [12]. Based on
this observation, we decided to study noun phrases for this
preliminary study. Therefore, of all the term dependency
relations we could have used in our experiments, we chose
head noun-modifier relations.

Figure 1. Structure of concepts and attributes in an online wine ontology displayed using the ontology
viewer Protege

 There are many kinds of relations between words in
domain-specific natural language text that may be used to
discover important domain terms. Some of these relations
are term dependency relations. Dependencies are
motivated by grammatical function, i.e., both syntactically
and semantically. A word depends on another either if it is
a complement or a modifier of the latter.

Our hypotheses for detecting concepts and attributes are as
follows:

• A term that is modified often and in many different

ways is an important “concept”. We define a concept
as being a central idea in a domain. We see the
number of ways a term is modified as a measure of the
importance of that term. A term that has numerous
modifiers is probably a basic concept.

Term dependencies can be identified using a dependency
parser. The parser that we use in our experiments is
MINIPAR [10] and it is described in detail in a later
section. The dependency relationships that can be extracted
include head noun-modifier, subject-verb, verb-object etc.

• A term that occurs often as a modifier of one or more

concepts is an important “attribute” of the concepts
that it modifies. Terms that are used to modify or

describe concepts are probably important properties in
the domain

For each of these websites, a web crawling program was
written that extracted (using wget) the html content from
web pages related to the domain being studied. The html
markup was cleaned and the text was extracted. The
cleaned text was processed so that each sentence was on a
different line and then put into an in-house XML document
format.

In order to test our hypotheses and to see if it was portable
across domains, we had to create or find two or more
domain specific corpora. The process of collection creation
and text processing, i.e., gathering the data, extracting the
relations to be studied and using those to select possible
domain terms, is described in the following section.

Lexical atoms

Once the candidate terms have been identified, they are
represented as nodes and edges in a graph. A graph-based
algorithm is used to rank the nodes by their importance.

Many important domain terms happen to be phrases and
not single words. A phrase processing step is included in
order to ensure that important phrases are not split up in
the later steps of the algorithm. A list of the most frequent
compound noun phrases in the collection is compiled. All
phrases in this list are ranked by their mutual information
content. Mutual information is calculated as follows:

After the list of concepts and attributes has been obtained,
they are visualized using the tool TouchGraph [18].

Text processing
Mutual Information = P(phrase)/ПwεphrasesP(w)

 The text collections used in these experiments are
collections of customer reviews in the digital camera
domain from www.epinions.com and for the wine domain
from http://www.klwines.com.

P(phrase) is the frequency of the phrase in the corpus and
is approximated as the number of times the phrase appears
in the corpus divided by the number of terms in the corpus.
P(w) is the probability of a word appearing in the corpus

Figure 2. Structuring of attributes and concepts from the digital camera domain using TouchGraph

http://www.epinions.com/
http://www.klwines.com/

and is calculated as the number of times the word occurs
over the number of terms in the corpus.

The top 200 phrases are replaced in the collection by a new
token, which is the terms in the phrase chunked together.
E.g., Cabernet sauvignon is replaced with
cabernet_sauvignon.

Dependency parsing

For dependency-based parsing, we use MINIPAR, which
is a statistical parser trained based on the Penn Treebank
[11]. The parser is freely downloadable [10].

MINIPAR identifies dependency relations and
grammatical functions. For example, for the sentence
Automatic mode is basically idiot proof, MINIPAR
produces the following parse:

E0 (() fin C *)
1 (Automatic ~ A 2 mod (gov mode))
2 (mode ~ N 3 s (gov be))
3 (is be VBE E0 i (gov fin))
4 (basically ~ A 3 guest (gov be))
E2 (() mode N 6 subj (gov proof)
(antecedent 2))
5 (idiot ~ N 6 nn (gov proof))
6 (proof ~ N 3 pred (gov be))

The parser fails in many instances when run on the test
corpus because customer reviews often contains
ungrammatical sentences, badly formatted text with
unrecognized characters from the original Web documents,
and out-of-vocabulary terms such as proper names,
acronyms, technical terms etc.

