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Abstract 

We present supervised machine-learning approaches to 
automatically classify medical questions based on a 
hierarchical evidence taxonomy created by physicians.  We 
show that SVMs is the best classifier for this task and that a 
ladder approach, which incorporates the knowledge 
representation of the hierarchical evidence taxonomy, leads 
to the highest performance.  We have explored the use of 
features from a large, robust biomedical knowledge 
resource, namely, the Unified Medical Language System 
(UMLS), and we have found that performance is generally 
enhanced by including these features in addition to bag-of-
words. 

Introduction 

Question classification is a task that assigns a given 
question to one or more predefined question categories.  In 
the context of open-domain question answering, question 
taxonomies are created so that specific answer strategies 
can be developed for specific question types defined in the 
taxonomy (Harabagiu et al. 2000) (Hovy et al. 2001).  
Typical approaches for question classification combine 
surface cues (e.g., “What” and “When”) with named 
entities (e.g., PERSON and LOCATION) (Hovy et al. 
2001).  In the medical domain, on the other hand, we found 
that physicians have classified questions based on medical, 
domain-specific knowledge (Bergus et al. 2000) (Ely et al. 
2000, 2002).  The purpose of classifying medical questions 
goes beyond the development of question-type answer 
generation strategies. 
 
In the medical domain, physicians are urged to practice 
Evidence Based Medicine when faced with questions about 

how to care for their patients (Gorman et al., 1994) (Straus 
and Sackett, 1999) (Bergus et al., 2000).  Evidence based 
medicine refers to the use of the best evidence from 
scientific and medical research to make decisions about the 
care of individual patients.  Physicians are trained to ask 
“good” questions, such as “What is the drug of choice for 
epididymitis?”, that require answers which incorporate 
clinical studies.  On the other hand, the question “What is 
causing her anemia” is considered a “bad” question 
because it is patient-specific and therefore unanswerable 
(Ely et al. 2002).  Ely and his colleagues have created an 
Evidence Taxonomy (in Figure 1) to categorize questions 
that were potentially answerable with evidence (Ely et al. 
2002).  These researchers have concluded that only 
Evidence questions are potential answerable with evidence 
using medical literature and other online medical 
resources. 
 
 

Questions 

Non-clinical Clinical 

Specific General 

No evidence Evidence 

How do you stop somebody with five 

problems, when their appointment is 

only long enough for one? 

What is causing  

her anemia? 

What is the name of that rash 

that diabetics get on their legs? 

Intervention No intervention 

What is the drug of choice 

for epididymitis? 

How common is depression after 

infectious mononucleosis? 

Figure 1: “Evidence taxonomy” created by Ely and his 

colleagues (Ely et al. 2002) with examples. 



Previously, we have developed approaches to 
automatically separate answerable questions from 
unanswerable ones (Yu and Sable 2005).  This study 
focuses on the harder task of automatically classifying 
questions to the specific categories presented in the 
evidence taxonomy; namely, Clinical vs Non-Clinical, 
General vs Specific, Evidence vs No Evidence, and 
Intervention vs No Intervention.  We utilize a large 
biomedical knowledge resource, namely, the Unified 
Medical Language System (UMLS), to aid our automatic 
question classification. 
 
Question classification based on an evidence-taxonomy has 
practical importance.  Such a classification may be useful 
for advising medical students, residents, and physicians to 
formulate “good questions”; i.e., questions that can be 
answered with evidence.  For example, when a physician 
in training asks the patient-specific question, “What is 
causing her anemia?”, we may provide the physician 
advice to reformulate the question as “What causes anemia 
spherocytic?”, “What causes anemia macrocytic?”, or 
“What causes anemia folic acid deficiency?”, from which 
the physician who posed the question might choose one for 
further answer generation. 
 
In addition, similar to the role of question classification in 
the context of open-domain question answering, evidence-
based question classification is useful for generating 
question-type-specific answer strategies.  For example, No 
Intervention questions generally belong to the family of 
factoid questions, for which short answers are usually 
expected.  On the other hand, Intervention questions are  
generally scenario-based and require long and complex 
answers.  
 
This study is a part of an effort to build a medical, domain-
specific question answering system (Yu et al. 2005).  In the 
following, we first describe the UMLS.  We then describe, 
in detail, the question collection we have used for training 
and testing, as well as various supervised machine-learning 
systems that we have used for automatic classification. We 
then report our results, and end with a final discussion and 
conclusions. 

The Unified Medical Language System 

The Unified Medical Language System (UMLS)1 
(Humphreys and Lindberg 1993) links concepts that come 
from more than 100 terminologies, classifications, and 
thesauri, some in multiple editions, to aid in the 
development of computer systems that process text in the 
biomedical domain.  The UMLS incorporates the 
Metathesaurus, a large database that currently incorporates 
more than one million biomedical concepts, plus synonyms 

                                                      
1 http://www.nlm.nih.gov/research/umls/ 

and concept relations.  For example, the UMLS links the 
following synonymous terms as a single concept: 
Achondroplasia, Chondrodystrophia, Chondrodystrophia 
fetalis, and Osteosclerosis congenita. 
 
