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Abstract 
The Kansas State University entry into the AAAI 2005 
robot scavenger hunt consists of a Pioneer P3AT robot 
running Windows 2000, scalable client/server software 
architecture, blob-based object recognition, and a Monte-
Carlo localization package.  As a team, we wanted to build 
an image recognition system that would be adequate to the 
tasks that are a part of the scavenger hunt competition. 

Client / Server Architecture   
For flexibility in development, we built a client / server 
model (see figure 1) to abstract the Active Media’s ARIA 
API and allow for distributed computation.  The server 
process(es) run on the robot(s). The server keeps track of 
robot state; such as the velocity of the drive motors, the 
data being returned from the sonar sensors, the pan/tilt 
angle of the camera, and the charge of the internal battery.  
 
As the state of the robot changes (either from default 
behavior coded into the server, or by other clients 
requesting a state change) the server generates a series of 
messages which are broadcast to all connected clients to 
notify them of the state change.  All state change requests 
from clients are served in order of the time they were 
received.  
 
A client is simply any process that connects to the server.  
For the scavenger hunt we developed two clients:  one to 
provide robot remote control and visual object 
identification, the other to perform Monte-Carlo 
localization.  Clients can send requests to the server for 
information that the broadcast messages don’t provide or 
to alter the running state of the robot. For instance clients 
can ask for the current image from the camera, request the 
motors to change velocity, request the camera to tilt and 
request the camera to pan. Clients have to be written to 
play nice with other clients; because the server has no 
facility to resolve any contention between requests (i.e. 
two clients keep requesting different drive motor 
velocities.)  
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Figure 1.  Server process with example remote clients 
performing various robot related computation 

 
 

 
Figure 2.  This architecture can scale into a multi robot 
distributed computing systems quite easily.  This 
diagram shows how different clients can interact with 
multiple robots. 
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Figure 3. This is our remote control and object 
recognition client.  It connects to the server process on 
the robot and allows us to perform all scavenger hunt 
tasks (except localization) from this interface that we 
run on a laptop. 

Blob Based Image Recognition 
Because the colors of the objects in the scavenger hunt 
(lots of fluorescent colors) were not likely to be found in 
the competition environment we developed a simple blob 
based object recognition system.  Although we started 
using the ACTS software, we eventually switched and 
integrated the CORAL Group’s Color Machine Vision 
Project blob software (CMVision for short) into the server 
process.  The server process only performs the actual 
blobbing computation, blob information about the current 
camera image can then be retrieved by a client though the 
client server connection.  We felt that blobbing should take 
place on the robot itself because that would allow us to 
process blob information on the client without having to 
transmit images across a potentially overload wireless 
frequency. The client can also set blobbing parameters 
(such as what color space ranges should be blobbed on a 
channel) over the client server connection. 
 
The image recognition client has three purposes:  
Calibration: Allows the human operator to calibrate the 
blobbing system with a YUV color space interface to 
isolate the color regions that should be blobbed (see 
figures 4 and 5)   
Training: The human operator can present the robot with 
an example of an object and the software keeps track of the 
blob statistics associated with that image 
 Real-time object recognition. Provides instant feedback to 
the human operator concerning what the robot is tracking 
and how well it is tracking it. 

 

 
Calibration allows the operator to choose what part of the 
YUV color space is to be associated with a channel.  For 
instance, an operator may wish to assign channel 1 to blob 
colors that are orange with low luminosity (such as the 
orange cone) then the operator could take another channel 
to associate with orange of a different luminosity (the 
orange of the  stuffed dinosaur seems to have a higher 
luminosity component than the cone.) The operator, of 
course, can calibrate other channels to blob other colors 
that are present in the objects being searched 
for.

 
Figure 4.  This is a close up of our object recognition 
client.  On the left is the image that is being seen by the 
robot camera, on the right is the YUV visualization of 
that image. 

 
Figure 5. This image has the bright orange cone 
present, notice how the U and V visualization has 
grown to show that the particular color of orange is 
present in the image now. 

Object training is a process that takes place after the 
blobbing system’s channels have been calibrated to the 
appropriate colors (see figure 6 for a screenshot).  The 
training system allows the operator to present the robot 
with a good example of the object.  The blob statistics 
from the example image are recorded and associated with 
the object label that the operator provides. In essence, the 
operator would place a cone in front of the robot, type in 
the name “cone” and click the “train” button. That training 
data and its associated label is then stored in a list of 
known objects.   
 

33



 
Figure 6.  The necessary colors have been calibrated to 
their channels and the object "cone" has been trained.  
The system is overlaying false color onto the blobs, 
drawing a rectangle around the object, and displaying 
its confidence that the object is present. 

 Object recognition itself is very simple: CMVision is set 
up so that it has multiple channels that it is performing 
blobbing on.  Each channel is calibrated to a different 
region of the YUV color space that could be relevant to the 
scavenger hunt objects.  Each time new blob information is 
sent to the client the client compares the blob count on 
each channel against the objects that it has been trained to 
see according to this algorithm: 
 
Function compare(channels trained, channels 
current){ 
 Diff := 0.0 
 Count := 0 
 For each channel in trained 
  Ratio := channel.numBlobs / 
current[same_index].numBlobs 
  If Ratio > 1.0 Ratio := 1 / Ratio  
  Diff += Ratio 
  Count++ 
 End for 
Return (1 – (Diff / Count)) 

   
   
If the result is above a specified threshold then the object is 
considered to be found.  The center of the object is 
computed by averaging the center of all the blobs that 
compose it, and the region of the object in the image is 
computed by bounding an area with the maximum X and Y 
edges of all the blobs in the RGB version of the image. 
 
This software can be trained to track multiple objects 
simultaneously.  The client iterates through a list of objects 
that it has been trained to see and applies the above 
algorithm to the current image.  It will display a value for 
each object to communicate how confident it is that the 

object exists in the current image.  It will also box all 
objects it finds on the real image, such as in figure 6. 
 

Summary/Conclusion 
 
Since most of our time was spent building a simple and 
resilient image recognition system specifically tuned to the 
hunt objects, the image recognition worked very well, 
especially in the somewhat poor lighting conditions at the 
conference.  Unfortunately we didn’t spend nearly enough 
time working on other features to aid the robot in its 
scavenger hunt.   
 
We plan on improving our image recognition system over 
the coming year. We would like to make the blob 
“coupling” tighter by examining blob geometry in our 
object discovery process, develop/refine a crowd tolerant 
MCL system, and link the MCL and image recognition 
together so the robot could be “kidnapped” or disorientated 
and still locate the scavenger hunt objects. 
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