As the parser is pre-compiled and detailed documentation
of the parser is not available, we did not try to correct the
parsing errors. We expect the laws of large numbers will
help us get reasonable results.

An XML parser in Perl was developed for the MINIPAR
output. The parsing program converts the data from the
dependency parser into XML format. The resulting XML
file stores the noun-modifier, subject-verb and verb-object
relations found in the collection. The program analyzes
each sentence and extracts the relevant relations being
studied. These relations are accumulated in a hash table.
After all the text has been analyzed, the information is
written out in the following XML format.

The parent array <terms> is a collection of many <term>
entries. Each entry of the type <term> has the following
associated fields:

• <name> : The root form of this term

Each of the following has a <name> subfield with the
associated root form and a <count> subfield with the
number of terms the relation was observed

1. <subject_verb> : The root form of a verb that has this

term as a subject
2. <object_verb> : The root form of a verb that has this

term as an object
3. <modifier> : The root form of a term used to modify

this term
4. <target> : The root form of a term that is modified by

this term

A snippet of the XML file that is produced by the program
is shown below.

<terms>
 <term>
 <name>mode</name>
 <subject_verb><name>is</name>
 <count>378</count></subject_verb>
 …
 <object_verb><name>select</name>
 <count>32</count></object_verb>
 …
 <modifier><name>automatic</name>
 <count>727</count></modifier>
 <modifier><name>manual</name>
 <count>578</count></modifier>
 …
 </term>
 <term>…</term>
 …
</terms>

The XML file generated as described above is used as the
input to the next step in the algorithm.

Graphical representation of dependencies

The dependencies extracted from the collection are
represented as nodes and edges in a graph. Using a
diagram to represent text has a number of advantages.
When we examine the graphical representation of text we
utilize our visual cognitive apparatus which has an
advantage over our text-reading abilities. The two-
dimensional representation of a diagram is a lot more
expressive than text, which is typically scanned from the
left to the right and the top to the bottom.

Diagrams can be viewed following different directions to
gain distinct insights, while the use of a larger symbol set
makes them more expressive. In addition, one can obtain
different levels of detail from the same diagram: a bird's
eye view will easily convey a system's structure, while
examining a class in detail can reveal its collaborators.
Finally, a diagram can allow us to identify patterns; again

two-dimensional pattern-matching is an activity we
humans are particularly good at.

A compelling reason for us to use a graphical
representation for these dependencies is that this allows the
use of graph-based ranking algorithm to identify the
important sections of the graph.

As mentioned previously in this report, we chose noun
phrases for this preliminary study. We focus on the noun-
modifier relations and, for the time being, ignore the
subject-verb and verb-object relations. Nouns and
modifiers are represented by nodes in the graph. If a noun-
modifier relation exists between a pair of nodes, the nodes
are connected by directed edge from the modifier to the
noun, ie. Modifier→Noun. Directing the edges from the
modifier to the noun is more intuitive. Also, a preliminary
test showed that directing edges in this way, as opposed to
Noun → Modifier, gave better results. For example, the
noun-modifier relations extracted from “manual mode”,
“auto mode” and “mode button” are represented as
follows.

Figure 3. Representing noun-modifier relations as
nodes and edges in a graph

Each edge is also associated with an edge weight that
corresponds to the number of times a relation occurs in the
corpus. The relations extracted from the collection are
converted into a graphical representation as described
above. The keywords are selected from the nodes in this
graph.

Graph based algorithms

Graph-based ranking algorithms are used to decide the
importance of a vertex in a graph based on information
computed recursively from the entire graph. These
algorithms have been successfully used in several web-
based tasks. Google’s PageRank [2] is an example of
graph-based algorithms used in the web domain. They
have also been shown to be effective for natural language
processing applications [8] such as sentence and keyword
extraction. We applied one such algorithm, HITS, to our
noun-modifier dependency graphs.