The UMLS additionally consists of the Semantic Network, 
which is a hierarchical semantic representation that 
contains 135 nodes or semantic types (e.g., Pharmacologic 
Substance); each semantic type represents a category to 
which certain UMLS concepts can be mapped. Each 
UMLS concept in the Metathesaurus is assigned one or 
more semantic types.  For example, Arthritis is assigned to 
one semantic type, Disease or Syndrome; Achondroplasia 
is assigned to two semantic types, Disease or Syndrome 
and Congenital Abnormality. 
 
Furthermore, the National Library of Medicine has made 
available MMTx2, a programming implementation of 
MetaMap (Aronson 2001), which maps free text to UMLS 
concepts and their associated semantic types.  The MMTx 
program first parses text, separating the text into noun 
phrases.  Each noun phrase is then mapped to a set of 
possible UMLS concepts, taking into account spelling and 
morphological variations, and each concept is weighted, 
with the highest weight representing the most likely 
mapped concept.  The UMLS concepts are then mapped to 
semantic types according to definitive rules as described in 
the previous paragraph.  MMTx can be used either as a 
standalone application or as an API that allows systems to 
incorporate its functionality.  In our study, we have applied 
and empirically evaluated MMTx to map terms in a 
question to appropriate UMLS concepts and semantic 
types; we have experimented with adding the resulting 
concepts and semantic types as additional features for 
question classification.  Related work that uses UMLS 
concepts to improve document retrieval in the medical 
domain can be found in (Mao and Chu 2002). 

Question Corpus and Categories 

Ely and his colleagues (Ely et al. 2002) have annotated 200 
questions that were randomly selected from over one 
thousand questions posed by family physicians (Ely et al. 
1999) to be Non-clincial (8), Specific (57), No-evidence 
(18), Intervention (85), or No-intervention (32).  We have 
used these 200 annotated medical questions for training 
and test sets.  Note that Intervention is the largest category 
in this question collection, with 85 questions.  Therefore, a 
baseline system that classifies every question into the 
largest category (i.e., Intervention) would achieve an 
overall accuracy of 42.5% and random guessing would 
lead to an overall accuracy of 20.0%. 

                                                      
2 http://mmtx.nlm.nih.gov/ 



Supervised Machine Learning 

We have considered the classification of medical questions 
to be a standard text categorization task.  We have 
explored various supervised machine-learning approaches 
to automatically assign labels to questions based on the 
evidence taxonomy.  We present our results for the binary 
classifications Clinical vs Non-Clinical, General vs 
Specific, Evidence vs No Evidence, and Intervention vs No 
Intervention, as well as our results for five-way 
classification into the leaf categories Non-clinical, Specific, 
No Evidence, Intervention, and No Intervention. In the 
following subsections, we will describe the machine-
learning systems, the learning features including bag of 
words and features selected from the Unified Medical 
Language System (UMLS), our training and testing 
methodology, and the evaluation metrics used for our 
classification. 

Systems 

We have applied seven supervised machine-learning 
approaches, namely, Rocchio/TF*IDF, K-nearest 
neighbors (kNN), maximum entropy, probabilistic 
indexing, naive Bayes, support vector machines, and 
BINS.  All of these systems have been used successfully 
for text categorization tasks (Sebastiani 2002) (Sable 
2003).  For SVMs, we have used the implementation of 
libsvm3.  For the rest of machine-learning systems except 
for BINs (Sable and Church 2001), we have used the 
implementation available in Rainbow4 (McCallum 1996). 
 
Rocchio/TF*IDF (Rocchio 1971) adopts TF*IDF, the 
vector space model typically used for information retrieval, 
for text categorization tasks.  Rocchio/TF*IDF represents 
every document and category as a vector of TF*IDF 
values.  The term frequency (TF) of a token (typically a 
word) is the number of times that the token appears in the 
document or category, and the inverse document frequency 
(IDF) of a token is a measure of the token's rarity (usually 
calculated based on the training set).  For test documents, 
scores are assigned to each potential category by 
computing the similarity between the document to be 
labeled and the category, often computed using a simple 
cosine metric; the category with the highest score is then 
chosen. 
 
K-Nearest Neighbors (kNN) determines which training 
questions are the most similar to each test question, and 
then uses the known labels of these similar training 
questions to predict a label for the test question.  The 
similarity between two questions can be computed as the 
number of overlapping features between them, as the 
inverse of the Euclidean Distance between feature vectors, 

                                                      
3 Available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
4 Available at http://www-2.cs.cmu.edu/~mccallum/bow/ 

or according to other measures.  The kNN approach has 
been successfully applied to a variety of text categorization 
tasks (Sebastiani, 2002) (Yang and Liu 1999). 
 
