
From CMDash’05 to CMRoboBits :
Transitioning Multi-Agent Research with AIBOs to the Classroom

Paul E. Rybski and Manuela Veloso
Carnegie Mellon University, School of Computer Science

5000 Forbes Ave. Pittsburgh, PA 15213
{prybski,mmv}@cs.cmu.edu

Abstract

introduction

Since 1997, the CORAL research group at Carnegie Mel-
lon, headed by Professor Manuela Veloso, has researched
teams of soccer robots using the Sony AIBO robots as
the platform (Veloso & Uther 1999; Velosoet al. 2000;
Lenser, Bruce, & Veloso 2001a; 2001b; Utheret al. 2002).
Our experience runs across several generations of these four-
legged robots and we have met increasing success every
year. In the fall of 2003, we created a new course build-
ing upon our research experience with the AIBO robots. We
have since refined the course and taught it again in 2004 and
2005. The course, which we entitledCMRoboBits: Cre-
ating an Intelligent AIBO Robot, introduces students to all
the concepts needed to create a complete intelligent robot.
We focus on the areas of perception, cognition, and action
(illustrated in Figure 1), and use the Sony AIBO robots to
help the students understand in depth the issues involved in
developing such capabilities in a robot. The course has a
two-hour weekly lecture and a one-hour weekly lab session.
The coursework consists of weekly homeworks and a larger
final project. The homework assignments include written
questions about the underlying concepts and algorithms as
well as programming tasks for the students to implement
on the AIBO robots. Evaluation is based on the students’
written answers, as well as their level of accomplishment
on the programming tasks. All course materials, including
student solutions to assignments, are made available on the
web. Our goal is for our course materials to be used by other
universities in their robotics and AI courses. In this paper,
we present the list of topics that were covered in the lectures
and include examples of homework assignments as well as
the rationale behind them. This curriculum shows how the
AIBO and its software resources make it possible for stu-
dents to investigate and embody an unusually broad variety
of AI topics within a one-semester course.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Figure 1: The modules used in the complete robot.

CMRoboBits
The CMRoboBits code distribution provides all the software
necessary for complete control of an AIBO. The default
code distribution contains all of the functionality necessary
to run simple behaviors (such as chasing a ball). Students are
able to use the existing codebase for their homeworks and
typically write behaviors that make use of the pre-existing
systems. For homeworks that expand on a particular aspect
of the robot’s capabilities (such as vision homeworks), the
students are expected to augment the existing CMRoboBits
code with the new functionality. Some specific capabilities
of the software include:

• Behavior engine for specifying complex robot actions.
Behaviors can run in parallel in a priority-based scheme
and each behavior can invoke a tree of sub-behaviors.

• Real-time low-level color segmentation algorithm for
identifying objects by specific color types. This also in-
cludes the tools necessary for learning the segmentation
based on labeled training images.

• High-level vision object recognition system for identify-
ing and returning the 3D positions of specific objects such
as colored markers, balls, and even other AIBOs.

• Frame-based inverse kinematics engine for performing
complex motions with the AIBO’s limbs.

• Parameterized walk engine for specifying different trot
gaits that the AIBO can use to translate and rotate in any
direction.

53

Camera

Microphone

Back buttons

Head button

Footpad buttons

Speaker

Chest button

Footpad button

Memory stick slot
Wifi card

Lithium ion battery

Figure 2: Annotated AIBO ERS-7

• Monte-carlo localization system (particle filter) using
landmarks at known positions to track the robot’s pose
and orientation.

• World modeling system for tracking the positions of de-
tected objects over time.

• Inter-robot communication system for sharing world state
with other robots.

• Stream-based debugging tools for viewing debug text
strings and frames of color thresholded images in real-
time or from log files.

The Goals of the Course and the Schedule
The main goal of the course is to learn how to create anin-
telligentrobot, using the AIBO platform as a concrete exam-
ple. We want the students to understand howto programthe
robots to perform tasks. We view a robot as a complete intel-
ligent agent, in the sense that it includes perception, cogni-
tion, and action. Our aim through the course is todemystify
robot programming so that it becomes clear and accessible to
all of our students. A parallel goal of particular interest to us
is to bridge from our research code in robot soccer to modu-
lar code that can be used for any general robot task. We aim
to provide course materials that are modular and well struc-
tured so that people at other universities can use the mate-
rials in their own courses. We have found that reorganizing
and cleaning up our robot soccer code has had several addi-
tional positive effects, namely facilitating our research work
and easing students’ transition into that research.

