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Abstract

We operationalize the theory associated with an economic
model of network formation and conduct experiments to de-
termine the feasibility of endogenous, dynamic network for-
mation in multi-agent organizations. We develop a learning-
based, decentralized network formation strategy that allows
the agents to make network adaptation decisions based on
past performance. We compare our method with a dynamic
network formation process proposed in the economics liter-
ature that relies on a global computation over the entire net-
work structure. Our findings demonstrate that local decisions
based solely on prior experience perform as well as local de-
cisions based on perfect knowledge and a global computation.

Introduction
As multi-agent systems grow in size and complexity it is
likely that they will move toward an open system paradigm,
within which neither the system nor all of the individual
agents will fall under the control of a single authority. There
are many challenging problems associated with open multi-
agent systems, one of which is the ability of the agents
to manage their local connectivity in a large agent social
network. In many multi-agent systems, it is assumed that
all agents can interact with all other agents and that they
can know about the other agents and their capabilities. In
the open system paradigm, especially when there is a large
number of agents, these assumptions will no longer hold.
Limited cognitive capabilities, geographical constraints, and
communications limitations are three factors that will con-
tribute to restricted interactions among the agents and the
emergence of an agent social network in large, open multi-
agent societies. Examples of networked multi-agent sys-
tem domains include distributed information retrieval (Yu,
Venkatraman, & Singh 2003), supply chains (Thadaka-
malla et al. 2004; Walsh & Wellman 2003), sensor net-
works (Culler, Estrin, & Srivastava 2004), and team forma-
tion (Nair, Tambe, & Marsella 2002).

One potential method of collective learning in a large net-
work of agents is to endow the agents with the ability to
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adapt, or learn to adapt, their local connectivity structure in
the agent social network. We refer to the concept of dis-
tributed, local, real-time adaptation of the agent social net-
work asagent-organized networks(AONs). This notion of
organizational learning as a result of AONs is believed to be
widely applicable to many multi-agent system applications,
and in particular, systems that have one or more of the fol-
lowing characteristics:
• it is difficult for agents to know about or interact with all

other agents in the system,

• agents can enter and leave the multi-agent society,

• no single authority controls the entire system,

• no single authority controls all of the agents,

• there is a cost (either explicit or implicit) associated with
agent interactions, and

• interaction among the agents leads to changes in perfor-
mance or value (for the agents, the network, or both).

This paper does not attempt to fully develop the notion of
AONs, but demonstrates the need and importance of AONs
as a distributed learning mechanism.

In this paper, we review the economic theory of a network
formation game and use this theory to discuss the challenges
of forming networks based on the decisions of individual
agents. The main contributions of this paper include the
identification of distributed network adaptation as a mecha-
nism for cooperative learning in networked multi-agent sys-
tems and the development and exploration of a local, dis-
tributed learning mechanism that allows agents to effectively
form social networks. We conclude the paper by relating our
work to previous work in multi-agent systems and by sug-
gesting several promising future directions for multi-agent
network formation and adaptation.

The (Symmetric) Connections Model
In this section we introduce an economic network formation
game,The Symmetric Connections Model, and briefly sur-
vey the notions of stability and efficiency for the model.

The Model
First presented by Jackson and Wolinsky (1996),The Con-
nections Model(CM) is a stylized model that is represen-
tative of a larger class of network games. In such games,



values are given to network structures and to the positions
of agents in the network. CM was first developed in order to
characterize and study the nature of “social communications
among individuals” (Jackson & Wolinsky 1996).

In the model, agents directly communicate with the agents
with whom they share an undirected edge (i.e., a connection)
in the network structure. The communications imply value
for information flow, so agents also benefit from the indirect
communications represented by their neighbor’s direct con-
nections and their neighbor’s neighbor’s connections. The
value of the indirect communications falls off as a function
of the geodesic distance (i.e., shortest path distance) in the
network. In particular, the value allocated to agenti in net-
work G in CM is given as

Yi(G) =
∑
j 6=i

δ
d(i,j)
ij −

∑
j:ij∈G

cij , (1)

whereij ∈ G denotes a connection between agentsi andj
in the networkG, andd(i, j) is the shortest path distance be-
tweeni andj. The parametersδij , with 0 < δij < 1, are the
values of the (possibly indirect) connections between agents
i andj discounted as a function of the distance between the
two agents. The parameterscij are the costs of direct con-
nections between agentsi andj. Agents benefit from being
“close” to other agents, discounted by distance, while they
only suffer costs for their direct connections. The value of a
network in the CM is

v(G) =
∑

i

Yi(G). (2)

The model allows agents to create or remove connections,
with the goal of maximizingYi(G). The model assumes
that connections must be added bilaterally (i.e., the agents at
both ends of the connection must agree to the connection),
but that connections can be removed unilaterally. TheSym-
metric Connections Model(SCM) is symmetric in that it has
homogeneous values for all of the connections:∀ij ∈ G
δij = δ andcij = c.

