
Question-Answering in Role-Playing Games

Gary Kacmarcik

Microsoft Research
One Microsoft Way

Redmond, WA 98012 USA
garykac@microsoft.com

Abstract
In this paper, we give a general description of the issues

associated with performing basic Question-Answering (QA)
tasks against non-player characters (NPCs) within a simple
role-playing game (RPG) or virtual world environment. We
describe the aspects of this kind of QA system and provide an
overview of our initial explorations into the implementation
and evaluation of a QA system that is appropriate for RPG
environments. We also introduce Keystone, a simple RPG
environment that provides a small virtual world that allows
different NPC controller backends to be plugged in thus al-
lowing these systems to be evaluated in a more realistic game
environment.

Introduction
For more than 40 years, researchers have been developing a
variety of Restricted Domain Question-Answering (RDQA)
systems that have been designed to cover a wide range of
specific domains. The earliest systems (e.g., BASEBALL
[Green61], LUNAR [Woods73]) used restricted domains
out of technological necessity, but recently there has been a
renewed interest in RDQA. This resurgence has been caused
in part by a recognition of the difficulties of general open
domain QA, but also by a desire to create complete working
systems that address specific problems.

In this paper, we discuss the application of QA techniques
to a particular restricted domain that has not been explored
before in this context - that of computer role-playing games
(RPGs). As part of this discussion, we describe the special
properties of RPG environments and outline the techniques
and approaches that are required.

As we envision it, QA in an RPG environment is a
special case of the interactive dialog type of QA problems.
Certainly the most well-known example of this system is
[Winograd72]ʼs SHRDLU or “blockworld”. The SHRDLU
system supported a dialog that allowed the user to control a
robotic arm in a virtual world of blocks on a table. The user
could issue commands that affected the world state and also
query the current state of the system.

Toys & Games
One problem with SHRDLU is that it is clearly a toy. We
mean this not in the pejorative academic sense (i.e., a system
designed using a tiny or contrived data set with limited scope

or scalability), but rather to draw attention to the distinction
between toys (like a train or a jump rope) and games (like
chess) where a toy has no defined goal or winning condi-
tions. Unless a toy can be made part of a larger game, the
players are likely to lose interest or get distracted. Without a
method for determining the playerʼs goal in interacting with
the system, there is no easy way to anticipate which type of
questions will be asked.

The interactive dialog QA approach described here
is designed specifically for games. By investigating the
problem in a game environment, we ensure that the user
has a clearly defined purpose, i.e., to win the game. This
narrows the scope of the interaction and permits us to make
simplifying assumptions.

Clearly, not all games are appropriate for QA interaction.
For reasons the become clear below, we decided to work
within a role-playing game framework.

Role-Playing Games (RPGs)
A role-playing game (RPG) is one of the more popular
genres of video games being released for PC and game
console systems. In an RPG, the player controls the actions
of a character in a virtual environment, typically from a
third-person over-the-shoulder or overhead view. RPGs are
distinguished from other genres by the increased amount of
interaction that they allow with the inhabitants of the virtual
world.

The goal of the player in an RPG is to complete mini-
mally one main quest and optionally some smaller or “side”
quests. Whether or not the player is ultimately success-
ful in the quest(s) is determined by the playerʼs actions in
response to interactions with the game environment and its
inhabitants.

These game world inhabitants are termed non-player
characters (NPCs) since they are controlled by the game
system rather than a player. The quality of the interaction
between the player and the NPCs in a game is crucial to the
success of an RPG.

In most currently available RPGs, the player-NPC inter-
action handled by a finite state machine (FSM) of scripted
dialog that is pre-written by the game designers. Some
games introduce a bit of variability by using Markov models
(commonly called fuzzy state machines (FuSMs) in game

development literature) to help vary the interaction. At the
core, however, each state in the model still corresponds to a
scripted interaction. In addition, some NPCs require custom
interfaces. For instance, a shopkeeper NPC that allows the
player to purchase or trade items. Our goal in creating more
interactive NPCs is not to replace these current techniques,
but rather to provide additional methods that can be used
alongside existing technologies as deemed appropriate by
the game designer.

