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Abstract
Managing and analyzing information remains an enduring and
essential challenge for intelligence professionals. Link analysis
tools are beginning to be adopted in the intelligence
community as part of the community’s analysis toolset.
However, since a wide variety of types of analyses is possible,
even within just the link analysis field, no one tool is likely to
be sufficient to complete an analysis. Instead, analysts will be
required to use a suite of tools to accomplish their tasks. This
motivates the need for interchange languages between tools, so
they can be used in coordinated workflows to meet the needs
of the intelligence analyst. We are developing PHERL, an
interchange language for link analysis tools, which is designed
to support the sharing of patterns and hypotheses (e.g., pattern-
match results).  This paper presents our preliminary work and
solicits contributions of representation requirements from the
link analysis community.

Introduction   

Managing and analyzing information remains an enduring
and essential problem for intelligence professionals.  The
vast volume of data and speed at which it must be
considered motivates using new and sophisticated tools for
searching, filtering, and evaluating information.  Included
in these emerging information management tools are link
analysis tools.  These include tools for discovering patterns
of interest in relational data, as well as tools for using
patterns to detect links between disparate data points
(“connecting the dots”). No one tool or algorithm will span
the full needs of the intelligence analyst: instead, a suite of
tools is often needed, used in a serial or parallel workflow,
transforming and augmenting raw data, and then filtering
and analyzing the data sufficiently to enable the analyst to
answer particular questions posed by the ultimate
consumer of the intelligence.

This situation motivates the need to develop a shared
representation of hypotheses, patterns and evidence/data,
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such that the tools can be coordinated and integrated with
one another. We are working within a community of
technology developers to support the development of a link
analysis toolset for the intelligence community.  Within
this community previous work has focused on developing
a common data schema. This succeeded in enabling all
tools to participate within a single evaluation program.  A
later thrust on developing a common representation
language for patterns and hypotheses (e.g., candidate
pattern matches) had only limited success, due in part to its
overemphasis on pattern representation and the lack of
attention applied to representing hypotheses. At its core,
representing a hypothesis involves capturing how some
data matches a pattern, so that one cannot consider
hypothesis representation as an adjunct to pattern
representation: they are intimately tied to one another

Based on our previous experiences, we are now developing
a Pattern, Hypothesis, and Evidence Representation
Language (PHERL, pronounced “furl”), which is designed
to be an interlingua to support communication among link
analysis tools. The goal of this paper is to present
preliminary work on PHERL and to encourage other
developers in the link analysis community to contribute
their representation requirements so that they can be
supported in the emerging representation language.

We begin with a discussion of use cases that motivate our
representation requirements. These use cases are set within
the context of supporting intelligence professionals, but we
believe that most of these features will be applicable
outside that domain. We then follow with the requirements
that we have derived from our understanding of what is
required to support these use cases. Finally, we present
examples of our pattern representation language.

Use Cases

Integration of link analysis tools is most likely to succeed
at the data level, which implies that the output from one
tool (hypotheses) is understandable as input to another



tool. In the uses cases below, we identify two classes of
what “understanding” means. The first is that hypotheses
from one tool essentially become data sources for another
tool. In this meaning, hypotheses can be seen as augmented
data. Examples of such hypotheses, in the domain of the
intelligence community, might be determination that two
identities are aliases of one another.  In the second
meaning, one link analysis tool may have only been able to
(or was only asked to) produce hypotheses where a part of
a pattern is matched. Another tool then uses this hypothesis
and transforms it into a new query to be applied to data. In
this second meaning, the query results (hypotheses) used
as input to the second tool are not simple data (e.g., RDF
triples, database records), but are partially instantiated
pattern matches from the first tool. The second tool’s job is
to extend and build on the first tool’s results.

1. Application-Based Use Cases
A number of potential use cases involving link analysis
tools have been identified for applications in the
intelligence community. All of these use cases can be used
in a standing query mode or an ad hoc mode, as a response
to a one-off request for information (RFI).

1.1 Message filtering.  An analyst arrives at work and runs
message-filter queries over the 10,000 incoming messages
that have arrived overnight. Those messages relevant to the
different standing queries are added to the analyst’s inbox
for further consideration and analysis.

A new RFI comes in requesting an assessment of the
evolving leadership power struggle in a particular terrorist
group. The analyst develops a query pattern and puts it into
the standing query list so that relevant messages will be
culled from the overnight message stream and added to the
analyst’s inbox.