CM and SCM are representative of a larger set of network
games that have been considered in the economics litera-
ture. Network formation has also been studied in the con-
text of trade networks, labor markets, coauthor networks,
and buyer-seller networks (Jackson 2003). Much of the eco-
nomics literature is concerned primarily with stability, effi-
ciency, and equilibrium, and does not concern itself with the
real-time, dynamic behavior of agents in such models. Be-
fore considering the dynamic, real-time behavior of agents
in the SCM, we first present the primary stability and effi-
ciency results for the SCM.

Stability and Efficiency
As mentioned above, the economic literature is primarily
concerned with stable and efficient structures in network for-
mation games. In this section, we present the major theoret-
ical results on stability and efficiency in the SCM.

Stability. The notion of stability captures whether or not
agents in the network desire to make any single change to
the network structure.

Definition 1 (Jackson & Wolinsky 1996)1 A networkG is
pairwise stablewith respect to allocation ruleY if

(i) ∀ij ∈ G, Yi(G) ≥ Yi(G− ij) andYj(G) ≥ Yj(G−
ij), and

(ii) ∀ij ∈ G, if Yi(G + ij) > Yi(G) then Yj(G) >
Yj(G + ij).

In the definition,G − ij andG + ij represent the removal
of the connection between agentsi andj and its addition,
respectively.

Intuitively, pairwise stability implies that no agent desires
to make anyonemodification to the connections in the net-
work (i.e., no agent desires to add or delete a connection).
The emphasis on a single modification, known in the game
theory literature asmyopic, is important as agent strategies
that rely on the notion of pairwise stability can result in lo-
cally optimal network structures (see below).

Efficiency. A pairwise stable network is a network for
which no agent desires to change any one of its connection.
Efficiency is a more strict notion.

Definition 2 (Jackson & Wolinsky 1996) A networkG is
efficient if v(G) ≥ v(G′) ∀G′ ∈ G.

Here,G is the space of all network structures of a particular
size (i.e., the number of agents in the system). In essence, an
efficient network has a value that is at least as great asany
othernetwork structure.

Now that we have introduced the notions of stability and
efficiency, we present the two major network formation
results from Jackson and Wolinsky (1996).

We start with a proposition regarding the pairwise stabil-
ity of networks under different parameter regimes.

Proposition 1 (Jackson & Wolinsky 1996) In the symmetric
connections model:

(i) A pairwise stable network has at most one (non-
empty) component.

(ii) For c < δ − δ2, the unique pairwise stable network
is the complete graph,CN .

(iii) For δ − δ2 < c < δ, a star encompassing all play-
ers is pairwise stable, but not necessarily the unique
pairwise stable network.

(iv) For δ < c, any pairwise stable network which is
nonempty is such that each player has at least two
links and thus is efficient.

Here, a star network is one with every agent connected to
a central hub, and no other connections. The proof of the
proposition is given in the original study (Jackson & Wolin-
sky 1996), but as our study in later sections focuses on case
(iii) of the proposition, we provide the intuition behind its
proof. Whenδ − δ2 < c < δ, the star is pairwise sta-
ble because the hub would not delete any of its connections

1This definition is taken directly from Jackson and Wolin-
sky (1996) with a slight change of notation due to the assumption
that Equation (2) gives the value function of the network.



as δ > c, and none of the other agents would form a di-
rect connection because for any two of the agentsi andj:
d(i, j) = 2, agenti gets theδ2 indirect benefit via its con-
nection with the hub, andδ2 > δ − c (whereδ − c is the net
cost of the new direct connection betweeni andj).

We have seen the result for the structure of pairwise sta-
ble networks, now we present the result for the structure of
efficient network structures.