QA in RPG Environments (RPG-QA)
There are many characteristics of RPGs that pose interesting
or unique challenges for QA. In this section, we describe
the aspects of RPG-QA and introduce our proposed archi-
tecture for applying QA techniques to the player-NPC inter-
action problem.

Aspects of RPG-QA
Even though there is considerable overlap in technologies
and approaches between QA in an RPG and general QA,
there are many significant differences. This section sum-
marizes these aspects and describes where appropriate how
they contrast with more typical QA applications.

Closed Domain. A significant feature of RPG environments
is that they are completely closed domains. In most cases
the entire virtual game world is constructed by the game
designers specifically for that particular game.

Dynamic Domain. While the domain for an RPG is closed,
it need not be a static collection of documents. The docu-
ments can be changed or augmented as a result of player-
NPC interaction.

Document Preselection. In most QA systems, either all
of the available documents are used, or a document prese-
lection process based on the query is applied to reduce the
number of documents to be evaluated. For an RPG, a trivial
document preselection process is employed that depends not
on the query but rather on the NPC being queried. In this
process, only the documents that correspond to the selected
NPC are used to answer the query. This is an important issue
because it is appropriate and desirable for the system to re-
turn “no answer found” even if the answer exists elsewhere
in the document collection.

NPCs Are “People”. In an RPG, the query is not being ad-
dressed to an abstract entity or an oracle, but to a particular
NPC in the world selected by the player. This carries with it
certain expectations on the part of the player since the per-
sonality of the NPC needs to be reflected both in the answer
and how the answer is presented. Approaches to this prob-
lem can range from simple lexical substitution to custom-
ized generation grammars.

Input Restrictions. Another significant difference is that
RPGs tend to have considerable input restrictions that affect
how the player can pose a query. Many game systems donʼt
have keyboards available at all and those that do tend to
avoid their use in games since text input is error prone and
interrupts the flow of the game.

Single Answer. Just as in QA problems like story under-
standing, we know beforehand which documents contain the
answer. Additionally, these documents do not contain redun-
dant information and an answer typically occurs in exactly
one document (if an answer exists at all). Thus, the preci-
sion issues commonly associated with restricted domain QA
(where the answer appears in a small number of documents)
apply here as well.

Queries. In a goal-driven environment like a game, there is
a restricted set of query types that are commonly employed.
In addition, there may also be default or null queries which
are used to initiate the dialog with the NPC.

Coreferences. In a closed domain like an RPG, all of the
entities mentioned in the document collection either have
virtual representations in the game environment, or they are
abstractions of entities in the environment. This is important
for reference resolution since it means that all coreferences
that matter for gameplay can (and should) be resolved.

User Model. When formulating the answer, the NPC should
take into account its model of the listener (in this case, the
player). This model is where the NPC records previous
interactions and keeps track of assumptions that are made
about the listener.

Entertainment. The primary goal of any game is to be
entertaining. An interesting side effect of this is that accu-
racy and relevance, while still clearly important, need to be
weighed against other issues like entertainment value.

Demanding User. In a game setting, the person posing the
query can be considered a demanding user. While they are
interested in getting an appropriate answer, they are less
willing to tolerate system failures and idiosyncrasies. Any-
thing that breaks the illusion of an intelligent person answer-
ing the question is undesirable.

Computational Cost. While some QA systems are designed
as a shared resource with multiple users accessing the sys-
tem simultaneously, a single-player RPG environment has a
dedicated system available for use. This luxury permits the
use of more advanced linguistic techniques for answering
the userʼs query.

Document Authority. As with many other RDQA systems,
document authority is not an issue for RPG-QA environ-
ments. Since all documents are authored specifically for the
game, they are all of equal weight and trustworthiness.

However, this issue is not to be confused with the playerʼs

confi dence or trust in the NPC. In an RPG, a clear distinction
is drawn between document authority (i.e., can we trust the
documents to contain an accurate representation of NPCʼs
knowledge?) and answerer authority (i.e., can the player
trust the information that the NPC gives?). It is perfectly
acceptable for an NPC to lie or withhold information if that
is consistent with its personality, and it is also acceptable for
the NPCʼs knowledgebase (KB) to contain information that
is incorrect (from a more global perspective), but neither of
these situations refl ects poorly on the authority of the docu-
ments that comprise the NPCʼs underlying KB.