A new RFI comes in requesting an assessment of the
changes in a group’s intent during the last 90 days. The
analyst develops a query pattern and runs it against the
message archive to retrieve relevant messages.

1.2 Mapping out a social network.  An RFI arrives on an
analyst’s desk, asking to locate person X, who has
disappeared. The analyst develops a social network map
for person X and then queries for communications from/to
person X. The analyst iterates, developing a richer social
network map. Based on this the analyst is able to identify a
list of people who may know person X, and based on the
communication traffic, have a better handle on where X is
possibly located.

1.3 Mapping out capability models.  An RFI arrives on
an analyst’s desk, asking to assess the weapons of mass
destruction (WMD) capability of a particular threat group.
A predefined set of capability model queries is run,
looking at prior activities, the individual and collective
capabilities of the group members, the resources possessed,

and transactions and communications with others
connected with WMD resource or capability acquisition.

1.4 Detecting terrorist plan prior to attack.  An RFI
arrives on an analyst’s desk, asking to track a particular
group. The analyst uses predefined threat patterns to query
transaction and communication databases for known group
members. Returned results are potentially instantiated
plans, each identifying where the group members may be
in their planning and suggesting where to focus resources
for further investigation and response.

1.5 Incremental, prospective alerts.  The analyst is asked
to monitor streaming, time-stamped data for evidence of
terrorist activity, giving notification when the data
provides “suggestive” evidence of a viable threat and
providing updates as subsequent evidence adds to, or
detracts from, the certainty and maturity of the possible
threat.

2. Workflow-Based Use Cases
A number of potential use cases have been identified that
capture anticipated workflows involving link analysis
tools.

2.1 Pattern-refinement cycle.  An analyst uses a pattern
editor to create a pattern to detect some situation of
interest.  The analyst then begins an incremental test and
modify refinement cycle that involves matching the current
pattern against some data, using a link discovery tool,
reviewing the results of the test using a hypothesis
visualization tool, and then modifying the pattern
(Wolverton et al. 2005).  This pattern-refinement cycle
repeats until the pattern performs as desired.

2.2 Merged hypotheses from several tools.  In all of the
use cases above, a single tool might have been unable to
return all the results, or may have only been tasked to
return results about a part of the overall query (e.g., one
tool is used for a quantitative, probabilistic analysis, and
another tool for a discreet, qualitative analysis). The partial
results must be merged to produce the final results. Result
generation by the subordinate tools might involve a
parallel or serial process. Hypothesis merging likewise
might require a single process (for parallel result
generation) or multiple processes (for serial result
generation).

2.3 Pipeline.  The results from one tool may be used
directly, or in a preprocessed form, as input to another tool,
as part of an overall serial workflow process

2.4 Blackboard.  Query results may be posted to a central
area (blackboard) and used opportunistically by other tools
(knowledge sources); for example, further analysis for a
compelling but not yet conclusive hypothesis could be
triggered when designated data conditions become
satisfied.



Three Tiers of Representation

Our analysis of the workflow use cases led us to consider
three distinct tiers of representation in support of link
analysis.

• The first tier captures the pattern; this is used by
tools that discover patterns in data, pattern-editing
tools that are used by intelligence analysts, and
pattern-matching tools that perform link
detection.

• The second tier captures the hypothesis; this
includes both a query and an answer.  The query
includes the pattern, the dataset to match the
pattern against, and the tool to use. The answer
includes the data bindings, if any, that are
matched to the pattern by the tool.  Hypotheses
are produced by link discovery tools and are used
by hypothesis visualization tools, and tools
operating at the third tier (see below).

• The third tier captures how hypotheses can be
integrated and used as evidence within larger
analyses.  This includes hypothesis management
tasks such as merging hypotheses, ranking and
comparing competing hypotheses, evaluating
hypotheses over time as data and context change,
defining and supporting a “hypothesis life cycle,”
and using link analysis hypotheses as evidence
within higher-level structured argumentation
tools, for example, SEAS (Lowrance et al. 2001).
Although there has been little work on support for
hypothesis management in our toolset community
to date, PHERL should be informed by these
potential applications and designed to
accommodate them.

The following sections discuss representing the pattern and
hypothesis tiers and very preliminary considerations for
representing the evidence tier.

