
MARCO: A Modular Architecture for Following Route Instructions

Matt MacMahon
adastra@mail.utexas.edu

Department of Electrical and Computer Engineering
Intelligent Robotics Laboratory
University of Texas at Austin ∗

Abstract
Understanding and following verbal instructions is a crucial
human ability, allowing quick transfer of knowledge about
acting in the world. This paper presents the MARCO
modular architecture for reasoning about and following route
instructions. The Syntactic Parser parses route instruction
texts. The Content Framer interprets the surface meaning
of each sentence. The Instruction Modeler combines in-
formation across phrases and sentences: imperatively, as a
representation of what to do under which circumstances, and
declaratively, as a model of what is stated and implied about
the world. The Executor reactively interleaves action and
perception, executing the instructions in the context of the
environment. The Robot Controller adapts low-level actions
and local view descriptions to the particular follower’s motor
and sensory capabilities. When the follower can interact with
a director, the follower can plan dialog moves that increase
its understanding and likelihood of reaching the destination.

Introduction
People use verbal instructions to guide one another through
a task, even a task that the follower does not have the
knowledge or ability to accomplish alone. Instructions
convey both immediately practical imperative knowledge –
what to do – and declarative knowledge – what exists in
the world and to interact with it. A route instruction is an
instruction intended to guide a mobile agent toward a spatial
destination.

Route instructions are limited enough to be tractable,
are applicable to useful real-world tasks with clear criteria
for evaluation, and can draw on existing research into
spatial reasoning. Small and simple language models and
ontologies can cover many common and useful examples.
For instance, only four core actions are essential to following
basic instructions: turning at a place, traveling between
places, verifying a view description against an observation,
and terminating the instruction following.

Route instructions are useful: everyday, people use route
instructions to travel along previously unknown routes and

∗This work was funded under ONR work order
N0001405WX30001 for the NRL Research Option, Coordinated
Teams of Autonomous Systems. Thanks to the Intelligent Robotics
Laboratory and the Shape & Space Laboratory at University of
Texas at Austin and the Naval Research Laboratory’s NCARAI.

there is a large industry devoted to generating driving
instructions. The criteria for success are clear and easily
measured: when the follower has reached the destination
knowingly, with certainty, and with little effort. Finally,
route instructions can build on years of research about
spatial reasoning in robotics, artificial intelligence, and
cognitive psychology.

A route instruction set is the collection of route instruc-
tions that describes a route. A route instruction set is
also referred to as “route directions”, “route guidance”, or
“directions”1. Route instructions are a special case of verbal
instructions, which include recipes, assembly instructions,
and usage manuals. While route instruction sets may include
verbal, gestural, and pictorial components, (respectively
using words, body gestures, and map elements) this work
focuses on verbal route instructions. The route instruction
provider is referred to here as the director and the agent
following a route instruction set as the follower.

This paper introduces the MARCO architecture for under-
standing and executing natural language route instructions.
The first two modules of the architecture, the Syntactic
Parser and Content Framer, are applicable to any natural
language understanding problem. They interpret an unstruc-
tured text string into a representation of word meaning and
phrase and sentence structure. The Instruction Modeler
integrates meaning across phrases and sentences and can
utilize prior domain knowledge. The Executor module
reactively sequences discrete low-level actions, while the
Robot Controller realizes those commands in a continuous
perceptual and motor space. Both of these modules are
task-independent at the architecture level. An architecture
diagram with implemented modules is shown in Figure 2.

Two Instruction Modelers are described within: the Com-
pound Action Specifier models the imperative content of
general instructions, while the SSH Route Topology Modeler
models the declarative content of spatial descriptions. Each
modeler can process sentences which have either imperative
and declarative surface forms. Finally, I present related
work on autonomously understanding and following route
instructions.

1The term “route instruction” avoids confusion with the terms
“cardinal direction” (north, west, etc.) and “relative direction” (left,
up, etc.), components of route instructions.

Route Text “turn to face the green hallway”“walk three times forward”

SYNTAX
PARSER

⇓
Parse Tree

⇓

TURN

TURNV

’turn’

ORIENT

ORIENTV

’to’ ’face’

PATH

DET

’the’

APPEAR

’green’

PATHN

’hallway’

PUNCT

’,’

TRAVEL

TRAVELV

’walk’

DIST

COUNT

’three’

UNIT

’times’

DIR

’forward’

PUNCT

’,’

CONTENT
FRAMER

⇓
Content Frame

⇓

2

6

6

6

6

6

6

6

6

6

6

4

TURN
2

6

6

6

6

6

6

6

4

ORIENT
2

6

6

6

6

4

V/ORIENT Face

PATH

2

6

4

DEF +
APPEAR Green
PATH Hall

3

7

5

3

7

7

7

7

5

3

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

4

TRAVEL
2

6

6

4

DIR Forward

DIST
"