Proposition 2 (Jackson & Wolinsky 1996) The unique effi-
cient network structure in the symmetric connections model
is

(i) the complete graph,CN , if c < δ − δ2,
(ii) a star encompassing everyone ifδ − δ2 < c < δ +

(N−2)
2 δ2, and

(iii) no links if δ + (N−2)
2 δ2 < c.

The proof of the proposition can be found in the original pa-
per (Jackson & Wolinsky 1996) and we provide the intuition
for case(ii). The star is the unique efficient structure for
two reasons: 1) it has the minimum number of connections,
(n − 1), to guarantee a single component, therefore mini-
mizing cost, and 2) those connections are arranged so as to
minimize the average pairwise distance between all of the
agents (i.e., the star minimizes the mean path length, or di-
ameter, of the network), maximizing the benefit to all of the
agents.

The theory described here is extremely useful in under-
standing the structure of networks and network formation.
Although simple, the SCM presents a challenging problem
for distributed, multi-agent cooperations. Local decisions
that increase local utility can decrease the utilities of other
agents in the network and in turn decrease the overall value
of the network. Our main concern is in designing strate-
gies (either directly or learned) that allow agents to make
local decisions in real-time as the network evolves in order
to form efficient network structures.

On the Challenge of Distributed, Dynamic
Network Formation

The theory of the SCM presented in the last section is useful
when there is central control of the network structure. Our
main concern in this paper is the operationalization of the
SCM in a multi-agent environment where the agents make
decisions locally in order to attempt to form efficient net-
work structures. From here forward, we will assume that
agents are cooperative, in that they do not make decisions to
intentionally degrade the value of the network.

A Dynamic Network Formation Process
Using the notion of pairwise stability, Watts (2001) proposed
a dynamic model for the network formation process (Jack-
son & Watts 2002). The dynamic model starts with an empty
network (i.e., no connections), and then at each iteration,
two agents,i andj, are chosen randomly from a probability
distributionp(i) and allowed to consider their connections
(or lack there of). We call this mechanism for consider-
ing connections therandom meetingmechanism. For the

remainder of this paper, we will assume thatp(i) is the uni-
form distribution over all of the agents in the network.

The deterministic dynamic network formation pro-
cess (Watts 2001) is as follows. LetG represent the graph
beforei and j consider their connection. Ifij ∈ G, the
agents remove the connection ifYi(G − ij) > Yi(G) or
Yj(G − ij) > Yj(G). If ij /∈ G, the agents add the con-
nection ifYi(G + ij) ≥ Yi(G) and Yj(G + ij) ≥ Yj(G),
with the inequality holding strictly for at least one ofi or j.
That is, the agents establish the connections if it is mutually
beneficial, and they remove the connection if either benefits.

In order to prevent the model from remaining in “unin-
teresting” stable states (e.g., the network with no connec-
tions whenc > δ), a stochastic dynamic network formation
process was also considered. The stochastic model is the
same as above, although decisions to establish connections
are randomly inverted with probabilityε. This was meant to
represent slight irrationality or small “tremors” in the deter-
ministic process (Watts 2001).

Note that the Watts formation process requires an indi-
vidual agent making a local decision to perform a global
computation. That is, the agent computes the change in
value (which depends on the entire network structure) af-
ter adding or deleting a connection, and then determines if
the change to the connection should remain or be reversed
based on whether the value increased or decreased, respec-
tively. This assumption, that agents have global knowledge
of the entire network structure for informing decisions, in
not realistic in many multi-agent environments. At the same
time, we will use the Watts formation process to emphasize
the challenge of forming networks in a completely decen-
tralized manner before presenting our new method for the
decentralized formation of networks with only local infor-
mation and past performance.

Applying the Watts Formation Process
When the dynamic network formation process was first pro-
posed, it was realized that forming an efficient and pairwise
stable network (i.e., the star whenδ − δ2 < c < δ) was
difficult when the number of agents grows large.

Proposition 3 (Watts 2001) Consider the symmetric con-
nections model in the case whereδ − δ2 < c < δ. As the
number of players grows, the probability that a stable state
(under the process where each link has an equal probabil-
ity of being identified) is reached with the efficient network
structure of a star goes to 0.

The proof of the proposition is based on the fact that no agent
wants to bear the burden of being the hub node in the star
network. The hub node in a star network has a much lower
value than the other nodes in the network.