Naïve Bayes is commonly used in machine learning and 
text categorization.  Naïve Bayes is based on Bayes' Law 
and assumes conditional independence of features.  For 
text categorization, this “naive” assumption amount to the 
assumption that the probability of seeing one word in a 
document is independent of the probability of seeing any 
other word in a document, given a specific category.  
Although this is clearly not true in reality, Naive Bayes has 
been useful for many text classification and other 
information retrieval tasks (Lewis 1998).  The label of a 
question is the category that has the highest probability 
given the “bag of words” in the document.  To be 
computationally feasible, log likelihood is generally 
maximized instead of probability. 
 
Probabilistic Indexing is another probabilistic approach 
that chooses the category with the maximum probability 
given the words in a document.  Probabilistic indexing 
stems from Fuhr’s probabilistic indexing paradigm (Fuhr 
1988), which was originally intended for relevance 
feedback and was generalized for text categorization by 
Joachims (Joachims 1997), who considered it a 
probabilistic version of a TF*IDF classifier, although it 
more closely resembles Naive Bayes.  Unlike Naive Bayes, 
the number of times that a word occurs in a document 
comes into play, because the probability of choosing each 
specific word, if a word were to be randomly selected from 
the document in question, is used in the probabilistic 
calculation.  Although this approach is less common in the 
text categorization literature, one author of this paper has 
seen that it is very competitive for many text categorization 
tasks (Sable 2003). In this study, we show that 
probabilistic indexing generally outperforms all other 
machine-learning systems except for BINS and SVMs, and 
for certain tasks we consider, it performs the best of all 
systems. 
 
Maximum Entropy is another probabilistic approach that 
has been successfully applied to text categorization 
(Nigam, Lafferty, and McCallum 1999).  A maximum 
entropy system starts with the initial assumption that all 
categories are equally likely.  It then iterates through a 
process known as improved iterative scaling that updates 
the estimated probabilities until some stopping criterion is 
met.  After the process is complete, the category with the 
highest probability is selected. 
 
Support Vector Machines (SVMs) is a binary classifier 
that learns a hyperplane in a feature space that acts as an 
optimal linear separator which separates (or nearly 
separates) a set of positive examples from a set of negative 
examples with the maximum possible margin (the margin 
is defined as the distance from the hyperplane to the closest 
of the positive and negative examples).  SVMs have been 



widely tested to be one of the best machine-learning 
classifiers, and previous studies have shown that SVMs 
outperform other machine learning algorithms for open-
domain sentence classification (Zhang and Lee 2003) and 
other text categorization tasks (Yang and Liu 1999) 
(Sebastiani 2002). Our study has shown that SVMs 
generally has the best performance for classifying medical 
questions based on the evidence taxonomy. 
 
BINS (Sable and Church 2001) is a generalization of 
Naive Bayes.  BINS places words that share common 
features into a single bin.  Estimated probabilities of a 
token appearing in a document of a specific category are 
then calculated for bins instead of individual words, and 
this acts as a method of smoothing which can be especially 
important for small data sets.  BINS has proven to be very 
competitive for many text categorization tasks (Sable 
2003) (Yu and Sable 2005). 

Classification and Ladder Approach 

We report the results of classifying questions into binary 
classes based on the evidence taxonomy; namely, Clinical 
vs Non-clinical, General vs Specific, Evidence vs No 
evidence, and Intervention vs No intervention, by applying 
different machine learning systems. 
 
In addition, we also apply the machine-learning systems to 
classify the questions into one of the five leaf-node 
categories of the evidence taxonomy, namely, Non-
clinical, Specific, No evidence, Intervention, and No 
intervention.  For this task, in addition to standard multi-
class categorization by different machine-learning systems, 
we have experimented with a “ladder” approach that can 
only be used for hierarchical classification.  This technique 
has proven useful for certain text categorization tasks 
involving a hierarchical taxonomy in the past (Koller and 
Sahami 1997) (Chakrabart et. al. 1998) (Ruiz and 
Srinivasan 1999) (Dumais and Chen 2000). 
 
The ladder approach, sometimes referred to as a cascade of 
classifiers, utilizes the knowledge representation of the 
evidence taxonomy.  For this task, the ladder approach 
performs five-class categorization by combining four 
independent binary classifications.  It first predicts whether 
a question is Clinical vs Non-clinical.  If a question is 
Clinical, it then predicts the question to be General vs 
Specific. If General, it further predicts to be Evidence vs 
No evidence.  Finally, if Evidence, it classifies the question 
to be either Intervention or No intervention. 