COUNT 3
UNIT Move

#

3

7

7

5

3

7

7

7

7

7

5

INSTRUCTION
MODELER

⇓
Compound

Action
Specification

Turn (until=Verify (desc=
[Path (appear=Green,
side=Forward),]))

Travel (dir=Forward, dist=3)

TOPOLOGICAL
ROUTE MAP

Places: place(Pl1); place(Pl2); Paths: path(Pa1);
Relations: on(Pa1, Pl1); on(Pa1, Pl2); order(Pa

+

1 , Pl1, Pl2);
appear(Pa

+

1 , Pl1, Green); pathType(Pa
+

1 , Pl1, Hall);
pathDistance(Pa1, Pl1, Pl2, 3, Move);
Route:turn (at :Pl1, onto :Pa

+

1) travel (along :Pa
+

1 , from :Pl1, to :Pl2)

Figure 1: Representations used in understanding two example sentences by the MARCO framework

Understanding and Following Instructions
MARCO is an architecture for understanding and following
natural language route instructions. It builds on work in
computational linguistics and intelligent architectures. The
language understanding part of the architecture builds on
ideas from the Nautilus natural language understanding
system (Wauchope et al. 1997; Perzanowski et al. 2001;
Simmons et al. 2003) and from Reiter and Dale’s
natural language generation architecture (1997). The
execution and control modules build on top of work
in intelligent robot architectures (Bonnasso et al. 1997;
Simmons & Apfelbaum 1998). The architecture draws
ideas from multi-tiered intelligent architectures like 3T and
an early implementation was programmed in TDL.

Figure 1 shows the intermediate representations used by
the MARCO framework to understand a route instruction
text. Figure 2 shows the relation of the natural language
understanding and robot control parts of the architecture.

The parser, here from a Probabilistic Context-Free Gram-
mar, parses the unstructured route instruction text. This
tree can be transformed into an content frame representa-
tion, Content frames are a recursive representation of the
surface meaning of an utterance, after taking out incidental
features, such as phrase order and word selection. Content
frames can represent the information captured in verbs and
verb arguments. Content frames are analyzed to extract
compound action specifications, which are an imperative
model of the relations between low-level actions and view

descriptions. The compound action specifications guide the
follower when navigating the route.

MARCO also integrates individual utterances to model
the declarative semantics of the route instructions. The
instructions imply a model of the spatial structure and
appearance of the route: its topology of paths and places
and their perceptual attributes. A powerful representation of
the route can be found in the Spatial Semantic Hierarchy, as
explained in the next section. A sketch of converting content
frames into a topological route representation follows the
brief introduction to the SSH.

Syntax Parser
The Syntax Parser parses the raw route instruction text. A
portion of route instructions from a human-subject study
were hand-labeled for semantic features. (See Table 1 for
examples). The texts were cleaned by hand to remove
capitalization, standardize punctuation, and fix typos that
split or merge words (affect the parse structure). A referring
phrase is a noun phrase that refers to some entity or attribute
being described, analyzed on its semantic content instead of
its syntactic makeup (Kuipers & Kassirer 1987). By tagging
the referring phrases and verbs in a set of route instructions
with semantic annotations to the phrase and argument types,
this analysis characterized the surface meaning of route
instruction utterances.

From the hand-labeled text, a Probabilistic Context Free
Grammar (PCFG) was trained to parse and semantically tag