Given the finding that the unique, efficient, and pairwise
stable network structure is very unlikely to be discovered,
the question remains as to what network structures are found
by dynamic network formation processes. We ran computa-
tional experiments using the Watts dynamic network forma-
tion process to study the structure of endogenously formed
networks. A representative sample experiment is depicted in
Figure 1.
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Figure 1: The result of distributed network formation when the agents employ the global computation strategy whenδ = 0.9
andc = 0.8: a) the value of the network over time, b) various structural properties of the network as it evolves, and c) the
resulting network topology after 50,000 iterations. The properties in b) are:densityor ratio of the number of connections to
all possible connections;diameteror average shortest path length between all pairs of nodes;clusteringthe ratio of triangles to
connected triples; andrewiringsor the cumulative number of connection changes.

Figure 1(a) shows the value of the network,v(G), over
time as the agents use the stochastic dynamic network for-
mation process of Watts (2001), which we call theglobal
computationstrategy. In the experiment presented, there are
100 agents,δ = 0.9, c = 0.8, andε was initialized to 0.05
and slowly decreased over time. We experimented with a
range of parameters inδ − δ2 < c < δ and found similar
results. The figure shows that the agents rapidly form a net-
work and then the value of the network plateaus just under
7000. The optimal value for the star network withn = 100,
δ = 0.9, andc = 0.8 is 7878.42.

Clearly, the global computation strategy does not guaran-
tee finding the optimal star network, as there is simply too
much competition among the agents for one of them to be-
come the hub (i.e., all of the agents are attempting to locally
maximizeYi(G)). At the same time, the agents are able to
find a network structure that supports an even distribution of
value and a large network value.2 Of course, this is expected
as the agents are making perfect decisions (1 − ε percent
of the time) with perfect, and global, information about the
network structure.

Forming Networks without a Global
Computation

In this section, we propose an individual agent learning strat-
egy that only requires local information and past perfor-
mance in order to allow the agents to form networks in a
decentralized fashion. In the design of our learning strategy,
we wanted to uphold several assumptions that are likely to
apply in many multi-agent environments:

• no global knowledge: our strategy does not use any
global knowledge of the network structure or the other
agents in the network,

2The sizes of the nodes in the network structure shown in Fig-
ure 1(c) are proportional to their value,Yi(G). There is little devi-
ation in the size of the nodes in the network.

• no explicit modeling of other agents: our strategy does
not require large amounts of memory for modeling the
other agents in the environment, or values of any specific
connection in the network,

• synchronous: following Watts (2001), we employ the
random meeting mechanism, and for now, only one net-
work adaptation can occur at any moment in time,

• bilateral connection establishment: both agents must
agree to establish a connection,

• unilateral connection removal: a single agent can decide
to remove any of its connections.

Our learning strategy is derived from stateless (i.e., single
state) multi-agentQ-learning, as it attempts to model the
utility of taking any action over time.

A Simple Learning Strategy
At any moment, the agents in the SCM can choose one of
three actions: add a connection, delete a connection, or do
nothing. The choice of the action is dependent on the agent
that is met at random (either an existing connection or a new
connection) and we extend the choice of the action to be de-
pendent on the expected change in value for taking a certain
action. As this is the first known attempt to apply online
learning to endogenous, multi-agent network formation, we
have selected a simple learning approach based on stateless
Q-learning (Claus & Boutilier 1998).

Let A = {add, delete, nothing} be the set of actions
available to an agent. We update the action value functionQ
for agenti, given that agenti took actiona, using

Qi(a)← (1− α)Qi(a) + α(∆Yi(G)), (3)

whereα is the learning rate and∆Yi(G) is the change in
an agents value after the action is taken. Note that this is
in contrast to first computing the change and then taking the
appropriate action. Our method makes the change, and then
the value of the change is made available as a reinforce-
ment signal. We update theQ values whenever an action



is taken. Additionally, we updateQi(nothing) whenever
|∆Yi(G)| > 0 when agenti is idle (i.e., other agents in the
network are changing connections that affect the value of
agenti). This update toQi(nothing) is what makes our
method a multi-agent learning approach. In essence, agents
learn when changes elsewhere in the network are influencing
their value (either positively or negatively). In all of the ex-
periments presented in this paper theQ values for all actions
are initialized to 0.

The agents update their expected gain in value for taking
particular actions using equation 3, but how do they select
an action to take? We follow the random meeting model of
Watts (2001) for determining which two agents are going
to consider their connection. Then, assuming that the two
agents selected arei andj, if ij ∈ G the agents will consider
removing their connection. They will remove the edge if

delete = argmax
a∈A

Qi(a) or delete = argmax
a∈A

Qj(a).