Learning Features 

Since our collection consists of medical, domain-specific 
questions, we have incorporated biomedical terminology 
from the robust, state of the art Unified Medical Language 
System (UMLS) as additional learning features for 
question classification.  In our study, we apply bag of 
words as a baseline, and add in (or substitute) UMLS 

concepts and semantic types as additional features. Since 
we apply MMTx, the tool that maps question strings to 
appropriate UMLS concepts and semantic types, we first 
evaluate the performance of MMTx and then report the 
results of our question classification. 

Cross-Validation and Evaluation Metrics 

To evaluate the performance of each system, we have 
performed four-fold cross-validation.  We have randomly 
divided our data set into four sets of categories consisting 
of 50 questions each.  We have used one set for testing and 
the other set for training, and we have repeated such an 
experiment testing each set of questions once.  We apply 
four-fold cross-validation instead of the typical ten-fold 
because the number of training set in one category (i.e., 
Non-clinical) is eight, which is less than ten.  In addition, 
we have experimented with ten-fold cross validations and 
found that the results are comparable to four-fold.  We 
therefore report four-fold only.  We report overall 
accuracy, which is simply the percentage of questions that 
are categorized correctly. 

Results and Evaluation 

Since we have applied MMTx for identifying appropriate 
UMLS concepts and semantic types for each question, 
which are then included as features for question 
classification, we have evaluated the precision of MMTx 
for this task. One of the authors (Dr. Carl Sable) has 
manually examined the 200 questions comprising our 
corpus as described in earlier.  MMTx assigns 769 UMLS 
Concepts and 924 semantic types to the 200 questions 
(recall that some UMLS concepts are mapped to more than 
one semantic type, as described in the UMLS section).  
Our analysis has indicated that 164 of the UMLS Concept 
labels and 194 of the semantic type labels are wrong; this 
indicates precisions of 78.7% and 79.0%, respectively.  An 
example of a case that MMTx gets wrong is the 
abbreviation “pt”, which, in this corpus, is often used as an 
abbreviation for “patient”; MMTx typically assigns this to 
the UMLS concept pint and the semantic type Quantitative 
Concept.  Note that a manual estimation of the recall of 
MMTx would be difficult, since it would require an expert 
that is familiar with all possible UMLS concepts and the 
various ways to express them. 
 
Table 1 shows the results in terms of overall accuracy for 
all seven systems applied to each of our binary categories 
using various combinations of features.  The baseline 
systems that classify every question into the largest 
category would achieve an overall accuracy of 96.0%, 
70.3%, 86.7%, and 72.6% for Clinical vs Non-clinical, 
General vs Specific, Evidence vs No Evidence, and 
Intervention vs No Intervention.  All results that beat these 
baselines are in bold, and results that tie these baselines are 
underlined. 
 



 
 

Performance Using Various Features (C means UMLS Concepts, ST means semantic types) 
ML Approach 