Proposed Architecture
Given the aspects mentioned in the previous section, we
adopted an architecture that has some signifi cant differences
from a traditional QA system. These differences are caused
primarily by the input requirements of the RPG environ-
ment.

No Keyboard. Most signifi cantly, we do not rely on a key-
board for player input. Instead, we rely on a keyword-based
approach where the player specifi es keywords through game
objects or keyword lists. These keywords are used to gen-
erate appropriate questions based on the context. In their
most basic usage, keywords provide at least a “Who/What
is <x>?” question. Other more detailed questions may be
available depending on the keyword and the contents of the
NPCʼs knowledgebase.

While this simplifi cation severely limits the type of queries
that can be asked, it also avoids non-trivial input validation
problems such as typos, paraphrases, reference resolution
and out-of-domain input. In addition, it provides a perfor-
mance baseline: keyword matching is a standard fallback
position when more advanced interaction techniques (like
speech recognition or parsing) fail.

Automatic Question Formulation. Because players are
only able to specify keywords, we must provide a mecha-
nism for automatically generating a set of questions from
the keyword. While generating the default “Who/What is
<x>?” query is trivial, more interesting questions are more
challenging. Fortunately, because we know that the playerʼs
goal is to solve the game, we are in a reasonable position to
generate useful and relevant queries.

Overview. Figure 1 provides a high-level overview of the
interaction that we propose for an RPG-QA system. In
this fi gure, the interaction starts with the player selecting
a keyword in the UI and sending it to an NPC. From this
keyword, a set of NPC-specifi c questions is generated and
presented to the user. The player then selects one of these
“pre-answered” questions and receives an answer.

As shown in the fi gure, these answers may also be associ-
ated with keywords that the player can use in future interac-
tions. For example, if the answer mentions a key location in
the game, the keyword associated with that location would
now be available to the player in future interactions. In
addition to being useful for interaction, the keywords are
also useful for evaluating the QA system, as discussed in the
next section.

Evaluation
Since the goals of game QA systems differ from the goals
of more typical QA systems, it is not surprising that the
standard evaluation techniques are not suffi cient for this
application.

Evaluation Criteria
We divide the RPG-QA evaluation criteria into two distinct
groups. The fi rst group contains the standard criteria that
can be applied to most QA systems. The second group
contains criteria that are specifi c to a gaming environment.
In addition, we also briefl y discuss the issue of “entertain-
ment value” and how this impacts the evaluation.

Standard QA Criteria. Most QA evaluations involve creat-
ing a random sample of question/answer pairs and using this
to judge the overall accuracy of the system. As discussed in
the next section, this approach is not well-suited for evaluat-
ing QA in an RPG environment.

However, there are two measures that are common to all
QA systems that are appropriate for RPGs: the speed and
the fl uency of response. The speed of the response is of
obvious importance: we must ensure that the system does
not take an inordinate amount of time to respond. Fluency
is equally important: if the response is unintelligible or of
low quality, the user is likely to be dissatisfi ed. To measure
fl uency, we can use the perplexity of the response relative
to an n-gram language model. Eventually, as the interac-
tion evolves toward a more dialog-like interaction, a dialog
fl uency evaluation may also need to be considered.

RPG Criteria. A more interesting set of evaluation criteria
are those that are specifi c to the RPG environment.

As mentioned earlier in this paper, current RPGs rely
almost exclusively on scripted interactions. Even though
there are obvious disadvantages to the scripted approach
since the NPC cannot act outside of the scripted dialog, there
are many advantages to the game creators that outweigh

Figure 1 : Proposed QA process for an RPG.

Select Keyword

Select Query

Generate Query Set

Display Answer

Record New
Keywords

Generate Answer
& List of Keywords

in Answer

these problems. The most notable of these are (1) ability
to ensure the game is solvable, (2) consistent behavior, (3)
ease of testing, (4) ease of localization, and (5) reliance on
proven, efficient technology. These advantages form an
interesting base from which we can develop an evaluation
system for RPG-QA systems.

The most important constraint on an RPG-QA system is
that it must result in a game that is solvable. We address this
through the use of key queries and keywords.
Key Queries. Key queries are those queries that are crucial
to the playerʼs goal to solve any of the quests in the game. In
the proposed architecture, a key query will always produce
a keyword that is required to progress to the next stage of
the quest. Given this, we can evaluate the solvability of the
game by tracking the keywords and ensuring that the system
is never placed in a state where a required keyword is not
attainable.

In practice, we can evaluate the overall accuracy of the
QA system by exhaustively testing all of the key queries at
each point in the game and verifying the results. For RPGs
that update the KBs during gameplay, a sampling of non-
key queries are also evaluated to ensure that they do not
interfere with the key query results.

This combination of key queries and keywords gives us
an automated method for evaluating the gameʼs solvability
requirement.
Entertainment Criteria. As mentioned earlier, the main
purpose of any game is to entertain the player. As long as
the results produced by the QA system are reasonable and
entertaining, they can be acceptable even if they are wrong
from a strict QA point of view. However, quantifying enter-
tainment value and balancing this with system accuracy is a
difficult proposition.

To address the entertainment value issue, we therefore
assume that the game designer has created an entertain-
ing game and then we identify aspects of the QA system
that might make the game less entertaining. By identifying
elements that frustrate the player we can create evaluations
to ensure that we donʼt inadvertently make the game less
entertaining. The key query evaluation is a good example of
this: creating a game that cannot be solved can be very frus-
trating for the player, so we created an evaluation to ensure
that this cannot happen. The speed evaluation is another
example since a slow system can also be quite frustrating.

Our System
The next two sections provide a brief overview of the
current version of our system, which implements a subset of
the architecture described in the previous section.

The system is divided into two major components: the
user interface (UI) and the backend. The UI consists of
either a graphical or a command line interface that allows
the player to interact with the backend processor responsible

for producing the NPC responses and managing the KBs.
An advantage of this division is that it facilitates experi-

mentation with various backend systems. It also allows us
to make the front-end UI available to other researchers and
thus provide a common environment for evaluating differ-
ent approaches to this problem.

KEYSTONE: The User Interface
KEYSTONE is the name for the UI component that handles all
of the interaction with the player. We created two versions
of the UI, a graphical interface and command line inter-
face. The former is appropriate for situated evaluations and
demonstrations, while the latter is more appropriate for
automated evaluations and debugging. These interfaces are
interchangeable since they both use the same mechanisms to
communicate with the backend.

The primary motivation for creating this interface tool
is the lack of an RPG creation toolkit that is suitable for
QA researchers. Existing tools for creating RPGs provide
adequate support for customizing the appearance and the
structure of the game but make the crucial assumption
that all NPC dialog interaction will be scripted in a dialog
tree. Because of this limitation, these tools are inadequate
for researchers interested in experimenting with different
approaches to NPC interaction and control.

Plug-in API
There are two primary motivations for creating separate UI
and backend components. The first is to make it possible
to replace the back-end and experiment with alternate NPC
control schemes. The second is to facilitate automated eval-
uations. Both of these goals are enabled by an application
programming interface (API) that defines how the front-end
UI and the backend can communicate with each other.

The API is primarily focused on supporting the keyword
manipulation and query generation architecture described
earlier. It also supports optional full-text queries and provides
support for debugging commands. A full description of the
complete API is given in [Kacmarcik05].

Backend: The NPC Controller
The backend is the part of our system that performs all of
the interesting QA tasks. Everything that is not part of the UI
falls into the domain of the backend.

We describe here the two most relevant parts of our
backend implementation: the knowledgebase, and our
approach to the question and answer generation tasks.

Document Pre-processing : Creating KBs
The relatively small number of documents in the collection
makes it reasonable to perform extensive pre-processing to
convert the data into a more suitable representation.

Source Text. Since a long-term goal of our system is to make
it accessible to game designers without requiring specialized
training in a formal knowledge representation language, we
use natural language text as the source representation for the
KB documents. We use a parser to convert this text into a
more abstract semantic representation.
Reference Resolution. Before we parse the source text, we
require that all of the anaphoric references have been re-
solved. Beyond the nominal/pronominal distinction, there
are two types of anaphora present in our system: endophora
(references that can be resolved within the text) and
exophora (references to objects in the game environment).
While we need to rely on the game developer to provide
the referents for the exophoric references, we can partially
automate the resolution of the endophoric references using
standard techniques. However, since we require 100% ac-
curacy, we manually review and correct the references to
ensure that the KB contains valid information.
Parsing. The parser creates a predicate-argument style tree
representation of the original text. These trees, called logi-
cal forms (LFs), are the representations that are stored in
the KB.

This tree structure has many advantages. First, since it
is based on our broad coverage grammar ([Heidorn00]) it
provides a reasonable representation for all of the things that
a player or NPC is likely to want to talk about in a game. In
addition, it is easy to manipulate by splicing subtrees from
one tree to another. Finally, we can also readily generate
output text from this representation using our generation
component (described in [Aikawa01]).

Question Generation
Since we only allow automatically generated queries, we
need to ensure that we generate a set of interesting queries
to avoid frustrating the player. Beyond the straightforward
“Who/What is this?”-style of questions, we also use a Wh-
question generator (originally described by [Schwartz04] in
the context of language learning) to produce a set of answer-
able questions about the selected object.

Once the player selects a query, the final step in query
generation is to create the LF representation of the question.
This is required so that we can more easily find matches in
the KB. Fortunately, because the queries are either formu-
laic (e.g., the “Who/What” queries), or extracted from the
KB, the LF is trivially created without requiring a runtime
parsing system.

A problem with our current implementation is that we
have no mechanism for sorting or prioritizing these queries.
This leads to a situation where we have an overwhelming
number of possible queries, many of which are trivial and
uninteresting to the player. We partially address this problem
with heuristic filtering, but more work needs to be done in
this area.

Answer Generation
After a question is posed to an NPC, the KB is scanned to
find an appropriate response. This is done by matching a
combination of LF subtrees and coreference identifiers
between the query and the KBs associated for this NPC.

After finding an appropriate match, the response is
expanded using any deictic relations that are stored in the
NPCʼs KB. This allows us to individualize the responses for
each NPC.

One limitation in our current implementation is that we
always return the minimal subtree match. This is clearly not
an optimal solution since the minimal match may not be the
most informative, but we opted for this approach to avoid
the problems associated with generating answers that are too
long, as might happen in the case where the NPC has a lot
of knowledge about the object in question. As with question
generation, this is an area that requires more work.

Conclusions
We have given a general description of the issues associated
with creating a QA system within an RPG environment and
also provided an overview of our initial explorations in this
area. We have also proposed some testing and evaluation
methodologies that can be used to ensure that the system
is providing a level of accuracy that is appropriate for a
gaming environment.

References
[Aikawa01] T. Aikawa, M. Melero, L. Schwartz and A. Wu.

“Multilingual Sentence Generation”. In Proceedings of
8th European Workshop on Natural Language Genera-
tion. Toulouse, France. 57-63. 2001.

[Green61] B.F. Green, A.K. Wolf, C. Chomsky, and
K. Laughery, “BASEBALL, an automatic question
answerer”, in Proceedings of the Western Joint Computer
Conference 19, pp. 219-224, May 1961.

[Heidorn00] G. Heidorn. “Intelligent Writing Assistance”.
In R. Dale, H. Moisl and H. Somers (eds.) A Handbook
of Natural Language Processing: Techniques and Appli-
cations for the Processing of Language as Text. Marcel
Dekker, Inc. New York. 2000.

[Kacmarcik05] G. Kacmarcik. “The Keystone API”. Forth-
coming.

[Schwartz04] L. Schwartz, T. Aikawa, and M. Pahud.
“Dynamic Language Learning Tools”. In InSTIL/ICALL
Symposium 2004: NLP and Speech Technologies in
Advanced Language Learning. Venice, Italy. June 2004.

[Winograd72] T. Winograd. Understanding Natural
Language. Academic Press. 1972.

[Woods73] W.A. Woods. “Progress in Natural Language
Understanding - an application to lunar geology”.
American Federation of Information Processing Societies
(AFIPS) Conference Proceedings, 42. pp.441-450. 1973.