The AIBO, shown in Figure 2, is a remarkable piece of
commercially-available robotic hardware. An AIBO has
fifteen degrees of freedom (DOF) in its legs and head,
a color CCD camera that can process images at 25-30
frames/second, a 3-axis accelerometer for body pose esti-
mation, buttons on its back, head, and footpads, LEDs for
visual debugging, and a wireless Ethernet (802.11b) card
for inter-robot and host-computer communication. Students
program AIBOs using a free SDK called OPEN-R (found

at http://openr.aibo.com/) which lets them compile control
code on a workstation with a MIPS cross-compiler (avail-
able for GNU Linux, Microsoft Windows, and Mac OSX).
The AIBO’s low cost (approximately $1,600 US) allows an
instructor to purchase several of them for the price of a more
traditional research robotic platform.

This 15-week course contains several main components,
as we present below. In the first version of the course in
the Fall of 2003, we followed these main components. In
the second version in the Fall of 2004, we put significantly
more emphasis on behaviors, multi-robot cooperation, and
learning. Although all the components are relevant to the
goals of an AI/robotics course like ours, it is easy to get lost
in the low-level details of perception and action, for which
there may be other courses specifically addressing these top-
ics. Instead the focus of our course is the complete intelli-
gent agent, hence the emphasis on cognition and learning.
We always teach perception and action, but we balance the
topics toward cognition. The following descriptions outline
how we strike this balance.

Behaviors: This course familiarizes the students with the
concept of behaviors for robot control. Every component,
from sensors to localization, is cast in the framework of
how a mobile robot can use those techniques in itsbe-
haviors. We re-introduce behaviors at several times in the
course, since behaviors are the basic components of virtu-
ally any robot task. Initially, we introduce finite-state ma-
chines and incrementally address more complex behav-
ioral structures, such as hierarchical behaviors and plan-
ning. Figure 3 depicts a decomposition of several parallel
and sequential behaviors used in class.

Figure 3: Description of a behavior hierarchy

Sensors and actuators:Robots perceive the world using
theirsensors, and they affect their environment with their
actuators. Sensors and actuators mediate all interactions
between the robot and its environment and are equivalent
to input and output operators in computer programming.
This component of the course introduces students to the
idea of acting in the face of uncertainty. Unlike traditional
programming where input values are completely known,
robots must perform with only limited, noisy knowledge
of their environment. Additionally, robots must cope with
noise and uncertainty in the effects of their actions; mo-
tors do not always perform the requested movements and

54

factors such as friction and slip are difficult to take into ac-
count when predicting the outcome of actions. Students
are introduced to the idea of uncertainty, which is central
to robot programming. Figure 4 shows an example plot
of the 3-axis accelerometer data that students can use to
determine what “state” the robot is in.

Figure 4: 3-axis accelerometer signature for a robot that
starts on its left side, is rotated to an upright position, and
then is rotated to its right side.

Motion: The AIBO robots offer an interesting and chal-
lenging platform for exploring robot motion. AIBOs
differ from most educational robots because they are a
legged platform with fifteen degrees of freedom (DOF)
in their head and legs. Each of the four legs has three
DOF and the head has pan, tilt, and roll joints. In addition
to these major joints, students can actuate the tail, mouth,
ears, and eye LEDs to create more expressive behaviors.
The legged kinematics system makes use of a frame-based
motion system and a parameterized walk engine (Bruce,
Lenser, & Veloso 2002). In this unit, we introduce stu-
dents to the ideas of forward and inverse kinematics. We
also include a practical introduction to our motion system
on the AIBO. We describe our parameterized walk en-
gine, which uses approximately fifty numeric parameters
to specify an entire gait for the robot. These parameters
include factors such as robot body height, body angle, lift
heights for each leg, and timings. We also introduce stu-
dents to the idea of frame-based motion where all joint
angles are specified for a fewkey framesand the robot
interpolates between them. This type of motion is useful
for scripting kicking motions for soccer, dance motions,
climbing, and other predefined motions.