The HITS algorithm [6] developed by Kleinberg gives
each node in the graph a hub score and an authority score.
A hub is a document that points to many important

documents. An authority is a document that is pointed to
by many important documents. For our problem, and as
per our hypothesis, an authority corresponds to a domain
concept and a hub corresponds to an attribute. Nodes are
ranked by their authority score and the top ranked ones are
chosen as important concepts in the domain. The HITS
scores for each node are calculated as follows:

 ∑

∈

=
)(

)()(
ij VOutV

jAiH VHITSVHITS

∑
∈

=
)(

)()(
ij VInV

jHiA VHITSVHITS

The advantage of using HITS to calculate the hub and
authority scores is that this algorithm was designed for
directed graphs. However this version of the HITS
algorithm does not take into account edge weights.
Therefore a relation that occurs very rarely in the
collection is treated on par with a relation that occurs
often. Our solution to this problem is to consider only the
edges above a threshold weight. This threshold can be
tuned for each domain. automati manual

Graph construction
mode The list of hubs and authorities from the previous step is

used to structure the keywords into concepts and attributes.
For each authority term, the list of its modifiers (In(Vterm))
is pruned so that only those remain that are either present
in the ranked list of hubs or occur above a threshold
frequency. A small section of the resulting graph for the
digital camera domain is shown below in F using
the visualization tool TouchGraph
http://www.touchgraph.com.

button

igure 2

In the section of the graph that appears in Figure 3, there
are two nodes, “card” and “battery” with a large number of
incoming edges. These are important concepts in this
domain. Some of the attribute values for battery are AA,
AAA, lithium_ion, alkaline etc. The aforementioned
attribute values can actually be classified into two based on
the class of the attribute value, namely into “size” and
“chemical_type”. However we do not tackle that problem
in this work. A more detailed explanation of this issue is
presented in the section on future work.

The attribute values for “card” include 8_MB, 128_MB,
compact_flash etc. The term “card” in this domain
implicitly refers to a memory card. Since the dependencies
are drawn from online customer reviews, the official term
“memory card” is not used often and, therefore, is not
extracted by our algorithm.

Evaluation
In order to test the robustness of our approach we tested it
on real world data. The data that we used for our
experiments was drawn from the World Wide Web. We
created two domain-specific collections

1. Digital camera reviews from http://www.epinions.com

2. Wine-related articles from http://www.klwines.com

Each of these collections was processed and parsed as
described earlier. The extracted dependencies were
converted into a graphical structure. The link structure was
analyzed and the hubs and authorities were identified.

Two types of evaluation were performed. The list of
extracted concepts and attributes was evaluated for

• keyword extraction
• keyword structuring for ontology creation

The second type of evaluation required a hand-crafted
Gold Standard ontology which was created as described in
the following section.

Gold standard
Since creating a domain ontology from scratch is a
painstaking and time consuming process, we started from
an ontology that already exists.

An online wine ontology [16] in the OWL format was the
starting point for the gold standard. This ontology was
modified by the removal of some classes and by the
addition of attributes to some classes. The predefined
version of some class names, attribute names and attribute
values were replaced by the surface forms that commonly
occur in text.

Evaluation measures and results
The algorithm presented in this paper was evaluated with
respect to two tasks: keyword extraction and ontology
creation. The results are presented in separate tables for
each task. The method that has the highest precision has
its name displayed in bold font in the corresponding result
table.