Representing Patterns

The cornerstone of link analysis is the pattern.  We
consider explicit, declarative representations for patterns
(e.g., vs. algorithmic or neural-network descriptions).

Pattern Representation Requirements
The pattern representation should support capturing the
following types of information:

1. The pattern definitions must have clear semantics (see
Representing Patterns with Prototypes below).

2. Pattern terms, including:

2.1 Constant terms, including strings, numbers, and
ontology-defined constant terms, such as classes and
instances.

2.2 Variables:

2.2.1 Optional variables.  Some variables may be
designated as optional (vs. required).  For optional
variables, bindings need not be found to establish an
answer; for required variables, bindings must be found.

2.2.2 Boolean variables.  Some variables may be
designated as boolean (vs. value). For boolean variables,
bindings must be found but the identity of the binding is
deemed uninteresting, and different bindings need not be
distinguished in distinct answers.  Bindings of normal
(e.g., value) variables are included as usual (each distinct
binding warrants a distinct pattern match in the answer).
For example in (child ?x ??y) the “y” variable is deemed a
boolean variable (in this case, indicated by the “??” prefix),
while the “x” variable is a normal (value) variable.  The
answer would include each binding for ?x such that some
child (i.e., some binding of ??y) was found, and the answer
would not include multiple children of a single binding for
?x.  This distinction is useful when some/any binding must
be found for a variable to warrant some finding (e.g., that
someone is a parent) but alternative bindings are of no
interest.

2.2.3 Binding-inclusion directives. OWL-QL (Fikes,
Hayes, and Horrocks 2003) identifies distinctions (e.g.,
must-bind, may-bind and don’t-bind) for capturing the
desired binding properties of variables.  The bindings to
must-bind variables are always reported (i.e., required
valued variables). The bindings to may-bind variables are
reported opportunistically, when they are available (i.e.,
optional, value variables).  The bindings to don’t-bind
variables are never reported.

2.2.4 Group variables: qGraph (Blau, Immerman, and
Jensen 2002) identifies  “group” variables, where all
bindings for a designated variable are grouped into each
distinct answer rather than each binding generating a
distinct answer. For the example above, this would return
an answer for each parent that included all known children
for that parent.

2.3 Computed terms: functions (called “column functions”
in GraphLog, see Eigler 1994) over other terms or their
binding sets that compute some value, for example, to
count the number of members in a threat group, to compute
the maximum deposit to a bank account.

3. Pattern relations: predicates applied to pattern terms, or
simple regular expressions over predicates applied as
predicates to pattern terms; for example, in GraphLog,
before* might denote the transitive closure of predicate



before (Consens, Mendelzon, and Ryman 1994).  Patterns
may include two types of relations:

3.1 Data relations: requirements expressed as predicates
over variables that bind to data elements.

3.2. Constraints: requirements that refer to constant terms,
such as numbers, strings, ontology classes or instances,
and so on, or computed terms rather than only to variables
that bind to data elements.  For example:

3.2.1 Type constraints: classes used to restrict which data
elements can bind to a variable.

3.2.2 Cardinality constraints: the min or max number of
data elements that bind to a variable or subpattern.

3.2.3 Relational constraints: predicates relating variables or
computed terms to constants or computed terms.

Constraints can be designated as requiring either that each
binding is consistent with (i.e., is not known to violate) the
constraint condition, or that the binding complies with (i.e.,
is known to satisfy) the constraint condition.

4. Hierarchical patterns: (possibly recursive) subpatterns
within patterns (Wolverton and Thomere 2005, Eigler
1994).

Pattern elements are defined as pattern terms, pattern
relations, and subpatterns.

5. Disjunction and conjunction over pattern relations and
subpatterns.

6. Negation, denoting bindings must not be found for a
variable or a relation or subpattern or that a constraint is
not deemed satisfied (Yeh, Porter, and Barker 2003).

7. Optional pattern elements (i.e., bindings are optional for
designated variables or relations or subpatterns).

8. A pattern-specific search plan (e.g., that indicates the
order of variables or relations or subpatterns in which
bindings are sought).

9. Belief (e.g., probability) that a matched variable, or
relation, or subpattern warrants determining that a match
has been found for the pattern as a whole.