Bag of Words Words+C Words+ST Words+C+ST C only ST only 

Rocchio/TF*IDF       

Clinical vs Non-clinical 90.5 86.5 94.0 91.0 93.0 82.5 

General vs Specific 74.5 68.8 74.5 72.9 69.3 63.0 

Evidence vs No Evidence 76.3 85.2 81.5 85.2 83.0 82.2 

Intervention vs No Intervention 70.1 69.2 69.2 72.6 66.7 63.2 

K-Nearest Neighbors       

Clinical vs Non-clinical 95.0 95.5 96.0 96.0 96.0 96.0 

General vs Specific 77.1 71.2 75.5 76.0 74.0 71.9 

Evidence vs No Evidence 83.7 85.2 86.7 86.7 85.9 86.7 

Intervention vs No Intervention 72.6 76.1 71.8 72.6 74.4 71.8 

Naive Bayes       

Clinical vs Non-clinical 96.0 95.5 96.0 95.0 96.0 96.0 

General vs Specific 79.2 70.3 76.0 74.0 74.5 71.9 

Evidence vs No Evidence 85.2 83.7 85.2 83.7 86.7 85.9 

Intervention vs No Intervention 72.6 77.8 72.6 76.1 74.4 66.7 

Probabilistic Indexing       

Clinical vs Non-clinical 91.0 87.0 94.0 91.0 86.0 83.0 

General vs Specific 78.1 73.4 75.5 78.1 74.0 69.3 

Evidence vs No Evidence 78.5 79.3 82.2 83.7 81.5 82.2 

Intervention vs No Intervention 74.4 73.5 77.8 78.6 74.4 77.8 

Maximum Entropy       

Clinical vs Non-clinical 94.0 93.0 94.0 95.0 94.5 93.0 

General vs Specific 75.5 70.3 76.0 74.0 71.4 68.6 

Evidence vs No Evidence 80.7 83.0 83.7 85.9 82.2 80.7 

Intervention vs No Intervention 70.1 70.9 73.5 71.8 72.6 65.0 

Support Vector Machines       

Clinical vs Non-clinical 96.0 96.0 96.0 96.0 96.0 96.0 

General vs Specific 76.6 77.1 79.7 79.7 76.6 75.0 

Evidence vs No Evidence 88.1 87.4 88.9 88.9 87.4 88.9 

Intervention vs No Intervention 74.4 76.9 75.2 76.1 75.2 73.5 

BINS       

Clinical vs Non-clinical 92.5 92.0 91.0 92.5 94.0 93.5 

General vs Specific 78.1 78.6 77.6 74.5 71.9 64.6 

Evidence vs No Evidence 87.4 88.9 85.9 88.1 87.4 84.4 

Intervention vs No Intervention 70.9 76.1 74.4 76.9 71.8 72.6 

Average       

Clinical vs Non-clinical 93.6 92.2 94.4 93.8 93.6 91.4 

General vs Specific 77.0 72.8 76.4 75.6 73.1 69.2 

Evidence vs No Evidence 82.8 84.7 84.9 86.0 84.9 84.4 

Intervention vs No Intervention 72.2 74.4 73.5 75.0 72.8 70.1 

Best       

Clinical vs Non-clinical 96.0 96.0 96.0 96.0 96.0 96.0 

General vs Specific 79.2 78.6 79.7 79.7 76.6 75.0 

Evidence vs No Evidence 88.1 88.9 88.9 88.9 87.4 88.9 

Intervention vs No Intervention 74.4 77.8 77.8 78.6 75.2 77.8 

Table 1: Binary classification results (overall accuracy %) using different classifiers and features (bold indicates the accuracy 

is above the baseline and underscore indicates the accuracy is equal to the baseline; “Average” reports the average accuracy of 

all seven systems; “Best” reports the highest accuracy of the seven systems) 



Based on the performance scores in Table 1, it seems clear 
that SVMs outperforms all other systems in most of cases.  
Every result ties or beats the baseline.  For three of the four 
classification tasks, SVMs is responsible for the highest 
classification accuracies; that is, 96.0% for Clinical vs 
Non-clinical, 79.7% for General vs Specific, and  88.9% 
for Evidence vs No Evidence using a combination of all 
features or words plus semantic types.  For the Intervention 
vs No Intervention task, the best result is achieved by      
the probabilistic indexing system, which achieves a 78.6% 
overall accuracy using a combination of all features.  In 
general, the two most promising systems after SVMs are 
the probabilistic indexing system and BINS. Interestingly, 
our earlier results show that probabilistic indexing has out-
performed other machine-learning systems (e.g., SVMs 
and BINS) for classifying a question as either Answerable 
or Unanswerable (Yu and Sable 2005). The probabilistic 
indexing system performs better than SVMs for the 
Intervention vs No Intervention task, and BINS is the only 
system apart from SVMs that beats the baseline for half of 
the task/feature combinations (the probabilistic indexing 
system beats the baseline for just under half of the 
task/feature combinations).  The naïve Bayes and kNN 
systems also both beat or tie the baseline for the majority 
of cases. 
 
We have found that including the UMLS concepts and 
semantic types as additional features in general enhances 
the performance of all classifiers. For example, when 
classifying between General and Specific, SVMs performs 
at 79.7% when including the UMLS features; the accuracy 
is 3.1% higher than with the bag-of-words only.  On the 
other hand, the degree to which UMLS features contribute 
to the performance could be subtle.  For example, in case 
of Evidence vs No Evidence, SVMs enhances only 0.8% to 
the overall of 88.9% accuracy when including the UMLS 
features in addition to the bag-of-words.  The results of 
applying the UMLS features only (i.e., without bag-of-
words), are mixed.  For example, when using semantic 
types as the only features for SVMs learning, the classifier 
outperforms the bag-of-words for Evidence vs No 
Evidence, but underperforms the bag-of-words for General 
vs Specific. 
 
We have created the bottom two sections of Table 1 to 
summarize the results of all classifiers.  The first of these 
two sections shows the average accuracy of all seven 
systems for each binary classification task with each 
feature combination.  The second of these two sections 
shows the best accuracy of the seven systems for each 
classification task with each feature combination.  Note 
that 17 of the 24 best results match the corresponding 
result of the SVMs system (at times tied with other 
systems).  Of the other seven best results, three come from 
the probabilistic indexing system, two come from the 
BINS system, and two come from the Naïve Bayes system. 
 