(4)
That is, if either agent has as its highest value action to delete
connections, the connection will be unilaterally deleted. The
situation is similar for creating new connections, although
the decision must be bilateral. That is, ifij /∈ G, then the
new connection will be created if

add = argmax
a∈A

Qi(a) = argmax
a∈A

Qj(a). (5)

As is traditional in Q-learning, we allow the strategy to be
ε–greedy (decisions are reversed with probabilityε) with ε
slowly decreasing with time.

The agents learn to switch between creating new connec-
tions, deleting connections, and leaving their current net-
work structure unmodified. The strategy does not require
any global computation to make decisions, although it does
require the feedback signal for tracking changes that result
from taking actions (or doing nothing). The key difference
between the global computation method and our learning
method is that we use past performance to determine future
behavior rather than using a global calculation to determine
what the future would be like. Furthermore, our strategy
does not require that agents explicitly model other agents or
the utility of any specific connections.

Results
Figure 2(a) shows the performance of our learning mecha-
nism for various learning rates. As can be seen in the figure,
the performance of our learning method is strongly depen-
dent on the learning rate. If the learning rate is too slow,
the agents tend too continue adding and deleting connec-
tions well beyond the time when those actions are benefi-
cial. This leads to an oscillation in the value of the network,
and to ultimate demise for the networked organization (e.g.,
the organization does not appear to recover from the grad-
ual decrease in value forα = 0.05). In our experiments,
we found that higher learning rates performed much bet-
ter, although agents using higher learning rates could be too
quick to learn preventing the discovery of potentially high
value structure. To alleviate this, we implemented an adap-
tive learning mechanism.

average network value
global calculation 6955.82± 8.512

adaptive local Q 7026.81± 7.548

Table 1: The average performance of the adaptive learning
rate network formation strategy compared with the average
performance of the global computation strategy (25,000 it-
erations averaged over 10 simulations with 95% confidence
intervals).

Adaptive Learning Rate. Following the method pro-
posed for the “Win or Loss Fast” (WoLF) concept from
Q-learning (Bowling & Veloso 2002), we incorporated an
adaptive learning rate into our learning algorithm. As can
be seen in Figure 2(a), the adaptive learning rate method
outperforms all of the fixed rate learning schemes. The in-
tuition behind the adaptive method is that an agent should
learn “cautiously” when improving its position and an agent
should learn rapidly when its decisions are resulting in de-
creases in value.

Using the adaptive learning rate,αi is determined by

αi =
{

αmin if ∆Yi(G) >= 0,
αmax if ∆Yi(G) < 0.

(6)

Using this adaptive scheme prevents an agent from getting
“overexcited” about the gains received from taking any par-
ticular action, and allows an agent to learn rapidly when a
certain action is detrimental. In the experiments presented
in this paper,αmin = 0.05 andαmax = 0.4.

Looking at Figure 2(a), the adaptive learning rate strat-
egy has performance similar to that of the global computa-
tion strategy. They both quickly form a highly connected
network achieving a network value of approximately 7000.
Both of the strategies plateau near a network value of 7000,
as no single agent is willing to bear the greater burden of be-
coming the hub node in a star network structure. While their
performance seems similar, the resulting network structures
differ, and the difference in their average performance is sta-
tistically significant (although small in relative value). Ta-
ble 1 shows the average value of the networks after 25,000
iterations over 10 simulations for the two strategies.

Figure 2(b) and 2(c) further suggest that the network
structure found by the learning strategy differs from the
structure that formed as a result of the global computation
strategy. The network formed by the learning strategy is
more dense, and contains a much greater amount of clus-
tering (perhaps, as a direct result of the increased density).
Another noteworthy result is that the cumulative number of
rewirings flattens (bottom left of Figure 2(b)) for the learn-
ing strategy, where the global computation strategy contin-
ues to rewire. This is a result of our learning mechanism
including the expected value of leaving the local connectiv-
ity structure unmodified. Eventually, the agents learn that
the change in value for no modification (even if it is near
zero) is greater than that of modifying its connections.