Vision: The AIBO robots use vision as their primary sensor.
Color images in the YUV color space arrive at a framerate
of 25Hz. As in previous years, we use CMVision (Bruce,
Balch, & Veloso 2000;) for our low level vision process-
ing. The high level vision module uses these regions to
find objects of interest in the image. The vision unit of the
course acquaints students with the basics of robot visual

Figure 5: The two motion control systems in the CMRobo-
Bits code base.

processing. Students briefly learn about the YUV color
space commonly used by image capture hardware, as well
as Real time color segmentation, and camera calibration.
The final topics include higher level concepts such as
object recognition from the color segmented images, in-
cluding weeding out false positives. Students also learn
how kinematics ties back to vision for calculating the real
world position of objects in the vision frames. Figure 6
shows an example frame of post-processed AIBO video.
This image illustrates the output of the AIBO’s real-time
color segmentation algorithm.

Figure 6: An example frame of video from the AIBO’s cam-
era after color-segmentation post-processing.

Localization: In order to act effectively, a robot often needs
to know its location in the environment. Localization be-
comes an essential component that interacts with percep-
tion, decision making, and motion. This unit introduces
the ideas of probabilistic localization beginning with the
basic ideas of probabilistic localization and including
different methods of representing locale belief, such as

55

Kalman filters and particle filters. We also cover more
advanced localization challenges such as recovering from
errors in motion models (e.g., the kidnapped robot prob-
lem) through sensor-based resampling algorithms, and the
study of various tradeoffs that may be made between com-
putational cost and resource consumption.

Multi-Robot Cooperation: Once the students understand
how to program a single AIBO to do interesting behav-
iors, we teach them how to use the AIBO’s on-board
802.11b wireless Ethernet system. This feature allows
the robots to communicate among themselves. We teach
the students how to solve problems with multi-robot be-
haviors, discuss the challenges, and present several ap-
proaches for multi-robot communication and coordina-
tion, including market-based approaches, and cognitive
architectures, such as the skills-tactics-plays architecture.

Figure 7: Students learn some of the challenges with pro-
gramming behaviors for cooperative multi-robot tasks.

Learning: Throughout the course we explain how robot
programming involves a considerable amount of param-
eter tuning in a variety of algorithms. We introduce learn-
ing approaches for motion optimization, control learning,
and team play adaptation to an opponent team. Learning
is a theme that we have taught in the lectures, but stu-
dents do not currently investigate it deeply in their pro-
gramming assignments. We plan on continuing to under-
stand better in the next versions of the course how to make
learning more present in the specific robot programming
assignments.

Upcoming Capabilities

Every year, the CMRoboBits codebase is derived from our
lab’s RoboCup AIBO code. This allows the class to be
taught with the latest research code and gives the students
the opportunity to work with state of the art robotic algo-
rithms and techniques. The new capabilities that will be
available in the CMRoboBits 2005 courses and beyond in-
clude the following.

Figure 8: The small circles identify areas of high curvature
found on the lines.

Line Vision

In 2005, we extended our vision system with a line vision
module that is able to recognize straight lines, corners and
the center circle at 30 fops. For all features, both position
and orientation are recovered with high accuracy. For the
center circle, the orientation is obtained by determining the
orientation of the center line that passes through the circle.
Corners and the center circle can only be detected up to a
distance of approximately 1.5 meters from the robot. These
detected features are used by our localization framework.

The line vision module is fast enough to run in parallel
with the CMVision color segmentation system. The over-
all processing is similar to the vision system of the FU-
Fighter’s MidSize (von Hundelshausen 2004). We use the
region tracker (von Hundelshausen & Rojas 2003) to extract
the boundary contours of all white regions that are below the
horizon. Here we run the region tracking on top of our seg-
mentation results, determining the boundary contours of the
white areas in the segmented images. Then we process the
contours similar as described in (von Hundelshausen 2004).
We split the contours at high curvature points and classify
between straight and curved segments.