Furthermore, the addition of these two bottom sections of 
the table, showing the average and best overall accuracies, 
respectively, makes it simpler to compare the effects of 
various features.  Based on the results of average accuracy, 
we have found that using either UMLS concepts or 
semantic types instead of bag of words sometimes helps 
and sometimes hurts.  Typically, the results using either of 
these features are about the same as using bag of words, 
the standard feature to use in text categorization; these 
results support the claim that they are useful.  For the 
General versus Specific classification task, however, 
performance degrades by several percentage points.  Using 
these features in addition to bag of words improves 
performance in five out of eight cases.  Two of the three 
cases in which it does not help involve the General versus 
Specific task.  Finally, adding both new features to bag of 
words leads to improvement for three out of four tasks (the 
exception again being General versus Specific),  and for 
the Evidence versus No Evidence task and the Intervention 
versus No Intervention task, the improvement is several 
percentage points.   Looking at the best performances, we 
see that the column reporting results for experiments 
combining all features contains the best results for every 
one of the classification tasks (at times tied with results 
from other columns). 
 
Recall that for five-way classification, we have 
experimented with two approaches.  The first approach is a 
standard, multi-class flat categorization, in which each 
classifier is trained with the training sets consisting of 
documents with five labels; in this case, Non-clinical, 
Specific, No evidence, Intervention, and No intervention. 
The ladder approach utilizes the knowledge representation 
of the evidence taxonomy.  The predicted label for a 
document depends on hierarchical inference from four 
independent, binary classifiers that are trained for Non 
clinical vs Clinical, General vs Specific, Evidence vs No 
evidence, and Intervention vs No intervention.  The results 
of the ladder approach are shown in the top section of 
Table 2, with the results for flat classification at the bottom 
of Table 2.  All results in either section that are better than 
the corresponding result in the other section are in bold; 
results that are equal in the two sections are underlined. 
 
Table 2 shows the results in terms of overall accuracy for 
all seven systems applied to the entire set of the five leaf 
categories from the hierarchy using all combinations of 
features.  Recall that a baseline system that classifies every 
question into the largest category (i.e., Intervention) would 
achieve an overall accuracy of 42.5%, and random 
guessing would achieve an overall accuracy of 20.0%.  Our 
results show that all of our systems, using either of the two 
approaches previously explained, beat the baseline with 
almost all of the available feature combinations (the 
exceptions are all in the last two columns, representing 
experiments that replaced bag of words with UMLS 
features).  The highest overall accuracy is 59.5%, which is 
17% above the baseline and represents a 30.1% error 



reduction; this is achieved by the SVMs system using a 
combination of bag of words and semantic types and a 
ladder approach.  The best accuracy from a flat 
categorization approach is 57.0%; this is achieved by the 
probabilistic indexing system using a combination of all 
features. 
 
Our results show that SVMs’ ladder approach beats the 
standard five-way flat classification by a 3~7% 
enhancement in accuracy with all six feature conditions.  
Furthermore, SVMs ladder approach outperforms all other 
classifiers with either a standard, flat or a ladder approach, 
and with different features. Our results strongly support 
that the knowledge of the category taxonomy is useful for 
question classification and that using SVMs with a ladder 
approach leads to the best classifier.  These results do not 
come with a surprise because SVMs is intrinsically a 
binary classifier, and the binary-status of the steps of the 
ladder makes it more appropriate for SVM classification. 
 
On the other hand, the ladder approach applied to the other 
classifiers has shown mixed results; the performance of the 
ladder approach beats the standard approach for 22 
task/feature combinations (including all six of the results 
for SVMs), ties the standard approach for 3 task/feature 
combinations, and underperforms the standard approach 
for 17 task/feature combinations.  Although it is not 
entirely clear when the ladder approach is better than the 
standard approach, it is important that the ladder approach 
has helped SVMs, which has clearly performed the best 
overall, and this has led to our highest overall accuracy for 
these categories. 
 
Looking back at the results from Table 1, we might notice 
that the systems do not perform equally well on all binary 

classification tasks.  Recall that SVMs performs the best 
for three of the four tasks, but for one task (Intervention vs 
No Intervention), probabilistic indexing performs the best.  
It is therefore possible that the ladder approach might 
achieve better results if separate classifiers were used at 
different steps of the ladder. 
 

Conclusions and Future Work 

This paper presents our results of automatic classification 
of medical questions using various supervised machine-
learning systems.  For this study, we have used a small 
data set consisting of 200 questions that have been 
manually labeled by experts into five mutually exclusive, 
hierarchical categories.  We have experimented with both 
binary classification corresponding to the individual 
decisions in the hierarchy, and also classification into the 
five leaf categories.  Classification into the leaf categories 
has been performed using a standard approach and also the 
ladder approach.  The performance measures for our binary 
classification tasks, in terms of overall accuracy, were all 
reasonably high.  The performance was not generally high 
for classification into five categories, although almost all 
systems with all sets of features did beat the baseline.  We 
speculate that the performance would improve if we were 
to obtain more training data; for example, a previous study 
that applies SVMs to open-domain sentence classification 
has shown that the performance of SVMs for a five-class 
categorization task increases from 68.0% to 80.2% when 
the total number of questions for training increases from 
1000 to 5500 (Zhang and Lee, 2003). 
 