At this point, we conjecture that the increase in perfor-
mance for our learning algorithm over that of the global
computation strategy is a result of the inherent randomness
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Figure 2: The result of distributed network formation when the agents employ the local learning strategy whenδ = 0.9 and
c = 0.8 for a range of learning ratesα: a) the value of the network over time, b) various structural properties of the network as
it evolves, and c) the resulting network topology after 100,000 iterations. The adaptive strategy is the variable learning strategy
discussed in the text.

in our method. The agents do not keep track of which con-
nections lead to increased or decreased values, but rather,
only the expected values of modifying connections. There-
fore, when it comes time to add or delete a connection, the
connection to modify is chosen as a result of the random
meeting mechanism. We hypothesize that this allows the
learning mechanism to do more exploration of the efficiency
landscape.

Adding an Unselfish Agent
Any good decentralized network formation strategy should
find the optimal network structure (i.e., the star) in the pres-
ence of a single unselfish agent. Therefore, we conducted
an experiment where one of the agents was designated as
completely unselfish. Let this unselfish agent be agentu.
In order to force agentu to be unselfish, we set itsQ val-
ues to be fixed atQu(add) = 1.0, Qu(delete) = 0.0, and
Qu(nothing) = 0.0. Additionally, whenu randomly meets
another agent, it always convinces the other agent to estab-
lish a connection.

The results obtained from one of these experiments are
shown in Figure 3. Our simple learning strategy is able to
find a near optimal network structure in the presence of an
unselfish agent. As before, the network quickly becomes
highly connected and the network value levels off around
7000. After that, the agents learn that it is useful to prune
away connections with any agents other thanu. The small
jumps (dips) in performance are a result of accidental dele-
tion of connections between agents and the unselfish agent
u.

Related Work
The formation of cooperation and interaction structures have
been widely studied in the multi-agent systems literature.
Coalition formation is the problem of identifying the opti-
mal (or near-optimal) partition of the agents into groups so
that the groups can work on specific tasks (Kraus, Shehory,
& Taase 2003). Similar to coalition formation, congrega-
tion formation is the process of dividing a large collection

of agents into disjoint special interest groups for more effi-
cient computation (e.g., agents with specific interest in a cer-
tain good should congregate in a specialized market for that
good, reducing the computational cost of the auction for that
good) (Brooks & Durfee 2003). Closely related to coalition
formation, Dutta and Sen (2003) developed an agent-level
learning mechanism that allowed the agents to learn which
other agents were helpful, thus creating stable partnerships
for task completion. The primary difference between the
work on coalition and congregation formation and our work
is the dependence of local and collective utility on the net-
work in our work and our explicit concern for the structure
of the agent social network.

There are several studies in the multi-agent systems lit-
erature that are more directly concerned with the forma-
tion of agent social networks. Specialized network adapta-
tion mechanisms have been applied to information retrieval
in peer-to-peer systems (Yolum & Singh 2003) and to dy-
namic team formation (Gaston & desJardins 2005). Addi-
tionally, several studies have considered models very simi-
lar to the SCM, including a unilateral connections model for
analyzing the formation of large-scale communications net-
works (Fabrikantet al. 2003) and an extension of the SCM
to a situation where the agents are spatially situated (Carayol
& Roux 2004). Our work extends this previous work by
developing and applying a simple (and potentially general)
learning approach to dynamic, endogenous network forma-
tion.

Conclusion and Future Directions
We reviewed the theory and challenges of a simple network
formation game, the Symmetric Connections Model, and
discussed distributed network formation strategies. In ad-
dition, we developed a decentralized learning mechanism
for network formation and demonstrated through simulation
that distributed network formation is possible in the absence
of a global computation.

There are many future directions for the continuation of
this work. It would be interesting to study variations of the
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Figure 3: The result of distributed network formation when the agents employ the local learning strategy whenδ = 0.9 and
c = 0.8 with an adaptive learning rateα in the presence of exactly one unselfish agent: a) the value of the network over time,
b) various structural properties of the network as it evolves, and c) the resulting network topology after 50,000 iterations.

dynamic network formation process of Watts (2001) by hav-
ing the agents make decisions based on local calculations
(i.e., the change in value in the local neighborhood) and by
going beyond the myopic decision criteria. More generally,
we would like to move beyond the random meeting model
for determining the pair of agents that will consider their
connection, and move toward a simultaneous, asynchronous
network formation process (i.e., where all of the agents can
make decisions simultaneously). Finally, we hope to apply
the theory and findings for the simple SCM to more com-
plicated networked multi-agent environments, such as dis-
tributed production and exchange, team formation, supply
chain formation, and distributed information retrieval.
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