Parallel straight segments spaced at a small distance are
identified to represent the two borders of a field line and are
grouped together. Finally both sides of a hypothetical field
line are checked for green. Corners are detected on the base
of the straight lines. The center circle detection is differ-
ent from (von Hundelshausen 2004). Because of the larger
perspective distortion we could not directly use the MidSize
method. The modified method is based on detecting the two
halves of the center circles. By using the region tracking
algorithm the half circles can detected extremely efficiently
because the sense of rotation of the boundary contours of
the half-circles is different from the other lines. In each hy-
pothetical half of the center circle we match a triangle, two
points being at the intersection of the center line and the cir-
cle and the third point located on the curved part of the half

56

Figure 9: The center circle as identified by the AIBO vision
system.

circle. On the basis of these triangles we perform several
consistency checks: We have to find two triangles that have
two sides that are parallel and close to each other and also
we run different checks on the angles of both triangles. Fi-
nally, we check whether both halves of the center circle are
green. In contrast to the FU-Fighters Middle Size feature de-
tection, the center circle detection will fail in the presence of
occlusion. Figure 9 shows the circle identified by an AIBO
standing on the center line of the field.

World Modeling
Similar to previous years, the CMDASH’05 world model es-
timates the positions of the ball, opponents, and teammates
on the soccer field and provides a single unified interface to
the behaviors. Uncertainty estimates for each of these quan-
tities are calculated as well. New features for this year are
different ball uncertainty estimates based on a high-level no-
tion of ball state.

Multiple Ball Hypothesis Tracking An estimate of the
ball position is provided by a Multiple Hypothesis Track-
ing Kalman Filter (MHTKF) which uses a bank of Kalman
Filters to track several different hypothesis of the ball’s po-
sition. Ball hypotheses are generated by the robot’s percep-
tual system, from its own activities (such as kicking), and
from teammate information. Because of the potential for
erroneous ball information caused by poorly localized team-
mates, the robot’s maintains two separate estimates of the
ball based. The first is based on its own information and
the second is an estimate returned by its teammates. When
a behavior requests the position of the most likely ball, the
model with the least uncertainty is chosen and that position
and uncertainty estimate is returned to the behavior. The
robot trusts its own ball estimates first and track them before
using a hypothesis generated from its teammates.

Ball Velocity Estimation The World Model contains a
method that uses linear regression on the past history of ball

positions to estimate the current velocity of the ball. The
primary use of ball trajectory estimation is to determine ap-
propriate times for the robot to dive or block in order to
capture the ball. The trajectory estimation is done by per-
forming multiple linear regressions, with varying amounts of
ball history being used for each regression. The chi-squared
goodness-of-fit values of the linear regressions are used to
select the best one. The velocity, intercept, andχ2 values
calculated by this regression are then used in the implemen-
tation of behaviors.

Opponent Robot Tracking Each visual observation of an
opponent robot is stored for a maximum of 4 seconds af-
ter which time it is removed from consideration. Behaviors
can query arbitrary rectangles in space for the existence of
opponent robot observations. When a robot receives robot
observations from its teammates, these observations are in-
corporated to the robot’s own set of readings and are queried
in the same fashion. Similarly, the observations are removed
from consideration after four seconds.

Behaviors
Over the past few years, teams have experimented with dif-
ferent methods of team coordination. Many of these strate-
gies involve attempting to keep teammates from running into
each other as well as placing teammates in good locations
on the field so that they can be in good positions to receive
passes or go after a free ball. While there have been many
good approaches, no one strategy seems to have emerged
as being clearly superior to all others. One reason for this
is that several different coordination strategies are likely to
be applicable in a single situation. Since some strategies
may work better than others, a team that selects the supe-
rior strategy will be at an advantage. Thus, one of the most
important problems to address when designing a multi-robot
soccer team is in selecting the kind of coordination strategy
that they will use during the game. Teams may choose to use
a fixed coordination strategy defineda priori, but if chosen
poorly, such a fixed strategy may not fare well against the
strategy of the other team. Thus, an important extension to
the research problem of coordination strategies is the ability
for a team to dynamically change their strategy at runtime to
adapt to their opponents’ strengths and weaknesses.

Dynamically selecting a different strategy depending on
the situation can be very powerful technique, but can be very
challenging to implement well. Robots that use a dynamic
coordination system must be able to perceive and properly
evaluate the state of the world as well as the state of their
own progress. This information is vital when making the
decision to switch from a poorly performing strategy to one
that could potentially work better.

We have identified several different levels for dynamic co-
ordination that can be applied to a robotic team. These in-
clude:

• A “first-order” approach, where the robots use a fixed co-
ordination strategy and each robot modifies the parame-
ters of its behavior according to the world state.