We found that including the UMLS concepts and semantic 
types as additional features can enhance results, although it 

Table 2: Five category classification results (overall accuracy %) using a standard, flat category classification approach (bottom) 

and the ladder approach (top) (bold indicates a result better than the other approach, underscore indicates equal results) 

Performance Using Various Features (C means UMLS Concepts, ST means semantic types) 
Ladder 

Bag of Words Words+C Words+ST Words+C+ST C only ST only 

Rocchio/TF*IDF 49.0 45.0 48.5 50.5 41.5 34.5 

kNN 50.5 49.0 48.0 49.0 50.5 45.0 

Naïve Bayes 52.0 50.5 51.0 52.5 51.0 46.5 

Prob Indexing 53.0 50.5 53.5 57.5 47.0 45.0 

MaxEnt 48.0 46.0 52.5 50.5 48.5 43.0 

SVMs 54.0 57.0 59.5 58.0 55.5 57.0 

BINS 52.5 56.0 53.0 53.0 49.0 40.5 

Performance Using Various Features (C means UMLS Concepts, ST means semantic types) 
Standard 

Bag of Words Words+C Words+ST Words+C+ST C only ST only 

Rocchio/TF*IDF 47.5 45.0 50.5 52.0 45.5 41.0 

kNN 52.5 51.0 48.0 50.5 49.5 46.5 

Naïve Bayes 51.5 50.0 51.5 53.5 50.0 45.0 

Prob Indexing 52.0 51.0 56.5 57.0 47.5 45.5 

MaxEnt 46.0 47.5 48.0 49.5 47.0 45.0 

SVMs 51.0 53.5 54.0 53.0 52.0 50.5 

BINS 53.0 51.0 51.5 48.0 47.5 40.5 



does not do so in all cases.  Even using these novel features 
in place of bag of words tends to achieve performance 
close to bag of words.  Certainly these features look 
promising for future work involving larger training sets.   
 
Our primary future task is to automatically classify 
questions involving medical knowledge, and to use the 
classification in order to decompose biomedical questions 
according to component question types, as proposed by 
(Ely et al. 2000) and (Bergus et al, 2000).  Each component 
question type represents a specific category for a question 
indicating what type of information is sought; for example, 
“What are the affects of <drug> on <disease>?”.  If 
questions can be accurately classified into component 
question types, one significant advantage of this would be 
that specific answer strategies could be developed for each 
question type.  We speculate that the recognition of UMLS 
concepts and semantic types, along with deeper natural 
language processing and analysis of questions, will also 
play a crucial role in this type of question classification. 
 
Acknowledgements:  We thank Dr. John Ely for valuable 

discussions and for making the annotated medical 

questions available to us. This project is supported by the 

Juvenile Diabetes Research Foundation International 

(JDRF 6-2005-835).  Any opinions, findings, or 

recommendations are those of the authors and do not 

necessarily reflect JDRF’s views. 

References 

Aronson, A. 2001. Effective Mapping of Biomedical Text 
to the UMLS Metathesaurus: The MetaMap Program. 
Proceedings of the American Medical Information 
Association Symposium. 

Bergus, GR., Randall, CS, Sinift, SD, and Rosenthal, DM. 
2000. Does the structure of clinical questions affect the 
outcome of curbside consultations with specialty 
colleagues? Arc Fam Med 9 (541-547). 

Chakrabarti, S.; B. Dom; R. Agrawal; and P. Raghavan. 
1998. Scalable feature selection, classification, and 
signature generation for organizing large text databases 
into hierarchical topic taxonomies. VLDB Journal 
7(3):163-178. 

Dumais, S. and H. Chen. 2000. Hierarchical classification 
of web content. In Proceedings of the 23rd International 
ACM SIGIR Conference on Research and Development in 
Information Retrieval.   

Ely, J.; Osheroff, J.; Ebell, M.; Bergus, G.; Barcey, L.; 
Chambliss, M.; and Evans, E. 1999. Analysis of questions 
asked by family doctors regarding patient care. British 
Medical Journal 319:358-361. 

Ely, J.; Osheroff, J.; Gorman, P.; Ebell, M.; Chambliss, M.; 
Pifer, E.; and Stavri, P. 2000. A taxonomy of generic 
clinical questions: classification study. British Medical 
Journal 321:429-432. 

Ely, J.; Osheroff, J.; Ebell, M.; Chambliss, M.; Vinson, D.; 
Stevermer, J.; and Pifer, E. 2002. Obstacles to answering 
doctors' questions about patient care with evidence: 
qualitative study. British Medical Journal 324:710-713. 