The keyword and concept extraction approach was applied
to the digital camera corpus. For the first task, the list of
terms was shown to a human expert who judged whether
each term was a domain key word or not. Terms were
ranked by keyword score, which was assigned by the
algorithm. This score was the sum of the hub and
authority scores returned by the HITS algorithm. Several
other combinations of the hub and authority scores were
tested but did not give better performance than

HITSA+HITSH. The hubs and authorities extracted by our
method were compared to the list of top terms extracted
using Clarit Thesauri extraction [9]. The Clarit terms were
ranked using the Rocchio method. Precision at rank n was
defined as the number of domain keywords seen in the
ranked list at rank n. As you can see from the results in
Table 1, HITS performed better than Rocchio on this task.

n
seenkeywordsofNumbernrankatecision =Pr

Top term Precision@20

Rocchio 70%

HITSA+HITSH 80%

Table 1. Precision on keyword extraction for HITS
and Rocchio in the digital camera domain

For the digital camera domain, a human expert judged
whether the concepts extracted by our method matched
concepts in the domain. The list generated by the HITS
algorithm was compared to what we call a non-iterative
baseline (NoGraph) as well as the Rocchio method. In the
non-iterative method, terms are ranked by the number of
immediate in-links (modifiers) to identify concepts and are
ranked by the number of immediate out-links (targets) to
identify attributes. Results for this experiment are shown
in
Table 2. The HITS algorithm gives better performance
than Rocchio and the non-iterative method on both these
tasks, suggesting that recursive information from the graph
beyond immediate neighbors is beneficial. The NoGraph
method performs surprisingly well, indicating that noun-
modifier relations are a good feature for concept and
attribute extraction.

Method Concepts Attributes

NoGraph 45% 55%

Rocchio 50% 25%

HITS 55% 60%

Table 2. Precision@20 for concept and attribute

extraction at top 20 terms in the digital camera domain

The algorithm described in this study was applied to the
wine domain. For evaluation purposes, the gold standard
wine ontology was used for truth judgments instead of a
human expert. The results for keyword extraction in the

http://www.klwines.com/

wine domain are in Tabl and the results for concept and
attribute extraction are in Table 4. These tables include
results for the NoGraph method and Rocchio method when
appropriate.

e 3

In the Window-n method in Table 4, a graph is created
from text by drawing an edge from term t1 to term t2 if
term t1 occurs immediately preceding t2 in the corpus. The
HITS algorithm is then applied to this graph and concepts
and authorities are selected as described earlier. This
method was found to be inferior to the approach using
term dependencies.

For the HITS-phrases method, lexical atoms were
identified and grouped together at the text processing
stage. It was found that this did not improve the
performance of the algorithm, but it reduced errors due to
mistakes in chunking lexical atoms.

Top term Precision@2
0

Rocchio 75%

Window-n 65%

HITSA+HITSH-phrases 70%

HITSA+HITSH 95%

Table 3. Precision on keyword extraction for HITS and

Rocchio in the wine domain

Method Concepts Attributes

NoGraph 65% 50%

Rocchio 40% 65%

Window-n 65% 60%

HITS-phrases 60% 70%

HITS 70% 75%

Table 4. Precision@20 for concept and attribute
extraction at top 20 terms in the wine domain

Discussion and Future Work
From our experiments, it appears that there is a
performance advantage to using noun-modifier relations
and link analysis to identify keywords, concepts and
attributes in a domain. Our hypotheses about concepts and
attributes are supported by the results of our experiments.
Words that occur in domain specific text as targets for

many different modifiers are probably concepts and those
that occur as modifiers for many different targets are
probably attributes. The HITS scores help to rank these
candidate concepts and attributes.

One aspect of this problem that we do not address is
coverage. When designing a domain, ontology, it is
important to cover all important areas of a domain.
However one requires a comprehensive list of keywords
from a domain in order to evaluate the coverage of a list of
extracted keywords. As part of future work, we hope to
create such a list for the digital camera domain. Once this
list is created, we can evaluate our algorithm for coverage.

The next step would be to classify the type of relation
between a concept and an attribute. This would enable the
clustering of attribute values that share the same type of
relation with a concept. For example, the concept battery
has the possible attribute values Lithium ion, NiMh and
alkaline. These attribute values are all of the class
“Material” for the concept battery. Similarly, the concept
“Memory card” has the following attribute values from the
class “capacity”: 16MB, 32MB, 64MB, 128MB and
256MB. There is ongoing work in this area.