• A “second-order” approach, where the robots have multi-
ple ways of handling different situations. In order to uti-

57

lize a second-order strategy, the robots must be able to
evaluate the world state so that they can choose between
the different behaviors they have at their disposal.

• A “third-order” approach, where the robots have several
different team strategies, or “plays,” which describe the
coordinated actions of all of the robots together. Depend-
ing on the world state, different plays may apply; the team
collectively decides upon the right behavior to apply in a
given situation.

Changing Single Robot Parameters We define the first-
order coordination strategy as the ability for the robots to
set their own behavior based on the state of the world. In
this kind of system, each robot is programmed with a single
behavior set which is used to control the robot’s behavior in
its environment.

We have tried two different methods for representing
first-order coordination strategies. The first is a poten-
tial fields approach and the other is an approach that we
call constraint-based positioning. In previous work (Vail &
Veloso 2003 in press), we give a detailed description of our
implementation of potential field-based coordination. In this
approach, we use potential fields both to determine the role
that each robot plays (attacker, supporting attacker, and de-
fender) and also to determine where the supporting robots
position themselves on the field of play. On efficiency issue
with potential fields occurs when they are used to coordi-
nate the actions of a team of robots in a very dynamic world.
In this situation, the fields may need to be recomputed for
each every new sensor reading. This does not tend to be
true for implementations of potential fields that are used for
navigation in more static environments. In general, how-
ever, it’s possible for minor disturbances in the positions
or strengths of individual attraction and repulsion fields to
cause fairly significant changes in the local gradient sur-
rounding the robot.

Constraint-based positioning is an approach to robot posi-
tioning that we have developed in the CMPack’04 team for
the 2004 RoboCup competition. Under this regime, robots
are still assigned roles using a potential function, but the
field positions chosen by the supporting robots are subject to
a set of constraints. This approach was developed because
there are several hard constraints that we would like to en-
force on the robots’ positions which are difficult to specify
clearly with potential fields. For instance, defender robots
need to avoid their own goalie’s defense box, because enter-
ing the defense box is a violation which will cause the robot
to be removed from play for 30 seconds. Other constraints
that we would like to enforce include not crossing in front of
a robot that is about to take a shot on goal, not coming within
a certain minimum distance of a teammate, and so on. Con-
sider a situation in which a robot is near the defense zone
and a teammate is directly approaching it. Should the robot
move toward the goal, violating the defense-zone constraint,
or stand still, violating the teammate-distance constraint?
Our implementation of constraint-based positioning allows
us to prioritize the constraints, so that the robot knows that
entering the defense zone is a more serious violation than
coming near a teammate. In theory, the priorities of these

Figure 10: Finite state machine for the dribble behavior.

constraints could be represented as a potential field, but we
have found that debugging the complex potential fields that
result can be difficult. If no constraints are in danger of be-
ing violated, the robot can choose to move to a specific point
that is chosen based on the current state of the world. In this
case, the robot can still use potential fields to choose an open
area on the field or to choose a path to navigate around local
obstacles.

Our experience with RoboCup has been that a single posi-
tioning function defined for a particular role tends to be too
limiting. Trying to capture all of the possible actions that
a robot might accomplish can cause the complexity of the
positioning function to grow beyond what is manageable. A
soccer-playing robot might have multiple ways of approach-
ing the goal, each of which has advantages depending on the
relative position of the goalie and/or his other players. In
some situations, the robot may want to try one approach and
if it fails, try a different approach. Behaviors like these may
be mutually exclusive and as such could be very difficult
for a single function to capture. Experimental validation of
these methods can be found in (McMillen, Rybski, & Veloso
2005).

Finite State Machine As in previous years, individual be-
haviors are written as finite state machines using a standard
class. Each behavior is defined as a set of explicit states and
state transitions and is able to monitor statistics such as the
time spent in each state. This well formed framework leads
to improved performance and debugging by providing meth-
ods to detect infinite loops, oscillation and other unwanted
behaviors easily. Figure 10 shows an example state machine
for a simple dribble behavior.

Python Interpreter The CMDASH’05 behavior subsys-
tem has been completely replaced from previous years. In
CMPack’04 and previous years, the behavior subsystem was
written in C++. We make use of patches to Python 2.3.3
that were originally used by rUNSWift in the RoboCup 2004
competition. This year, the CMDASH’05 behavior system
consists of the Python interpreter running directly on the
robot and all of our behavior code has been completely
rewritten in the Python language. Programming in python
offers several important advantages.