10.  Meta-data

10.1 Ontology: the ontology used to express this pattern
(e.g., the predicates, the classes).

10.2 Inception attribution: the author, creation date, project
or case or RFI, and comment.

10.3 Modification attribution: for each pattern update, the
date, author, project, comment, and new version number.

10.4 A serialized handle (e.g., URI), allowing patterns to
be archived, retrieved, and distributed as collections or
individually.

10.5 The urgency of responding to a candidate match.

10.6 The performance of the pattern (e.g., precision, recall,
cost) on test data with known ground truth or with prior
evidence after further investigation of the hypothesis.

10.7 The pattern classes of the pattern (discussed below).

10.8 The queries (hypotheses) in which a pattern has been
used.

13. Aggregation: patterns can be grouped into libraries or
collections (e.g., that share meta-data, such as author).

14. Inter-pattern relations, for example, to denote that one
pattern specializes another, or that one provides confirming
or disconfirming evidence for another.

These representation requirements do not legislate that
every link analysis tool in the developing toolset supports
all features (e.g., certainty, negation, hierarchical
composition).  But because some tools may include
support for a given feature, the interlingua representation
should support the feature in order to facilitate pattern
sharing between those tools.

Representing Patterns with Prototypes
Often we want to capture knowledge by describing a
representative example.  An example is often easier for a
pattern author to conceive and articulate than are rules
expressed in first-order logic (FOL).  The example-level
representation comprises simple ground-atomic formulas
(GAFs); these are direct and compact; they are free of the
extra symbols (e.g., variables) and syntax (e.g., quantifiers)
and the indirection required to capture knowledge using
quantified rules.  Because they are simple, direct, and
compact, they are easier to present (e.g., as a graph) and
easier for subject-matter experts to author and edit
(Chaudhri et al. 2004, Pool et al. 2003).  However, an
example description does not by itself support making
inferences involving other data; supporting their
application to other data is of course the reason for the
extra symbols and syntax, the variables and the quantifiers,
in rules.  But is it possible to integrate the simplicity of
instance-level descriptions and the clear semantics of
quantified rules?  One approach is to start with an example
description and then to add a small extension to that
example description that allows it to function as FOL rules
and so support the desired inferences with other data. We
call the extended example a prototype: axioms capturing
an instance-level example description plus some additional



axioms that establish the prototype status of the example
such that prototype axioms collectively are equivalent to a
designated set of FOL rules and so capable of supporting
inferences by applying to other data, other examples.
Here, we describe a prototype-based representation scheme
for capturing patterns being developed for PHERL.

The prototype scheme is similar to and extends the support
for prototypes provided in KM (Clark and Porter 2004,
Clark et al. 2001), which captures necessary conditions for
class (the first of five types of prototypes described below).
Our approach extends this with support capturing sufficient
conditions for class membership.  It also supports
capturing necessary and sufficient criteria for conditions
other than class membership (e.g., predicates).  While
prototypes for classes and predicates support inference, the
scheme also provides prototypes for queries to support data
filtering.  The prototype scheme supports explaining the
application of sufficient prototypes to data by identifying
what terms in the prototype pattern match what terms in
the data.  It supports the hierarchical use of prototypes in
two ways.  A prototype can be explicitly authored in terms
of one or more subprototypes.  Alternatively, a predicate
over terms in a prototype can be satisfied by chaining on
any sufficient prototypes defined for that predicate.  It also
supports representing optional terms and optional axioms
appearing within a prototype.

Class Prototype, Necessary Conditions.  The prototype
describes an arbitrary instance of the class.  More
specifically, the prototype formula (i.e., the set of axioms
that describe the “example”) captures properties that hold
for every instance of the class.  One term designates the
class instance; it is interpreted as a universally qualified
variable.  All other variables are interpreted as existentially
quantified.  Figure 1 presents a graphically depicted pattern
that captures a necessary condition for the class Person:
every person has a mother:

The class instance, Person-1, is identified visually by the
heavy node outline; the type constraint is indicated by the
name of the node.