In this study, the grouping of lexical atoms did not
improve performance. However, there appears to be some
benefit to using lexical atoms as this reduced errors caused
by multi-word lexical atoms. It is possible that a different
threshold criteria or a different scoring metric for the
lexical atoms may improve system performance over the
current method.

For this study, we focused our attention on noun-modifier
relations. The other types of dependencies that we
extracted may also be used to help ontology creation. The
subject-verb and verb-object dependencies may be used to
describe the relations between concepts. This is another
possible direction for future work.

References
1. Avancini, H., Lavelli, A., Magnini, B., Sebastiani, F.,

Zanoli, R. Expanding Domain-Specific Lexicons by
Term Categorization. In Proceedings of the 2003
ACM Symposium on Applied Computing, pages 793-
797.

2. Brin, S., Page, L. 1998. The anatomy of a large-scale

hypertextual Web search engine. Computer Networks
and IDSN Systems, 30(1-7).

3. Caraballo, S. A., Charniak, E. 1999. Determining the

Specification of Nouns from Text, in Proceedings of
the Joint SIGDAT conference on Empirical Methods
in Natural Language Processing and Very Large
Corpora.

4. Hearst, M., A. Automated discovery of WordNet
relations.

5. Ide, N., Véronis, J. (1993). Refining taxonomies

extracted from machine-readable dictionaries. In
Hockey, S., Ide, N. Research in Humanities
Computing II, Oxford University Press, 145-59.

6. Kleinberg, J.M. 1999. Authoritative sources in a

hyperlinked environment. Journal of the ACM,
46(5):604-632.

7. Mihalcea, R. 2004. Graph-based Ranking Algorithms

for Sentence Extraction, Applied to Text
Summarization. In Proceedings of the 42nd Annual
Meeting of the Association for Computational
Linguistics, companion volume (ACL 2004).

8. Mihalcea, R., Tarau, P. 2004. TextRank: Bringing Order

into Texts, in Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP 2004), Barcelona.

9. Milic-Frayling, N. Evans, D.A., Tong, X., Zhai, C.X:

1996. CLARIT Compound Queries and Constraint-
Controlled Feedback in TREC-5 Ad-Hoc
Experiments. In Proceedings of TREC 1996.

10. Minipar:

http://www.cs.ualberta.ca/~lindek/minipar.htm

11. Building a large annotated corpus of English: the Penn

Treebank Mitchell P. Marcus, Beatrice Santorini,
Mary Ann Marcinkiewicz, Computational Linguistics,
vol 19, 1993

12. Automatic term recognition based on statistics of

compound nouns and their components. Hiroshi
Nakagawa and Tatsunori Mori. Terminology, 9:2,
pages 201-219, 2004

13. Owl guide/tutorial: http://www.w3.org/TR/owl-guide/

14. Barbara Rosario and Marti Hearst, Classifying the

Semantic Relations in Noun Compounds via a
Domain-Specific Lexical Hierarchy, in the
Proceedings of EMNLP '01, Pittsburgh, PA, June
2001.

15. Turney, P., Litman, M. Learning Analogies and

Semantic Relations NRC/ERB-1103. July 10, 2003.
28 pages NRC Publication Number: NRC 46488.

16. Wine ontology:

http://protege.stanford.edu/plugins/owl/ontologies.htm
l

17. WordNet. An electronic lexical database. Edited by
Christiane Fellbaum, with a preface by George Miller.
Cambridge, MA: MIT Press; 1998. 422 p. $50.00

18. TouchGraph: http://www.touchgraph.com

http://www.cs.ualberta.ca/~lindek/minipar.htm
http://www.w3.org/TR/owl-guide/
http://protege.stanford.edu/plugins/owl/ontologies.html
http://protege.stanford.edu/plugins/owl/ontologies.html