_ _ _ _ _ _ _�
�

�
�

_ _ _ _ _ _ _Module

Representation
�� ��

Explanation
Python

Simulation
Implementation

Markov Robot
Localization

Implementation
GRACE / George
Implementation

_ _ _ _ _ _ _�

�

�

�
_ _ _ _ _ _ _

Input

Route
Instruction

Text

�� ��

Keyboard

�� ''OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
File

��>
>>

>>
>>

>>
>>

>>
>>

>>
>>

>>
>>

>>

����
��

��
��

��
��

��
��

��
��

��
��

�
Voice Recognizer

wwo o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

��

Unstructured
natural language
Verbatim text

_ _ _ _ _ _ _�

�

�

�
_ _ _ _ _ _ _

Syntax
Parser

Parse
Trees

�� ��

parses sentence structure
tags

parts-of-speech
NLTK

PCFG Parser

��

NRL NCARAI
Nautilus Parser

��

Phrase structure
Structure of
utterance

_ _ _ _ _ _ _�

�

�

�
_ _ _ _ _ _ _

Content
Framer

Content
Frames

�� ��

canonicalizes phrase
lookup word senses

NLTK Feature
Structure Framer

�� ��<
<

<
<

<
<

<
<

<
<

<
<

NRL NCARAI
Nautilus
Messager

�����
�

�
�

�
�

�
�

�
�

�

xxq q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q

Nested attributes
and values

Surface meaning

_ _ _ _ _ _ _�

�

�

�
_ _ _ _ _ _ _

Instruction
Modeler

Instruction
Semantic
Model

�� ��

combines phrases
places in context

Compound
Action Specifier

��

SSH Route
Topology
Modeler

��

TDL Instruction
Dialog

��

Semantics of route
Deep meaning of
instruction set

_ _ _ _ _ _ _�
�

�
�

_ _ _ _ _ _ _Executor

Discrete
actions,
View desc.

�� ��

SSSS

Action,
View desc.

match
result

sequences route model
robot controller feedback

Instruction
Queue Executor

�� ""D
D

D
D

D
D

D
D

D

((R
RR

RR
RR

RR
RR

RR
RR

Topological
Markov SLAM

���
�

�

�

�

�

||z
z

z
z

z
z

z
z

z
z

""D
D

D
D

D
D

D
D

D

TDL Instruction
Queue

��
_ _ _ _ _ _ _�

�

�

�
_ _ _ _ _ _ _

Robot
Controller

Actuator
movement
commands

�� ��

RRRR

Sensor
signals

enacts commands
reactively

checks view description
Simulated Robot

Controller

zzttttttttttttttttttttttt

���
�

�

�

�

�

�

UTexas Int.
Robotics

Lab HSSH

��

NRL NCARAI
Wax / Missouri
CIRL SRServer

��
_ _ _ _ _ _ _�
�

�
�

_ _ _ _ _ _ _Robot POMDP Model
Simulator Vizard Simulator Vulcan and

Clifford
GRACE

and George

Figure 2: Module interactions of the MARCO framework. Solid arrows are implemented, dashed arrows are planned.

EDA turn to face the green halllway, walk three times forward, turn left, walk forward six times, turn left, walk forward
once

EMWC Follow the grassy hall three segments to the blue-tiled hall. Turn left. Follow the blue-tiled hall six segments,
passing the chair, stool and bench, to the intersection containing the hatrack. Turn left. Go one segment forward
to the corner. This is Position 5.

KLS take the green path to the red brick intersection. go left towards the lamp to the very end of the hall. at the chair,
take a right. at the blue path intersection, take a left onto the blue path. at the coat rack, take another left onto the
plain cement. at the end of this hall at the corner, you are at position 5

KXP head all the way toward the butterfly hallway, keep going down it until you reach a dead end square area. pos 5 is
in the corner to the left as you enter the square block.

TJS go all the way down the grassy hall, take a left, go all the way down the blue hall until you see a coat rack, take
another immediate left.

WLH from four face the grass carpet and move to the hat rack, turn left and move onto the blue carpet, walk past two
chairs and to the lamp, turn left, move into the corner such that the lamp is behind you and to your right you see a
gray carpeted alley

Table 1: Example directions by different route directors. All directions describe travel from the same starting and ending
positions in the same environment. Instructions are as typed by the directors, including typos (e.g. “halllway”).

route instruction texts. This parser labeled additional route
instructions. The automatically tagged route instructions are
then hand-corrected. The tagged trees help bootstrap the
process of learning the full language model.

Content Framer
The Content Framer extracts the local surface semantics of
words and phrase structure from the syntactical parse tree.
These content frames model the phrasal structure and word
meaning of what was said by dropping text token ordering
info, labeling parts of speech, and dropping punctuation.
The Content Framer looks up nouns, verbs, adjectives and
adverbs in WordNet (WordNet 2005; Fellbaum 1998), an
ontology for English. The output of this processing stage,
the content frame, is the structure of each instruction phrase
and the words’ surface meaning.

Instruction Modeler
The Instruction Modeler integrates content frames into a
model of the entire instruction set. Imperative models,
such as Compound Action Specifications, model what
the follower should do. Declarative models, such as
Topological Route Map, model the world.

Compound Actions Specifier
The Compound Actions Specifier builds an imperative model
of the instructions from (1) general knowledge of the verbs
and prepositions of route instructions and (2) domain-
and robot-specific knowledge of perceiving and acting in
the environment. Prepositions and verbs of motion in
route instructions are relatively independent of where the
instructions are followed (the environment) and who is
following them (the agent). On the other hand, perceiving
and acting on objects and object attributes are dependent on
the agent and environment.