This pattern denotes the following FOL sentence:

(forall ?x (implies (isa ?x Person)
                              (exists ?y (and (isa ?y Person)
                                                      (mother ?x ?y)))))

This pattern is captured in PHERL as

(and (isa Person-1 Person)
        (isa Person-2 Person)
        (mother Person-1 Person-2)
        (isa Person-1 Class-Prototype)
        (isa Person-1 Necessary-Prototype)
        (isa Person-2 Prototype-Term)
        (class-prototype Person Person-1)
        (prototype-term-required Person-1 Person-2)
        (prototype-lhs Person-1 (isa Person-1 Person)))

Prototype-Terms are interpreted as variables within the
“prototype rule”; their quantifications are determined by
the type of the prototype in which they appear (as indicated
by the prototype-term-required literal).  Class-Prototype is
a subclass of Prototype-Term so its instances are also
treated as variables.  The conjuncts that do not involve
such prototype-defining vocabulary (e.g., in this example,
the first three conjuncts) make up the “instance-level
example” and are included in the graphical display of the
prototype.

Class Prototype, Sufficient Conditions.  The prototype
example captures one condition that warrants establishing
class membership.  In this type of prototype, all variables
are deemed to be universally quantified; one such variable
is designated as the instance being classified.  The pattern
of Figure 2 captures a sufficient condition for the class
Parent: any person that has a child is a parent.

This pattern denotes the following FOL sentence:

(forall ?x,??y (implies (child ?x ??y)
                                    (isa ?x Parent)))

This pattern is captured in PHERL as

(and (isa Parent-1 Person)
        (isa Person-3 Person)
        (child Parent-1 Person-3)
        (isa Parent-1 Class-Prototype)
        (isa Parent-1 Sufficient-Prototype)
        (isa Person-3 Boolean-Prototype-Term)
        (class-prototype Parent Parent-1)
        (prototype-term-required Parent-1 Child-2)
        (prototype-rhs Parent-1 (isa Parent-1 Parent)))

As a Boolean-Prototype-Term, Person-3 is interpreted as a
boolean variable.  The “instance-level example” again
comprises the first three conjuncts.

Person-1 Person-2
mother

Figure 1: Necessary Prototype for Class Person

Parent -1 Person-3
child

Figure 2: Sufficient Prototype for Class Parent



Predicate Prototype, Necessary Conditions.  T h e
prototype example captures (one set of) conditions that can
be established whenever the predicate is established.  In
this type of prototype, each argument position of the
predicate is associated with a prototype term, all of those
argument terms that are variables are interpreted as
universally quantified, and all other variables are
interpreted as existentially quantified.  For example, the
pattern of Figure 3 captures a necessary condition for the
predicate wife: when a man has a wife then the wife was
the bride in a wedding in which he was the groom.

The antecedent edge (i.e., the predicate for which the
condition is necessary) is identified visually here as a
dashed line. This pattern denotes the following FOL
sentence:

(forall ?x,?y
      (implies (wife ?x ?y)
                    (exists ?z (and (isa ?z Wedding-Event)
                                            (bride ?z ?y)
                                            (groom ?z ?x)))))

This pattern is captured in PHERL as

(and (wife Groom-1 Bride-1)
        (bride Wedding-1 Bride-1)
        (groom Wedding-1 Groom-1)
        (isa Wedding-1 Wedding-Event)
        (isa Wedding-1 Prototype-Term)
        (isa Bride-1 Prototype-Term)
        (isa Groom-1 Prototype-Term)
        (isa Wife-P1 Predicate-Prototype)
        (isa Wife-P1 Necessary-Prototype)
        (predicate-prototype wife  Wife-P1)
        (prototype-term-required Wife-P1 Wedding-1)
        (prototype-term-required Wife-P1 Bride-1)
        (prototype-term-required Wife-P1 Groom-1)
        (prototype-lhs Wife-P1 (wife Groom-1 Bride-1)))

Predicate Prototype, Sufficient Conditions.  T h e
prototype example captures one condition that warrants
establishing the predicate.  In this type of prototype each
argument position of the predicate is associated with a
prototype term and all variables are interpreted as
universally quantified.  For example, the pattern of Figure
4 captures a sufficient condition for the predicate alias:
when two distinct identities share a social security number
they are aliases.