• As an interpreted language, run-time errors do not crash

58

the robot (as C++-based behaviors would), but rather pro-
vide informative debug information which can be cap-
tured in a log or read directly over the wireless Ethernet.

• Specifying what code is running on the dog at any point
can easily be accomplished by ftping the new Python files
to the robot and restarting the interpreter remotely. This
does not require rebooting the AIBO.

• The interpreter can be interacted with directly by using
a remote python shell utility calleddogshell. Parameters
and variables can be changed dynamically without restart-
ing the interpreter.

Odometry Calibration
New for this year is a simple but robust way for calibrat-
ing the robot’s odometry. A specific walk’s odometry pa-
rameters must be empirically determined in order to be used
effectively by the behaviors. Our walk engine returns a the-
oretical maximum speed for the walk as well as odometric
information. However, this assumes noise-free contact with
the world which is impossible to achieve. Our odometry
correction process consists of two steps: (1) computing the
maximum speed of the walk, and (2) computing any correc-
tion factors for the surface on which the robot walks.

To calculate the maximum speed, the robot runs a simple
warmup behavior which moves it in specific directions for a
set amount of time at the maximum speed possible for that
walk. The distance that the robot travels in that time is used
to compute the true maximum speed. The same process is
repeated for turning.

To calculate the odometric corrections, the robot is told to
translate and specific distance as well as rotate about a spe-
cific angle. If the robot overshoots, then a correction factor
is computed that allows it to better predict the distance that
it travels or the angle that it turns.

Logging and Debug GUI
Capturing sensor logs for analysis is an important part of the
AIBO research process. The CMDASH’05 team is capable
of logging a wide variety of sensor information and inferred
state information. Some of the more important information
includes:

• raw vision video frames

• color segmented video frames

• inferred positions and confidences of objects identified by
high-level vision (ball, markers, goals, other robots)

• estimated positions of objects based on integrating mul-
tiple video frames (i.e. world model estimate of the ball
position)

• robot’s own position based on the MCL localization

• general debug information

This information can be stored in a logfile that is saved
to the memory stick after the robot’s operation, as well as
transmitted over the wireless Ethernet during operation. Our
graphical visualization program, calledchokechain, allows
someone to view this data in real-time directly from the

Figure 11: The chokechain GUI illustrating a top-down
world model view of the world in the upper left, the color-
segmented image on the upper right, debug information
shown in the terminal window in the lower left, and the win-
dow control panel with information filters in the lower right.

robot, or to step forward and backward through it if captured
to a logfile. Figure 11 shows a sample view of the interface.

Calibrated Overhead Camera for Ground Truth Ob-
taining ground truth of the robot’s position is extremely im-
portant for validating the accuracy of our algorithms. In par-
ticular, having the ability to compare the robot’s estimated
location on the field and its estimate of the ball to the real
world is very useful. In order to facilitate this, we have
mounted a camera over our field to obtain an overhead view
of the robots. Radial distortion of the image caused by our
camera’s wide field of view is corrected using a Matlab cam-
era calibration toolbox (Bouguet). Once the intrinsic param-
eters of the camera are obtained, the position of the field in
the camera images is obtained by having the user click on
the screen to identify the outer boundaries of the field. Once
aligned, any world model information generated by the robot
can be overlayed on the corrected camera image in order to
compare it against ground truth. Figure 12 shows the global
view in chokechainbut using the overlay on the live video
feed.

Conclusion
We are very interested in teaching Artificial Intelligence
concepts within the context of creating a complete intel-
ligent robot. We believe that programming robots to be
embedded in real tasks illustrates some of the most impor-
tant concepts in Artificial Intelligence and Robotics, namely
sensing uncertainty, reactive and deliberative behaviors, and
real-time communication and motion.

With CMDASH’05 , we pursue our research on teams of
intelligent robots. We continue to note that a team of robots
needs to be built of skilled individual robots that can co-
ordinate as a team in the presence of opponents. We have
built upon our experiences from last year and enhanced our

59

Figure 12: Overhead camera view with world state infor-
mation superimposed on it. This image shows the robot’s
position with uncertainty, the field of view of the camera,
and an estimate of the ball’s position in the image.