Route instructions require at least four low-level action
types. To turn is to change the agent’s orientation (pose)
while remaining in the same location. To travel is to

change the agent’s location without changing orientation
along a path. To verify is to check an observation against
a description of an expected view. Finally, to declare-goal
is to terminate instruction following by declaring the agent
is at the destination. Additionally, route instructions contain
view descriptions, which partially describe what the follower
will see in certain poses along or near the route.

Some route instructions may contain other action types,
such as “open the door” or “take the elevator
to the 2nd floor”. However the four action types
above are both necessary and sufficient for following many
route instructions.

The compound action specification captures the transi-
tions between low-level actions on perceiving observations
matching view descriptions. Content frames model the
local surface semantics of the phrase structure of the
instruction utterances. Compound action specifications
model the structure of what the follower is told to do by
each utterance, pulling together information across phrase
boundaries. Evaluating the full meaning of each utterance is
deferred until the utterance’s environmental context comes
into play as the follower proceeds along the route.

Prepositional phrases and verb objects translate to pre-
conditions, while conditions, and post-conditions in com-
pound action specifications. For instance, phrases may
describe which path to take, how far to travel, or the view
that will be seen when the action is accomplished. Other
action verbs have some arguments implicit, such as “face”
implies turn until the description is matched. Conditional
actions are modeled by embedding actions. For instance,
note the implicit travel action before the turn in “At the
corner, turn left.”

Nouns, adverbs, adjectives are grounded in an
environment- and follower-specific concept knowledge
base. Each known concept is grounded in knowledge of
how it affects the agent’s interaction with the world. For
instance, the concept of an intersection is linked to the code
that segments intersections from the observation stream
and classifies their type. By examining the local path

configuration, the code can classify dead end, ”T”, and
corner intersections (Kuipers et al. 2004).

The WordNet ontology is used to look up the nearest
synonym or more abstract hypernym in the knowledge base
to each mentioned word. This allows the agent to look for a
more general object, such as “couch”, when it does not have
knowledge of a specific sub-type, such as “futon.”

Executor: Interleaving Action and Perception
The executor breaks down the model of the instructions into
low-level turn, travel, verify, and declare-goal actions.
The executor interprets each compound action to execute
low-level actions, including verifying view descriptions to
find the appropriate context for an action. For instance,
the executor continues to turn until a verify returns a view
description has matched.

The executor is equivalent to, and can be implemented
by, the reactive task sequencing tier of the standard
three-tiered intelligent architecture (Bonnasso et al. 1997).
One implementation of the MARCO executor is written
as tasks in TDL, CMU’s Task Description Language
(Simmons & Apfelbaum 1998). The executor reasons at the
Causal and Topological levels of the SSH (Kuipers 2000).

The executor algorithm need not know anything about
how the follower moves through the environment or how
the view descriptions are verified. Those actions and
observations may be opaque to the executor stage, in an
ontology it can pass through but not comprehend. One
executor module can be run with different robot controllers.

The simplest route instruction executor is the Instruction
Queue Executor. It steps through a list of instructions,
attempting to execute each fully before moving to the next.
Executing each instruction may consist of ensuring various
preconditions, distance estimates, and postconditions are
met. Each condition may entail moving then verifying the
resulting view matches a view description.

This instruction following algorithm may be replaced
with more sophisticated algorithms that leverage previous
knowledge of the environment map, or knowledge of how
directors describe spatial route navigation. An executor
that reasons about the possible route topologies of a route
instruction set is described later.

Robot Controller
The Robot Controller module executes the low-level turn,
travel, verify, and declare-goal actions. Robot controllers
present a common interface to the executor, with domain-
and agent- dependent implementations. This stage moves
the agent for turns and travels and can verify whether or not
a view description matches an observation.

The robot controller acts at the level of the control tier
of the 3T intelligent architecture. The robot controller in
GRACE is written as commands and monitors in TDL. The
ontology of the robot controller is the Control level of the
SSH ontology: continuous sensori-motor experience and
control laws.

For instance, consider the instruction “Move to the
blue hall.” The executor executes the robot’s travel

action and then the robot’s verify action. A controller for
a robot with peripheral vision would execute the verify by
analyzing the periphery of the view while facing along the
travel direction. A controller for a robot without peripheral
vision would turn to face each hallway, verify if it is blue,
and turn back, all as part of the verify action.

SSH Route Topology Modeler
Compound action specifications and the Instruction Queue
Executor model the route instructions as a list of imperative
commands. The follower concentrates on inferring what
the director intended the follower to do. However, route
instructions also state or imply a spatial route layout.
Another approach to following route instructions is to
extract the implied map of the route from the route
instructions. The follower infers what the director intended
the follower to know about the route map.

Route instructions can be represented naturally in the
Spatial Semantic Hierarchy (SSH) (Kuipers 2000). Route
instruction texts describe causal and topological structures
annotated with metrical and rich view (object and landmark)
information. A view abstracts the sensory image to a
symbolic representation. In the SSH, the causal level
discretizes continuous control motions into reliable, high-
level actions. At the causal level, motions are abstracted
to either turn or travel actions. A turn action changes
orientation within a place, while a travel moves the agent
from one place to another.

The topological level of the Spatial Semantic Hierarchy
represents the environment as places, paths, and regions
and the topological relations of connectivity, path
order, boundary relations, and regional containment
(Remolina & Kuipers 2004).

Route instructions can be represented by the SSH causal
and topological ontologies, with the actions annotated
with metrical and view attributes. Route instructions are
expressed in both declarative and procedural language, e.g.
both “As you walk down the hall, you will
see a lamp,” and “Walk down the hall past
the lamp.” Route instructions include both causal
actions (“Walk forward three steps.”) and
topological actions (“Face along the blue path
and follow it to the intersection with
the brick hall.”).

The Instruction Queue Executor acts at the causal level,
although the robot may recognize topological entities such
as paths and intersections. Each turn and travel moves
the follower to the next pose and each verify compares the
view against the view description. However, moving up the
ontology, an executor can reason about the spatial layout
of the route. Explicitly reasoning at the topological level
can help handle ambiguity in the language, interpretation,
observation, execution, and map learning.

Inferring an SSH Topological Route Map
The SSH Route Topology Modeler builds a declarative model
of the spatial layout of the route from the content frames.

It reasons about the semantics (meaning), anaphora (co-
reference resolution), and discourse properties (inferring the
conversational intent of an utterance) of route instruction
texts.

Both Grice’s conversational maxims (1975)
and Sperber & Wilson’s Relevance Theory (2004) are
linguistic theories of discourse – how sentences are strung
together to form broader meaning. Each theory assumes
that a cooperative speaker conveys meaning by crafting the
discourse to clearly and concisely carry across the necessary
concepts.

I propose sets of axioms and heuristics for a follower to
infer the topological map. Once the makeup and structure
of the topological map is known, the map can be displayed
graphically as a user or developer interface.

One set of axioms instantiates the entities, or resources,
required by complex concepts. For instance, “the corner”
in these instructions usually refers to the intersection of
two paths, each terminating at the corner. Other resource
axioms include “each path connects at least two places,
“each intersection is the meet point of at least two paths”,
and “a left or right turn action implies changing paths”.

Another class of axioms tracks when information is
explicitly mentioned and when it can be inferred. These
conversational axioms include “When two consecutive turn
commands specify their location, these are distinct places
separated by an unstated travel action.” and “When a
turn is immediately followed by a travel without a location
mentioned, the travel starts where the turn results.” These
help resolve anaphora issues: for each mention of an entity,
is it new or previously mentioned?

Why Model Route Instructions in the SSH?
The Spatial Semantic Hierarchy is a rich, but complex
model for reasoning about space. Is the SSH excessive
or just complex enough for the needs of following route
instructions?

First, the Spatial Semantic Hierarchy is a well-
developed, theoretically grounded cognitive spatial
model. The SSH is supported by having working
implementations on mobile robots (Kuipers et al. 2004),
and by modeling human navigation and spatial learning
performance (Kuipers, Tecuci, & Stankiewicz 2003).

Partial knowledge of the environment
The SSH is a lattice of representations that can model states
of partial spatial knowledge, including partial maps as the
environment is learned. For instance, the SSH can easily
model knowing only some routes instead of the overall
spatial network; knowing that two paths meet a corner, but
not the relative turn direction between the two; or knowing
some path segment distances but not others.

Route instructions must select certain aspects of the route
to describe, so the texts by nature underspecify the route.
Instruction texts do not often mention the absolute location
of everything in the environment. The SSH can model the
director eliding a turn direction, occasionally mentioning
a distance, and selectively noting landmarks and other
perceptual features.

Mapping while route following
The Spatial Semantic Hierarchy enables navigating despite
ambiguity in the map. In the domain of Simultaneous
Localization and Mapping (SLAM), the agent is attempting
to learn the map of the environment while navigating
it. Given an experience trace, more than one map is
always possible in an environment with place aliasing, or
perceptually identical places. For instance, each familiar
place encountered, may be a new place that merely looks
similar. The SSH can explicitly reason about the complete
set of possible maps to navigate or produce the most likely
map (Remolina & Kuipers 2004; Kuipers et al. 2004).

Resolving linguistic and perceptual ambiguity while
following route instructions is analogous to resolving per-
ceptual aliasing. Route instructions do not completely
specify the route, leaving spatial ambiguity. For instance,
a turn direction may be unspecified, leaving topological
ambiguity.

The SSH can handle the ambiguous maps derived from
underspecified or linguistically ambiguous route instruc-
tions using the same reasoning mechanism that handles the
spatial ambiguity in SLAM. That is, the partial, ambiguous
map of the environment derived from language understand-
ing and the partial, ambiguous map learned from exploration
can be represented and reasoned about in the same way by
the same cognitive processes.

Comparison with other spatial representations
The SSH has several advantages over global metrical maps,
such as occupancy grids. With a known global metrical
map, a robot can follow a set of route instructions, although
finding the route in the metrical map will require processing
or a hybrid representation. However, since the global
metrical map is a precise representation of what has been
observed, it is difficult to reason about unseen, unknown
places. To navigate with a global occupancy grid alone, the
agent must know the exact dimensions of the hallways and
rooms, which are never described in natural language route
instructions. Generating route instructions using a metrical
map is possible, but using a representation that more closely
follows people’s cognitive maps should produce instructions
which are more robust and easy to follow.

The advantage of this representation is cognitive parsi-
mony. Topological maps represent not only routes, but also
networks of places and paths. The reasoning skills needed
to create, integrate, manipulate, and utilize topological
maps are already documented in people and derived in the
SSH (Remolina & Kuipers 2004). Additionally, a topolog-
ical route map eases integrating the route instructions with
known maps and primes learning the environment through
experience.

Planning the Route Instruction Dialog
When the follower interacts with the route director, it
can also optimize dialog. The follower decides when to
interrupt the route director with a question, trading off the
cost of asking a question against the likelihood of missing
the destination. Speech acts or dialog moves can clarify,

disambiguate, or fill in needed knowledge. Nursebot rea-
soned about when and how to extend the dialog to increase
understanding (Roy, Pineau, & Thrun 2000). Rather than
exploring the world to fill in gaps and ambiguities in the
instructions, the follower can simply ask for route details
and clarification.

The follower can decide when to interact and ask for
route instructions, balancing the benefit of more likely
reaching the destination against the cost of interrupting
and querying someone. This adds actions of finding a
knowledgeable director and initiating dialog, as well as the
state the location of directors. Thus, the most capable
agent must optimally chose when to seek help by asking
for route instructions, optimally query for route instructions,
and optimally navigate using the route instructions.

Related Work in Automated Instruction
Following and Analysis

Several software systems analyze or follow route instruc-
tions. Riesbeck’s system evaluated route instructions
by high-level characteristics, independent of the environ-
ment (1980).

In examining plans-as-communication, Agre & Chapman
considered the inverse: communications as underspecified
plans (1990). They showed how route instructions, such as
a set from Agre’s flat to the metro station, do not uniquely
specify action sequences, but instead constrain navigation
by providing a plan skeleton, with exploration sub-goals
the follower must accomplish. Chapman followed up on
this theoretical paper in implementing the “Sonja” system,
which interpreted spoken advice and instructions to better
fight the monsters in her virtual dungeon (1990).

Alterman, Zito-Wolf, & Carpenter implemented a system
which reactively replans to read the instructions when
its naïve plan proves inadequate (1991). The system,
FLOABN, operated in a discrete event simulation. Example
instructions focused on different ways of paying for phone
calls.

Webber et al. looked at the broader question of inferring
an intended plan from any instructions (1995). This work
examined the linguistic and domain knowledge needed to
get a virtual agent to follow instructions from various
domains. Di Eugenio reports on the language system of this
work (1998). Her software analyzes general instructions,
such as craft guides, matching the text against a plan library
using plan recognition. The system was integrated with
the AnimNL system, which is a VR animation able to
simulate several tasks. The big lack in the system is an
inability to synthesize meaning across the discourse, instead,
it interprets each sentence in its own context.

Müller et al. implemented a system which can follow a
formal route description through an environment, with the
intention of adding on a natural language understanding
system (2000). Descriptions follow the Tversky and
Lee analysis, specifying where to turn or switch paths
(Tversky & Lee 1998).

GRACE and GEORGE in the AAAI Robot
Challenge
Perzanowski et al. implemented a system that combined a
speech recognizer, a deep parser, a dialog model, hand ges-
ture recognition, and a Palm Pilot control interface (1998;
2001). A user could command the robot to move around a
mapped, small-scale space by speaking and gesturing.

GRACE extended this architecture, adding the ability to
follow a route instruction series through an unmapped,
unknown large-scale space (Simmons et al. 2003). The
right side of Figure 2 shows GRACE’s route instruction
following architecture. GRACE navigated through a confer-
ence center by asking for and following route instructions.
GRACE and GEORGE could string together several simple
commands, using an instruction queue executor. They also
handled implied new interim destinations (“Take the
elevator”).

In 2002, GRACE successfully, though haltingly,
completed the Robot Challenge at AAAI
2002 (Simmons et al. 2003). The 2003 robots were
beset by hardware, software, and communications problems
that illustrate the need for more user visibility into the
state of the system. Still, the robots were directed down
a hallway, up a ramp and through a narrow doorway, and
across an exhibition hall.

GRACE and GEORGE had several major limitations. Most
debilitating, the commercial speech recognition system was
unreliable. The vocabulary and sentence structure were
limited so only a trained operator could direct the robots.
The navigation planning code relied on having a completed
global metrical map, so navigating to unseen, unknown
locations was extremely fragile. Crowds of people forming
shifting walls further confused the robot.

GRACE and GEORGE did not reason to infer implied
actions. They had only one interpretation of the instructions,
although this was checked with the director. The robots
did not estimate the likelihood of action success, but
instead asked the director. The MARCO modules that
probabilistically localize along the route were inspired by
these difficulties.

Conclusion
This paper presents MARCO, an architecture for understand-
ing and following natural language route instructions. The
MARCO architecture is modular, to apply different parsing,
sense tagging, modeling, and execution, and robot control
techniques. The first parsing and sense tagging steps of
the process can be done without any knowledge of the
environment, only a language model. Modeling particular
directors will increase the accuracy and lower uncertainty.

Route instructions can be modeled as either an imperative
model of what the follower should do, or a declarative
model of how the route is spatially configured. In either
case, previous knowledge of the environment is helpful,
but not necessary. Both the imperative compound action
specification and the declarative topological route map can
model instructions that only loosely guide the follower
towards the goal. Where attributes of the route are

underspecified, the follower relies on being situated in
the environment to disambiguate among diverse alternative
models. When the follower is receiving the instruction
in dialog, however, there is another option: asking for
clarification. The follower can plan whether it is likely to
reach the goal with the instructions it has received or if it
needs more information or different landmarks.

The follower delays full evaluation of the instructions
until the environmental context comes into sight. By putting
off the difficult decisions, perceiving the environment will
often make one choice prominent. The embodied agent can
procrastinate exhaustive modeling until the world resolves
many ambiguities through inconsistency with the senses,
allowing the follower to concentrate its efforts.

References
[Agre & Chapman 1990] Agre, P. E., and Chapman, D.

1990. What are plans for? Rob. & Auton. Sys. 6:17–34.
[Alterman, Zito-Wolf, & Carpenter 1991] Alterman, R.;

Zito-Wolf, R.; and Carpenter, T. 1991. Interaction,
comprehension, and instruction usage. J. of the Learning
Sciences 1(3/4):361–398.

[Bonnasso et al. 1997] Bonnasso, R. P.; Firby, R. J.; Gat,
E.; Kortenkamp, D.; Miller, D. P.; and Slack, M. G. 1997.
Experiences with an archtitecture for intelligent, reactive
agents. J. of Exptl. and Theo. AI 9(1):237–256.

[Chapman 1990] Chapman, D. 1990. Instruction use
in situated activity. Ph.D. Dissertation, MIT, Dept. of
Elec. Eng. & Comp. Sci. , Cambridge, MA. Also Available
as MIT, AI Lab. Technical Report 1204.

[Di Eugenio 1998] Di Eugenio, B. 1998. An action
representation formalism to interpret natural language
instructions. Compl. Intelligence 14(1):89–133.

[Fellbaum 1998] Fellbaum, C., ed. 1998. WordNet: An
Electronic Lexical Database. Cambridge, MA: MIT Press.

[Grice 1975] Grice, H. P. 1975. Logic and conversation. In
Cole, P., and Morgan, J. L., eds., Speech Acts, volume 3 of
Syntax and Semantics. New York: Academic Press. 43–58.

[Kuipers & Kassirer 1987] Kuipers, B., and Kassirer, J.
1987. Knowledge acquisition by analysis of verbatim
protocols. In Kidd, A., ed., Knowledge Acquisition for
Expert Systems. New York: Plenum.

[Kuipers et al. 2004] Kuipers, B.; Modayil, J.; Beeson,
P.; MacMahon, M.; and Savelli, F. 2004. Local
metrical and global topological maps in the hybrid Spatial
Semantic Hierarchy. In Proc. of IEEE Intl. Conf. on
Rob. & Autom. (ICRA-04). New Orleans, LA, USA: IEEE
Computer Society Press.