The consequence edge is identified visually here as a
dashed line.  This pattern denotes the following FOL
sentence:

(forall ?x,?y,?z (implies (and (ssn ?x ?z)
                                               (ssn ?y ?z)
                                               (different ?x ?y))

                                             (alias ?x ?y)))

This pattern is captured in PHERL as

(and (alias Worker-1 Worker-2)
        (ssn Worker-1 SSN-1)
        (ssn Worker-2 SSN-1)
        (different Worker-1 Worker-2)
        (isa Alias-P1 Predicate-Prototype)
        (isa Alisa-P1 Sufficient-Prototype)
        (isa Worker-1 Prototype-Term)
        (isa Worker-2 Prototype-Term)
        (isa SSN-1 Prototype-Term)
        (predicate-prototype alias Alias-P1)
        (prototype-term-required Alias-P1 Worker-1)
        (prototype-term-required Alias-P1 Worker-2)
        (prototype-term-required Alias-P1 SSN-1)
        (prototype-rhs Alias-P1 (alias Worker-1 Worker-2)))

Query Prototype. The prototype example captures some
situation of interest (which need not be defined as
necessary or sufficient for any predicate); i.e., it captures a
query.  In query prototypes, all variables are interpreted as
existentially quantified.  For example, the pattern of Figure
5 captures the query: what transfers have occurred of
$1000 or more, and to whom, from a member of al Qaeda?

Worker-1 Worker-2
alias

different

SSN-1

ssnssn

Figure 4: Sufficient Prototype for Predicate alias

“Al Qaeda ”

Posession -Transfer -1

Agent-1 Agent-2 Money-1

“$1000”

member -of greater -then

from to object

Figure 5: Query Prototype

Groom-1 Bride-1
wife

Wedding-1

groom bride

Figure 3: Necessary Prototype for Predicate wife



The constraints are visually identified by the quoted node
names.  This pattern denotes the following FOL query
sentence:

 (exists ?w,?x,?y,?z
     (and (member Al-Qaeda ?w)
             (isa ?x Possession-Transfer-Event)
             (from ?x ?w)
             (to ?x ?y)
             (object ?x ?z)
             (> ?z $1000)))

This pattern is captured in PHERL as

(and (member Al-Qaeda Agent-1)
        (from Transfer-1 Agent-1)
        (to Transfer-1 Agent-2)
        (object Transfer-1 Money-1)
        (> Money-1 $1000)
        (isa Transfer-1 Possession-Transfer-Event)
        (isa Funding-P1 Query-Prototype)
        (isa Transfer-1 Prototype-Term)
        (isa Agent-1 Prototype-Term)
        (isa Agent-2 Prototype-Term)
        (isa Money-1 Prototype-Term)
        (prototype-term-required Funding-P1 Transfer-1)
        (prototype-term-required Funding-P1 Agent-1)
        (prototype-term-required Funding-P1 Agent-2)
        (prototype-term-required Funding-P1 Money-1))

Each of these five classes of prototypes supports a class of
patterns (e.g., patterns for establishing class membership,
patterns for establishing a predicate holds over some data).
They support an intuitively meaningful graphical display
for patterns while capturing the clear semantics of their
corresponding FOL rules.

Representing Hypotheses

Representation Requirements
In our toolset community, a hypothesis is defined to be a
query (e.g., a pattern, matched against a dataset by a link
discovery module) and an answer (e.g., zero, one, or more
matches to the pattern among the accessible data).  As an
ideal, the representations of a query and answer should
include all necessary information to re-run the query (using
the same pattern, module, and data) to obtain the same
answer.  This is an ideal because, for example, some
aspects of some modules may be nondeterministic.  In
support of this ideal, the hypothesis representation
requirements should capture the following information.

1. Representing the Pattern (see above)

2. Datasets(s) used for answering the query

2.1 The accessible datasets (e.g., knowledge bases,
databases).

2.2 Dataset classes defined by some criteria on properties
of the datasets (e.g., use all datasets compliant with a given
ontology or that were produced by a given set of sources).

2.3 Data accessibility restrictions, including:

2.3.1 Temporal windows (e.g., start-time, end-time).

2.3.2 Spatial windows (e.g., within a given zip code).

2.3.3 Security/privacy authorizations.

The data classes and data-access restrictions can be used as
a subquery to dynamically select the datasets for use in
answering the primary query.

2.4 The dataset preprocessing specifications.

2.5 Query premises (Fikes, Hayes, and Horrocks 2003):
these enable “if…then…” queries, such as “if Muffet-
Muktbar is an alias for Shirin-Khatami then what data
now matches pattern Social-Network-P212?”

3. Module(s) to be used for answering the query

3.1 The module(s), including submodule(s), to be used, for
example, the LAW tool using the GEM pattern matcher
(Thomere et al. 2004).

3.2 Parameter settings that configure and control the
behavior of the search module; these might include:

3.2.1 Support for a query-specific search plan that
indicates, for example, the order in which to look for
variable bindings.

3.2.2 A function used to measure match quality.

3.2.3 Query-answer termination parameters:

3.2.3.1 A maximum number of matches to return in total
and/or how many to return in any one time frame.

3.2.3.2 A time cutoff: the latest time by which to send
results, for example, return results in 10 minutes, or return
results by March 13th 2005, 0700EST.

3.2.3.3 A search-state cutoff: the maximum number of
search states that can be considered.

3.2.3.4 A search-time cutoff: the maximum runtime
allowed for finding matches.



3.2.3.5 A search-cost cutoff: the maximum total pattern
match cost permitted.

3.2.3.6 A confidence cutoff: the maximum uncertainty
permitted.

3.3 A specification of the answer format (see below).

4. Answer format(s): some alternatives

4.1 The answer data is organized as a two-dimensional
table, such that each column corresponds to one pattern
variable and each row (aka a “binding vector”)
corresponds to one match of the pattern (e.g., see
SPARQL).

4.2 The answer data is organized as a list or set of
“matches,” each having the same structure as the query
pattern, with variables replaced by their bindings.

4.3 The answer data is organized as a list or set of a
specified formula (e.g., an “answer pattern”) referencing
variables from the query pattern (Fikes, Hayes, and
Horrocks 2003).

4.4 Inclusion or exclusion conditions for binding vectors
(e.g., that define when bindings are deemed redundant and
omitted from answer).

4.5 A sorting predicate by which to order the binding
vectors that compose the answer.

4.6 The answer data includes meta-data beyond the
bindings of pattern variables, such as

4.6.1 A (typically module-specific) match score.

4.6.2 Data describing the certainty of individual or sets of
bindings.

4.6.3 Explanations or derivations of bindings.

4.6.4 The provenance of data and rules used to derive the
bindings (e.g., source, authoritativeness, see Pinheiro da
Silva, McGuinness, and Fikes 2004).

4.6.5 Properties of the datasets accessed (e.g.,
completeness or correctness estimates, ontology, owner).

4.7  Batching or streaming the answer data.

5. Maintaining and organizing hypotheses

5.1 Queries and answers and hypotheses can be aggregated
into related collections (e.g., that share meta-data, such as
author or urgency or ontology).

5.2 Queries and answers and hypotheses may each have
associated meta-data, such as

5.2.1 Ontology

5.2.2 Inception and modification attribution: date, author,
project, comment, and version number.

5.2.3 A serialized handle (e.g., URI) allowing hypotheses
to be archived, retrieved and distributed as collections or
individually.

5.2.4 Access control information.

5.2.5 The hypotheses in which a query (or answer or
pattern or module) has appeared; the structured arguments
(see below) in which each hypothesis has appeared as
evidence.

5.2.6 Performance of the hypothesis; e.g., cost, or
correctness on test data with known ground truth or with
post hoc evidence from further investigation of the
hypothesis.

5.2.7 Hypotheses have associated degree of belief, at both
gross hypothesis level and pattern variable binding level.
This supports inexact pattern matching by modules, for
example, as embodied in SRI’s LAW system (Wolverton
et al. 2005, Ruspini, Thomere, and Wolverton 2004).

5.2.8 There can be annotations at any level of a hypothesis.
Annotations can be used, for example, to record agent (tool
or user) comments.

5.3 Hierarchical hypotheses

5.3.1 Hypotheses (queries) can be made up of
subhypotheses (subqueries), which could have been
generated by different modules over different data sources.
Different, nonintegrated data sources can occur in practice,
where the datasets have different information-theoretic
properties (Tierno 2005, Fournell and Tierno 2005); the
query can be broken into pieces, each piece running
against one of the nonintegrated datasets and
corresponding to a subquery with corresponding
subhypotheses.

5.3.2 Hypotheses can be used as input to modules to
perform queries on previous query results. For instance, a
module may be able to answer only a part of the original
query; that is, it may find bindings for variables in some
subsets of the query formula literals and return those as
well as the unanswered formula literals so that some other
module (or some other data, perhaps becoming available
later in time) may be used to complete the answer (e.g.,
KSL's JTP system; see Fikes, Frank, and Jenkins 2003).