Fuhr, N. 1998. Models for retrieval with probabilistic 
indexing. Information Processing and Management 
25(1):55-72. 

Gorman, P.; Ash, J.; and Wykoff, L. 1994. Can primary 
care physicians’ questions be answered using the medical 
journal literature? Bulletin of the Medical Library 
Association 82(2):140-146. 

Harabagiu, S, Pasca, M, and Maiorano S. 2000. FALCON: 
Boosting knowledge for answer engines. In Proceeding of 
the 9

th
 text retrieval conference (TREC-9). NIST. 

Hovy, EH, Gerber, L, Hermjakob, U, Lin, CY, and 
Ravichandran, D. 2001. Toward semantics-based answer 
pinpointing. In Proceedings of the Human Language 
Technology Conference (HLT2001).  

Humphreys, B. and Lindberg, D. 1993. The UMLS project: 
making the conceptual connection between users and the 
information they need. Bulletin of the Medical Library 
Association 81: 170-7. 

Jacquemart, P. and Zweigenbaum, P. 2003. Towards a 
medical question-answering system: a feasibility study. 
Studies in Health Technology and Informatics 95:463-8. 

Joachims, T. 1997. A probabilistic analysis of the Rocchio 
algorithm with TFIDF for text categorization. In 
Proceedings of the 14th International Conference on 
Machine Learning. 

Koller, D. and M. Sahami. 1997. Hierarchically classifying 
documents using very few words. In Proceedings of the 
14th International Conference on Machine Learning. 

Lewis, D. 1998. Naive (Bayes) at forty: the independence 
assumption in information retrieval.  In Proceedings of the 
European Conference on Machine Learning. 

Mao W. and W. Chu. 2002.  Free-text medical document 
retrieval via phrase-based vector space model.  
Proceedings of the American Medical Information 
Association Symposium. 

McCallum, A. 1996. A toolkit for statistical language 
modeling, text retrieval, classification, and clustering. 
http://www.cs.cmu.edu/~mccallum/bow. 

Mosteller, F. and D. Wallace. 1963. Inference in an 
authorship problem. Journal of the American Statistical 
Association 58:275-309. 

Nigam, K.; Lafferty, J.; and McCallum, A. 1999. Using 
maximum entropy for text classification.  In Proceedings 
of the IJCAI-99 workshop on machine learning for 
information filtering. 

Rocchio, J. 1971. Relevance feedback in information 
retrieval. In The Smart Retrieval System: Experiments in 



Automatic Document Processing, pages 313-323, Prentice 
Hall. 

Ruiz, M. E. and P. Srinivasan. 1999. Hierarchical neural 
networks for text categorization. In Proceedings of the 
22nd International ACM SIGIR Conference on Research 
and Development in Information Retrieval.   

Sable, C. 2003. Robust Statistical Techniques for the 
Categorization of Images Using Associated Text. Ph.D. 
dissertation, Columbia University. 

Sable, C. and K. Church. 2001. Using Bins to empirically 
estimate term weights for text categorization. In 
Proceedings of the 2001 Conference on Empirical Methods 
in Natural Language Processing. 

Sackett, D.; Straus, S.; Richardson, W.; Rosenberg, W.; 
and Haynes, R. 2000. Evidence-Based Medicine: How to 
practice and teach EBM. Edinburgh: Harcourt Publishers 
Limited. 

Sebastiani, F. 2002. Machine learning in automated text 
categorization. ACM Computing Surveys 34:1-47. 

Suzuki, J.; Taira, H.; Sasaki Y.; and Maeda, E. 2003. 
Question classification using HDAG kernel. In 
Proceedings of the ACL 2003 Workshop on Multilingual 
Summarization and Question Answering. pp. 61-68. 

Straus, S. and Sackett, D. 1999. Bringing evidence to the 
point of care. Journal of the American Medical Association 
281:1171-1172. 

van Rigsbergen, C. J. 1979. Information Retrieval, 2nd 
Edition. London: Butterworths. 

Yang, Y. and Liu, X. 1999. A re-examination of text 
categorization methods.  In Proceedings in the 22nd 
Annual International ACM SIGIR Conference on Research 
and Development in Information Retrieval. 

Yu, H. and Sable, C. 2005. Being Erlang Shen: Identifying 
Answerable Questions. To appear in Nineteenth 
International Joint Conference on Artificial Intelligence 
Workshop on Knowledge and Reasoning for Answering 
Question.. 

Yu, Y.; Zhu, H.; Sable, C.; Shapiro, S.; Osheroff, J.; Ely, 
J.; and Cimino, J. 2005. Beyond Information Retrieval - 
Biomedical Question Answering.  Forthcoming. 

Zhang, D. and Lee, W. S. 2003. Question classification 
using support vector machines. In Proceedings of the 26th 
Annual International ACM SIGIR conference, pages 26-
32. 


