
KSU Object Recognition

Andrew King, Stephen Stair, Matthew Brubaker, Peter Samland, and Dr David A Gustafson

Computing and Information Sciences, Kansas State University
Manhattan, KS 66506

dag@cis.ksu.edu

Abstract
The Kansas State University entry into the AAAI 2005
robot scavenger hunt consists of a Pioneer P3AT robot
running Windows 2000, scalable client/server software
architecture, blob-based object recognition, and a Monte-
Carlo localization package. As a team, we wanted to build
an image recognition system that would be adequate to the
tasks that are a part of the scavenger hunt competition.

Client / Server Architecture
For flexibility in development, we built a client / server
model (see figure 1) to abstract the Active Media’s ARIA
API and allow for distributed computation. The server
process(es) run on the robot(s). The server keeps track of
robot state; such as the velocity of the drive motors, the
data being returned from the sonar sensors, the pan/tilt
angle of the camera, and the charge of the internal battery.

As the state of the robot changes (either from default
behavior coded into the server, or by other clients
requesting a state change) the server generates a series of
messages which are broadcast to all connected clients to
notify them of the state change. All state change requests
from clients are served in order of the time they were
received.

A client is simply any process that connects to the server.
For the scavenger hunt we developed two clients: one to
provide robot remote control and visual object
identification, the other to perform Monte-Carlo
localization. Clients can send requests to the server for
information that the broadcast messages don’t provide or
to alter the running state of the robot. For instance clients
can ask for the current image from the camera, request the
motors to change velocity, request the camera to tilt and
request the camera to pan. Clients have to be written to
play nice with other clients; because the server has no
facility to resolve any contention between requests (i.e.
two clients keep requesting different drive motor
velocities.)

Copyright © 2005, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

Figure 1. Server process with example remote clients
performing various robot related computation

Figure 2. This architecture can scale into a multi robot
distributed computing systems quite easily. This
diagram shows how different clients can interact with
multiple robots.

32

Figure 3. This is our remote control and object
recognition client. It connects to the server process on
the robot and allows us to perform all scavenger hunt
tasks (except localization) from this interface that we
run on a laptop.

Blob Based Image Recognition
Because the colors of the objects in the scavenger hunt
(lots of fluorescent colors) were not likely to be found in
the competition environment we developed a simple blob
based object recognition system. Although we started
using the ACTS software, we eventually switched and
integrated the CORAL Group’s Color Machine Vision
Project blob software (CMVision for short) into the server
process. The server process only performs the actual
blobbing computation, blob information about the current
camera image can then be retrieved by a client though the
client server connection. We felt that blobbing should take
place on the robot itself because that would allow us to
process blob information on the client without having to
transmit images across a potentially overload wireless
frequency. The client can also set blobbing parameters
(such as what color space ranges should be blobbed on a
channel) over the client server connection.

The image recognition client has three purposes:
Calibration: Allows the human operator to calibrate the
blobbing system with a YUV color space interface to
isolate the color regions that should be blobbed (see
figures 4 and 5)
Training: The human operator can present the robot with
an example of an object and the software keeps track of the
blob statistics associated with that image
 Real-time object recognition. Provides instant feedback to
the human operator concerning what the robot is tracking
and how well it is tracking it.

Calibration allows the operator to choose what part of the
YUV color space is to be associated with a channel. For
instance, an operator may wish to assign channel 1 to blob
colors that are orange with low luminosity (such as the
orange cone) then the operator could take another channel
to associate with orange of a different luminosity (the
orange of the stuffed dinosaur seems to have a higher
luminosity component than the cone.) The operator, of
course, can calibrate other channels to blob other colors
that are present in the objects being searched
for.

Figure 4. This is a close up of our object recognition
client. On the left is the image that is being seen by the
robot camera, on the right is the YUV visualization of
that image.

Figure 5. This image has the bright orange cone
present, notice how the U and V visualization has
grown to show that the particular color of orange is
present in the image now.

Object training is a process that takes place after the
blobbing system’s channels have been calibrated to the
appropriate colors (see figure 6 for a screenshot). The
training system allows the operator to present the robot
with a good example of the object. The blob statistics
from the example image are recorded and associated with
the object label that the operator provides. In essence, the
operator would place a cone in front of the robot, type in
the name “cone” and click the “train” button. That training
data and its associated label is then stored in a list of
known objects.

33

Figure 6. The necessary colors have been calibrated to
their channels and the object "cone" has been trained.
The system is overlaying false color onto the blobs,
drawing a rectangle around the object, and displaying
its confidence that the object is present.

 Object recognition itself is very simple: CMVision is set
up so that it has multiple channels that it is performing
blobbing on. Each channel is calibrated to a different
region of the YUV color space that could be relevant to the
scavenger hunt objects. Each time new blob information is
sent to the client the client compares the blob count on
each channel against the objects that it has been trained to
see according to this algorithm:

Function compare(channels trained, channels
current){
 Diff := 0.0
 Count := 0
 For each channel in trained
 Ratio := channel.numBlobs /
current[same_index].numBlobs
 If Ratio > 1.0 Ratio := 1 / Ratio
 Diff += Ratio
 Count++
 End for
Return (1 – (Diff / Count))

If the result is above a specified threshold then the object is
considered to be found. The center of the object is
computed by averaging the center of all the blobs that
compose it, and the region of the object in the image is
computed by bounding an area with the maximum X and Y
edges of all the blobs in the RGB version of the image.

This software can be trained to track multiple objects
simultaneously. The client iterates through a list of objects
that it has been trained to see and applies the above
algorithm to the current image. It will display a value for
each object to communicate how confident it is that the

object exists in the current image. It will also box all
objects it finds on the real image, such as in figure 6.

Summary/Conclusion

Since most of our time was spent building a simple and
resilient image recognition system specifically tuned to the
hunt objects, the image recognition worked very well,
especially in the somewhat poor lighting conditions at the
conference. Unfortunately we didn’t spend nearly enough
time working on other features to aid the robot in its
scavenger hunt.

We plan on improving our image recognition system over
the coming year. We would like to make the blob
“coupling” tighter by examining blob geometry in our
object discovery process, develop/refine a crowd tolerant
MCL system, and link the MCL and image recognition
together so the robot could be “kidnapped” or disorientated
and still locate the scavenger hunt objects.

34