[Kuipers, Tecuci, & Stankiewicz 2003] Kuipers, B. J.;
Tecuci, D. G.; and Stankiewicz, B. J. 2003. The skeleton
in the cognitive map : A computational and empirical
exploration. Env. & Behavior 35(1):80–106.

[Kuipers 2000] Kuipers, B. J. 2000. The Spatial Semantic
Hierarchy. AI 119:191–233.

[Müller et al. 2000] Müller, R.; Röfer, T.; Lankenau, A.;
Musto, A.; Stein, K.; and Eisenkolb, A. 2000. Coarse

qualitative descriptions in robot navigation. In Freksa, C.;
Brauer, W.; Habel, C.; and Wender, K. F., eds., Spatial
Cognition, volume 1849 of LNCS, 265–276. Springer.

[Perzanowski et al. 2001] Perzanowski, D.; Schultz, A. C.;
Adams, W.; Marsh, E.; and Bugajska, M. 2001. Building
a multimodal human-robot interface. IEEE Intelligent Sys.
16–21.

[Perzanowski, Schultz, & Adams 1998] Perzanowski, D.;
Schultz, A. C.; and Adams, W. 1998. Integrating natural
language and gesture in a robotics domain. In Proc. of
Intl. Symp. on Intelligent Control, 247–252. Washington,
DC: IEEE Computer Society Press.

[Reiter & Dale 1997] Reiter, E., and Dale, R. 1997.
Building applied natural language generation systems.
J. of Natural Lang. Eng. 1(1):1–32.

[Remolina & Kuipers 2004] Remolina, E., and Kuipers, B.
2004. Towards a general theory of topological maps. AI
152(1):47–104.

[Riesbeck 1980] Riesbeck, C. 1980. “You can’t miss it!” :
Judging the clarity of directions. Cog. Sci. 4:285–303.

[Roy, Pineau, & Thrun 2000] Roy, N.; Pineau, J.; and
Thrun, S. 2000. Spoken dialog management for robots.
In Proc. of 38th Ann. Meeting of the ACL (ACL-00). Hong
Kong, China: Morgan Kaufmann.

[Simmons & Apfelbaum 1998] Simmons, R., and Apfel-
baum, D. 1998. A task description language for robot
control. In Proc. of IEEE/RSJ Intl. Conf. on Intelligent
Robots & Sys. (IROS).

[Simmons et al. 2003] Simmons, R.; Goldberg, D.; Goode,
A.; Montemerlo, M.; Roy, N.; Sellner, B.; Urmson, C.;
Schultz, A.; Abramson, M.; Adams, W.; Atrash, A.;
Bugajska, M.; Coblenz, M.; MacMahon, M.; Perzanowski,
D.; Horswill, I.; Zubek, R.; Kortenkamp, D.; Wolfe,
B.; Milam, T.; and Maxwell, B. 2003. GRACE: An
autonomous robot for the AAAI Robot Challenge. AI
Magazine 24(2):51–72.

[Sperber & Wilson 2004] Sperber, D., and Wilson, D.
2004. Relevance Theory. In Horn, L. R., and Ward, G.,
eds., The Handbook of Pragmatics. Oxford: Blackwell.
607–632.

[Tversky & Lee 1998] Tversky, B., and Lee, P. U. 1998.
How space structures language. In Freksa, C.; Habel, C.;
and Wender, K. F., eds., Spatial Cognition, volume 1404 of
LNCS, 157–176. Berlin: Springer.

[Wauchope et al. 1997] Wauchope, K.; Everett, S.;
Perzanowski, D.; and Marsh, E. 1997. Natural language
in four spatial interfaces. In Proc. of 5th Applied
Nat. Lang. Proc. Conf. on, 8–11.

[Webber et al. 1995] Webber, B.; Badler, N.; Di Eugenio,
B.; Geib, C.; Levison, L.; and Moore, M. 1995.
Instructions, intentions and expectations. AI 73(1–2):253–
269. Spec. Issue on “Compl. Res. on Interaction and
Agency, Pt. 2”.

[WordNet 2005] 2005. Wordnet: a lexical database for the
English language. http://wordnet.princeton.edu/.

	Introduction
	Understanding and Following Instructions
	Syntax Parser
	Content Framer
	Instruction Modeler
	Compound Actions Specifier

	Executor: Interleaving Action and Perception
	Robot Controller
	SSH Route Topology Modeler
	Inferring an SSH Topological Route Map
	Why Model Route Instructions in the SSH?
	Partial knowledge of the environment
	Mapping while route following
	Comparison with other spatial representations

	Planning the Route Instruction Dialog
	Related Work in Automated Instruction Following and Analysis
	Grace and George in the AAAI Robot Challenge

	Conclusion