5.4 Hypotheses can be extended or modified (e.g., getting
additional bindings as new data becomes available,
extending or correcting providence information as
warranted by the evolving context).

5.5 Hypotheses can have variable bindings unbound, that
is, to support unanswered parts of a query.

5.6 Syntax and presentation

5.6.1 Human-friendly: for example, a text-based or graph-
based form of the hypothesis language, which can be read
and written by human users of the language, as well as by
machines.  This may require representing presentation-
specific properties (e.g., node position, edge color).

5.6.2 Network-friendly: for example, an XML-based
syntax for sharing over the network.

Pattern and Hypothesis Interlingua for Sharing and
Display

PHERL is being developed as an interlingua to support
communication among tools that include patterns and
hypotheses among their inputs and outputs.  One
motivation for a common pattern representation language
is that patterns developed by or for one tool can be used by
other tools. A second motivation is that a single
presentation can be supported for display to the user, for
pattern browsing and editing.  This enables the user to
learn a single pattern display and editing interface rather
than having to develop proficiency with each tool’s
idiosyncratic display and interface.  Supporting PHERL as
a pattern interlingua requires developing translators to and
from the PHERL and the native pattern representation
languages of the tools, such as GEM (Thomere et al. 2004,
Wolverton et al. 2005) and qGraph (Blau, Immerman, and
Jensen 2002). Preliminary (partial) translators between the
pattern representation of PHERL and representations used
by several tools developed in our toolset community have
been developed.

Representing Evidence

The third representation tier in support of link analysis is
the evidential tier.  This tier captures how link analysis
hypotheses can be merged together or related in various
ways, for example, to support the evidence relevant to
some particular case as it evolves over time, to combine
both competing and supporting evidence within a
structured argument in support of a range of intelligence
needs, from the relatively low-level tasks of tracking
scenarios to relatively high-level tasks of developing
policy based on the best current interpretations of a
complex set of factors and hypotheses.  Our development
of this tier is less mature than the prior two, and we present
some preliminary requirements.

Representation Requirements
1. Hypotheses, as well as being an output in their own
right, can be used as evidence within a higher-level
hypothesis (hierarchical hypotheses); for example, SRI’s
structured argumentation tool, SEAS (Lowrance et al.
2001), can use low-level pattern match hypotheses from
SRI’s link discovery tool, LAW, as evidence.

2. Groups of hypotheses within evidence structures can be
annotated with relationships and dependencies (e.g., as
providing supporting or opposing evidence for some
particular outcome or conclusion, or as sets of competing,
alternative hypotheses for describing a situation, or as the
next group in a chronological series of hypotheses).

3. Evidence structures can be annotated with meta-data:

3.1 Inception and extension or modifications attributions
(e.g., time, date, author, project or RFI, comment, version
number).

3.2 Urgency, maturity of the threat or policy issue.

3.3 Access restrictions and an access log of who has
reviewed the evidence structure and when.

4. Evidence structures can be aggregated into containers
(e.g., related collections that share meta-data).

5. Evidence structures and their hypotheses can be
annotated with triggers for data conditions that warrant
reconsideration or further consideration (e.g., triggering an
RFI from an intelligence consumer).

Conclusions

Previous work in link analysis has developed interchange
languages for patterns and, to a lesser extent, hypotheses
(Harrison 2002, Blau et al. 2002). However, to date no
work has looked at representing all three tiers of possible
interchange between link analysis tools, namely, at the
pattern, hypothesis, and evidence levels. It is our
contention that one must consider all three tiers and how
tools might coordinate with one another (e.g., in a web-
services oriented environment) in order to develop a rich,
extensible, and flexible interlingua for link analysis.
Supporting only one tier (e.g., patterns) might facilitate the
ability to use a single visualization tool (e.g., Analyst’s
Notebook), but it does not address the broader issues of
sharing and reusing hypotheses derived by different tools.

Today, analysts must manually manipulate output from
one tool to another, or alternatively develop specialized
direct tool-to-tool translators. A common link analysis
interlingua, such as PHERL, would eliminate this
requirement, and allow a suite of specialized tools to be
brought to bear on the challenging problems faced by the
intelligence community.
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