AIBO software with new visual features, a Python inter-
preter for behaviors with new behavior semantics, more ex-
tensive modeling and estimation of the world, better odom-
etry calibration, and more advanced debugging and visual-
ization tools.

We seek to find a good balance between the theoretical as-
pects of the in-class lectures and the hands-on labwork. We
feel very strongly that both are required to achieve a well-
rounded learning experience. As of the 2004 class the stu-
dents did not have any in-class midterm or final exam in lieu
of a more in-depth final project, we have decided to include
them the next time the course is taught. There are too many
concepts to fit into a cumulative final project. A more tradi-
tional exam schedule will fill this gap.

It is a testament to the AIBO’s capabilities that the course
explores too many AI topics to capture in a single final
project. Indeed, we are seeking to better integrate topics
such as machine learning and (perhaps there are others) in
future offerings. We have found that, with the AIBO’s hard-
ware and software resources, undergraduate students can ef-
ficiently and effectively investigate the broad and growing
connections among AI robotics topics.

Acknowledgements
We would like to thank Sony for their remarkable support
of our research, specifically by making the AIBO robots ac-
cessible to us since their first conception in 1997. Sony has
continued their support through these years, and is very in-
terested in following the impact of an AIBO-based course.
We would like to thank all of the students who have helped
develop the AIBO soccer codebase, including Scott Lenser,
James Bruce, Doug Vail, Sonia Chernova, Colin McMillen,
Juan Fasola, and Sabine Hauert. Thanks also to Dr. Fe-
lix von Hundelshausen. We would also like to thank the
Carnegie Mellon Computer Science Department for approv-

ing this new course in the Fall of 2003 and providing the lab
facilities.

References
Bouguet, J. Y. Camera calibration toolbox for matlab. Web-
site: http://www.vision.caltech.edu/bouguetj/calibdoc/.
Bruce, J.; Balch, T.; and Veloso, M. CMVision,
www.cs.cmu.edu/˜ jbruce/cmvision/.
Bruce, J.; Balch, T.; and Veloso, M. 2000. Fast and inex-
pensive color image segmentation for interactive robots. In
Proceedings of IROS-2000.
Bruce, J.; Lenser, S.; and Veloso, M. 2002. Fast paramet-
ric transitions for smooth quadrupedal motion. In Birk,
A.; Coradeschi, S.; and Tadokoro, S., eds.,RoboCup-
2001: The Fifth RoboCup Competitions and Conferences.
Springer Verlag.
Lenser, S.; Bruce, J.; and Veloso, M. 2001a. CM-
Pack’00. In Stone, P.; Balch, T.; and Kraetzschmar, G.,
eds.,RoboCup-2000: Robot Soccer World Cup IV. Berlin:
Springer Verlag. 623–626.
Lenser, S.; Bruce, J.; and Veloso, M. 2001b. CMPack:
A complete software system for autonomous legged soc-
cer robots. InProceedings of the Fifth International Con-
ference on Autonomous Agents. Best Paper Award in the
Software Prototypes Track, Honorary Mention.
McMillen, C.; Rybski, P.; and Veloso, M. 2005. Levels
of multi-robot coordination for dynamic environments. In
Multi-Robot Systems Workshop.
Uther, W.; Lenser, S.; Bruce, J.; Hock, M.; and Veloso,
M. 2002. CM-Pack’01: Fast legged robot walking, ro-
bust localization, and team behaviors. In Birk, A.; Corade-
schi, S.; and Tadokoro, S., eds.,RoboCup-2001: The Fifth
RoboCup Competitions and Conferences. Berlin: Springer
Verlag.
Vail, D., and Veloso, M. 2003, in press. Dynamic multi-
robot coordination. InMulti-Robot Systems. Kluwer.
Veloso, M., and Uther, W. 1999. The CMTrio-98 Sony
legged robot team. In Asada, M., and Kitano, H., eds.,
RoboCup-98: Robot Soccer World Cup II. Berlin: Springer
Verlag. 491–497.
Veloso, M.; Lenser, S.; Winner, E.; and Bruce, J. 2000.
CM-Trio-99. In Veloso, M.; Pagello, E.; and Kitano, H.,
eds.,RoboCup-99: Robot Soccer World Cup III. