
Scavenging with a Laptop Robot

Alan Davidson, Julian Mason, Susanna Ricco, Ben Tribelhorn, and Zachary Dodds
Harvey Mudd College Computer Science Department

1250 N. Dartmouth Avenue
Claremont, CA 91711

adavidso, jmm, sricco, btribelh, dodds@cs.hmc.edu

Abstract

This paper overviews the hardware and software com-
ponents of a robot whose computational engine uses
only commodity laptop computers. Web cameras,
sonar, and an inexpensive laser-pointer-based ranger
provide sensing. By shifting emphasis from engineer-
ing precision to computational heft, the robot succeeded
at several tasks in the 2005 AAAI scavenger hunt. As a
result, this “robot-as-computer-peripheral” design con-
firms that capable, low-overhead robots are within the
price range of a large group of educators and enthusi-
asts.

Introduction
We designed and implemented a robot to participate in the
AAAI 2005 Robotic Scavenger Hunt Competition. The
Scavenger Hunt is a showcase for robotics researchers to ex-
hibit the abilities of their robots to find and identify objects
in a dynamic environment.

Our goal was to demonstrate that a low-cost, sensor-
limited robot could be competitive against well-equipped
conventional robots. Our focus on computer vision and soft-
ware processing led us to write all of our own software, in-
cluding drivers for the motors.

The following two sections highlight the platform’s phys-
ical resources, including both stepper and servo motors,
along with two cameras and six home-brewed rangers. We
then outline the software structure that coordinates these
subsystems, with a focus on the navigation and visual pro-
cessing. We conclude with several of the challenges and
successes of working with our robot.

Hardware
Our entry was based on an Evolution Robotics ER1 (Evo
2002). The standard ER1 provides a differential-drive plat-
form and a web camera. The robot’s computational power is
provided by a laptop which rests on the back of the chassis.
We extended our ER1 to use five Devantech SRF04 sonars
and a second web camera, and have removed the IR sensors.
Since the web cameras’ combined bandwidth requirements
exceeded a single USB bus, we mounted a second laptop

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

as shown in Figure 1. We also designed and built a laser
rangefinder from two Maxx MX-400 servo motors, a laser
pointer, and a camera. The laptop communicates with the
motors and sonar rangers through a Pontech SV203 servo
controller board and our own custom interface circuit.

Figure 1: The laptop-controlled scavenging robot built atop
an Evolution ER1. The sensor suite points toward the typi-
cal direction of travel, and onlookers can follow the robot’s
reasoning by watching the screens from behind. Both cus-
tom and commercial interface circuits mediate between the
two sides.

We fashioned a makeshift gripper using a front-mounted
strip of duct tape, which could reliably grab and carry a
beach ball simply by colliding with it. Two rulers mounted
on additional servo motors could detach the ball when the
robot arrived at its destination.

This design led to a remarkably inexpensive platform: the
entire machine cost approximately $600. The laptops, of
course, are considerably more expensive, but it’s important
to note that those two computers are not dedicated to running
the ER1. Indeed, they are now in use for much more typical
tasks. For example, the team gave its presentation during
the AAAI robotics workshop on one of them. Their role
is analogous to that of a laptop mounted atop a Pioneer or
communicating via wireless with an AIBO. Such support

11

computers are not typically quoted in the platforms’ costs.

Range Sensing
The five sonar units mounted around the front half of the
robot act as primary proximity sensors – basically virtual
collision detectors. When a sonar detects an obstacle within
about 35 cm, it triggers a “bump.”

The other range sensor is a custom laser rangefinder made
from a laser pointer, two servo motors, and a camera. The
servos enable the laser to pan and tilt. The camera’s expo-
sure is adjusted in software to a level so low that only very
bright features such as the laser dot are visible. Because we
perform a short horizontal sweep of the laser, only a small,
known subset of the observing camera image can detect the
dot. Thus, other bright features such as lights and floor re-
flections are easy to ignore.

We calculate the distance to a surface by intersecting the
vector from the camera center to the surface (extracted from
the camera pixel of the laser dot) and the vector made by the
laser pointer (via the kinematics of the pan/tilt mechanism).
Typically, noise and/or modeling error prevents these two
rays from intersecting. We take the least-squares solution to
find the point that minimizes the distance to both rays simul-
taneously. At ranges up to a meter our system is accurate to
roughly two centimeters, and at ranges up to four meters it
is accurate within twenty centimeters. Beyond this, the laser
dot becomes too faint to be identified by our camera.

Architecture
A finite state machine coordinates the scavenger’s subsys-
tems and subtasks as shown in Figure 2. We implement the
state machine using an object-oriented approach, following
standard design patterns (Adamczyk 2003). This design fa-
cilitates extending our control system to support new behav-
iors. Additionally, our control system keeps the behavior of
the robot independent from the specific sensors being used,
which allows us to substitute different sensors quickly and
easily.

The robot’s default state is called Wander. Wander has
two different modes. One uses virtual waypoints on the
map to explore the world, and the other attempts to travel
as straight as possible in order to find the next arrow in a se-
quence. When the robot detects an object of a known color,
it enters the Found Object state. In this state the robot servos
towards the object in order to identify it. After visual iden-
tification, it is marked on the map, and the robot returns to
Wander. In the case of an arrow, the robot enters Follow Ar-
row, calculates the angle of the arrow, travels to it, and turns
before returning to Wander. When the robot encounters a
beach ball, it “grabs” the ball with the duct tape and enters
the Found Beach Ball state. In this state, the robot uses its
localization routines to assist travel towards a prespecified
destination. It chooses this path via predefined waypoints.
Once there, the robot releases the beach ball and returns to
Wander.

When the sonar detects an obstacle nearby, the robot
pauses and enters Panic. The Panic state uses data from the
laser rangefinder to perform a localization routine. The robot

then turns away from the object and resumes its previous be-
havior.

Figure 2: A graphical summary of the state-machine con-
troller and the sensor conditions that trigger transitions
among states. Music and voice files chime in as appropri-
ate.

This state machine, implemented in Python, communi-
cates with all of the other software components using stan-
dard socket protocols. The computationally expensive nav-
igation and vision subsystems are written in C++ for speed,
while the motor drivers and range-sensor interface remained
in Python for simplicity.

Navigation and Localization
To effectively compete in the scavenger hunt, our robot had
to report the locations of objects it encountered and to re-
turn a specific object to a designated location. To support
these tasks, we hand-crafted a map of the competition area
and used it within our own software framework for spatial
reasoning. Our robot localizes itself using Monte Carlo Lo-
calization (MCL) (Thrun et al. 2000). Our implementation
uses data from the laser rangefinder with empirically derived
triangular probability distributions of sensor and motion er-
ror. MCL, however, does not provide a single position for
the robot, but rather a collection of hypotheses of where the
robot might be. We require the robot to have a single, spe-
cific location on the map, so we assume the robot is actually
at the position of the most likely hypothesis (the probability
mode).

We have found that this approach is effective, even though
it can cause the robot’s estimated position to change drasti-
cally. In runs at AAAI, the robot was able to correct a six-
meter error using MCL and find its actual position within a
third of a meter. During the competition run, a similar ad-
justment of about thirty centimeters occurred as the robot
traveled to its destination.

In addition to localization, our software provides two
kinds of path planning: “wandering” planning and “desti-
nation” planning. Both are based on a series of virtual, pre-

12

specified waypoints placed throughout the map, as shown
in Figure 3. For simplicity, we create enough waypoints to
have a line-of-sight from every point on the map to a way-
point. Each waypoint stores the heading to two neighboring
waypoints, one for each type of planning.

To wander, the robot asks the navigation software for di-
rections to the nearest visible waypoint. The robot then fol-
lows this bearing until it is within a predefined distance of
the next waypoint. Once there, it gets the heading towards
the next waypoint, and continues this pattern. If the robot en-
counters an obstacle along this path, it updates its MCL par-
ticle filter. As this might move the robot’s estimated position
by a large amount, the robot requests new instructions to the
(possibly changed) nearest waypoint. When the robot en-
counters an object, it goes into the Found Object state. This
results in object-dependent behavior. For instance, when the
object is an arrow, the robot follows the arrow and returns to
Wander, ignoring waypoints.

The robot also relies on waypoints to deliver the beach
ball. Instead of following the “wandering” headings, the
robot follows the “destination” headings, traveling as before.
In this mode, the robot does not stop to identify other objects
it encounters, though it still localizes itself when it finds an
obstacle.

Figure 3: In this map snapshot, the pentagonal robot has
wandered from the destination waypoint (the Jerusalem
cross at right) towards a second waypoint (the cross at left).
When obstacles are detected, a localization update occurs.
The red dots represent the particle filter’s pose hypothe-
ses with the robot placed at the most likely. Observed ob-
jects, e.g., the empty circle representing the beach ball, are
mapped relative to the current maximum-likelihood pose.

Visual Object Recognition
We use an exclusively vision-based system for identifying
scavenger hunt objects. One of the robot’s cameras is an-
gled downwards to better view nearby objects on the floor.
To recognize a particular item, our software applies the se-
quence of image-processing routines detailed in Figure 5.

Each color of interest is defined by thresholds in both
RGB and HSV space. For convenience, our software allows
the user to change these thresholds in real time by selecting

Figure 4: A raw image and the results of segmentation, con-
nected components, and shape processing: best-fit ellipses
surround both the arrow and the yellow bag.

a region in the video window. These color definitions can
be read from and saved to a file. This interface made quick
work of the frequent and important task of calibrating for
different lighting conditions.

After the image is segmented with these color definitions,
a connected-components routine extracts the largest contigu-
ous region of the most abundant color and passes it to several
shape filters.

Shape analysis consists first of PCA-based (i.e.,
coordinate-free) ellipse-fitting (Jolliffe 1986), which esti-
mates the major and minor diameters and orientation of the
region as shown in Figure 4. Using these statistics and the
area (raw pixel count) of the component, the program cal-
culates the object’s roundness (Russ 1998) as the ratio of its
area to that of a circle of the same diameter:

Roundness =
4 ·Area

π · (Max Diameter)2

For simplicity, we assume that the maximum diameter of
an object is the diameter of the major axis of the associated

13

Figure 5: Diagram of the visual processing pipeline used in
object identification.

ellipse.
Empirically derived thresholds for a gamut of character-

istics, as shown in Table 1, enable the system to consistently
distinguish among objects as similar as the orange dinosaur,
orange bowl, and orange cone. These items can be seen in
Figure 6.

Figure 6: Our robot with several of the items it can rec-
ognize. Since the color definitions are easily changed, we
could use red arrows in this building and off-white arrows at
the competition.

Our robot can also follow a sequence of arrows placed on
the floor. When it sees an arrow, the robot calculates the dis-
tance to the arrow and the direction in which the arrow is
pointing. The distance to an object in front of us on the floor
is proportional to the vertical position of the object in the
camera image. This relationship is governed by an empiri-
cally derived exponential curve. We also found the number
of pixels per horizontal unit of length as a linear function
of the pixel height in the image. From this, we can calculate
the position of both the head and the tail of the arrow relative
to our robot. With this information, the robot can position
itself on top of the arrow and turn to face the indicated di-
rection. It then returns to the Wander state and continues to
search for objects. The robot has successfully followed ar-
rows in a variety of situations including around corners and

down hallways.

Challenges
A major goal of the AAAI scavenger hunt event was to
showcase a robot’s ability within a real-world environment.
The transition from the lab to the contest floor introduced a
variety of challenges. In particular, people tended to clus-
ter at the front of the robot – interactions which interfered
with its map-based localization routine. While our avoid-
ance behavior could adapt to this situation, our localization
software depended on being able to reliably determine the
distance to the static obstacles in the hallway. With people
blocking clear paths to the obstacles we had included in our
map, our otherwise accurate localization failed. Addition-
ally, we found that the behavior of the spectators was often
adversarial rather than cooperative, e.g., attempting to crowd
the robot. To mitigate this, we added a routine that asked ob-
stacles to step aside – people usually complied while other
obstacles remained behind to assist localization.

People were not the only obstacles in the contest area
which caused problems for our robot. With only five sonars,
the robot had poor proximity resolution. Consequently, it
easily missed narrow obstacles such as the legs of tables and
easels. All of our sonars were mounted high enough off the
ground that they also missed smaller robots, such as the Pi-
oneer by iRobot. Both of these problems could be solved by
adding extra sensors.

By far the most challenging difference between the lab
environment and the competition setting was the lighting.
Consistent lighting is essential for our vision-dependent
robot. Our lab has white floors and relatively constant over-
head lighting. The carpet at the hotel had an elaborate pat-
tern containing many different colors, several of which were
similar to the colors of the scavenger hunt’s objects. The
hotel’s mood lighting created extremely bright patches in-
terspersed with large shadowed areas. We had difficulty dis-
tinguishing colors in the shadowed areas, so we tuned our
color definitions to accept only in the well-lit areas. Natu-
rally, this limited the places where we could detect objects.

Finally, Evolution Robotics has discontinued the ER1
platform, limiting future development of this robot. What’s
more, some early ER1s have a defective control module.
Figure 7 shows one of the two burned power regulators we
replaced in the week before the competition.

Results and Perspective
During the competition, we demonstrated the ability to iden-
tify a beach ball and deliver it to a specified location. We
differentiated between an orange cone, an orange stuffed di-
nosaur, and an orange bowl. We also successfully followed
a series of arrows. These successes earned First Place in the
scavenger hunt and a Technical Innovation Award for “Over-
all Excellence in a Fully Autonomous System.”

We have shown that a laptop robot can be a cost-effective
yet powerful system. The substantial onboard processing
enables investigation of algorithms that exhaust other small
models. By utilizing commodity hardware such as web cam-
eras and laptops, our approach allows a broader group of

14

Object Red Green Blue Hue Saturation Value Additional Constraints
Arrow 91 – 127 32 – 57 0 – 22 0.25 – 0.52 0.79 – 1.00 0.36 – 0.50 0.1 ≤ Roundness (R) ≤ 0.5
Beach Ball 148 – 253 1 – 94 0 – 72 0.01 – 0.23 0.69 – 1.00 0.56 – 0.99 Pixel Count ≥ 2500
Bowl 98 – 183 97 – 182 0 – 4 -0.66 – 1.00 0.98 – 1.00 0.38 – 0.72 |Angle| < 72◦ and R ≥ 0.35
Cone 98 – 183 97 – 182 0 – 4 -0.66 – 1.00 0.98 – 1.00 0.38 – 0.72 |Angle| ≥ 72◦
Dinosaur 98 – 183 97 – 182 0 – 4 -0.66 – 1.00 0.98 – 1.00 0.38 – 0.72 |Angle| < 72◦ and R < 0.35

Table 1: Several of the visual characteristics and their admissible ranges used by the vision system to identify scavenger hunt
objects. The color values listed are those from the conference, though they change significantly based on lighting conditions.
These values are for off-white arrows, yellow beach balls, and orange bowls, cones, and dinosaurs. Note that the bowl, cone,
and dinosaur all use the same color definition, and are distinguished solely by shape.

Figure 7: One of the power regulators within Evolution
Robotics’ early Robot Control Modules looking a bit worse
for wear. . .

educators and enthusiasts to explore the field of robotics.

Future Work
Future work at Harvey Mudd College will focus on improv-
ing robots’ spatial-reasoning algorithms by incorporating vi-
sion. In particular, there is ongoing research in three dimen-
sional mapping (Wnuk, Dang, & Dodds 2004), using vi-
sual data to extend the capabilities of MCL, and improving
odometry using an optical flow approach (Campbell, Suk-
thankar, & Nourbakhsh 2004).

For additional resources including the scav-
enger hunt robot’s source code, please visit
http://www.cs.hmc.edu/∼dodds/AAAIsh.

References
Adamczyk, P. 2003. The anthology of the finite state ma-
chine design patterns. In Proceedings of the Pattern Lan-
guages of Programs Conference (PLoP).
Campbell, J.; Sukthankar, R.; and Nourbakhsh, I. 2004.
Visual odometry using commodity optical flow. Proceed-
ings of the American Association of Artificial Intelligence
(AAAI).
Evolution Robotics. 2002. http://www.evolution.com.
Horn, B. K. P., and Schunck, B. G. 1992. Determining
optical flow. Shape Recovery 389–407.

Intel Corporation. 2000. Open Source Computer Vision
Library: Reference Manual.
Jolliffe, I. T. 1986. Principal Component Analysis.
Springer.
Lucas, B. D., and Kanade, T. 1981. An iterative image
registration technique with an application to stereo vision.
In Proceedings of the 7th International Joint Conference
on Artificial Intelligence (IJCAI ’81), 674–679.
Performance Motion Devices, Inc. 2002. Pilot Motion Pro-
cessor: Programmer’s Reference.
Russ, J. C. 1998. The Image Processing Handbook. CRC
Press, Boca Raton, FL.
Shi, J., and Tomasi, C. 1994. Good features to track. In
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR’94).
Thrun, S.; Fox, D.; Burgard, W.; and Dellaert, F. 2000. Ro-
bust monte carlo localization for mobile robots. Artificial
Intelligence 128(1-2):99–141.
Wnuk, K.; Dang, F.; and Dodds, Z. 2004. Dense 3d map-
ping with monocular vision. In Proceedings of the 2nd In-
ternational Conference on Autonomous Robots and Agents
(ICARA ’04).
Yau Lam Yiu. 2004. http://www.cs.ust.hk/∼yiu.

15

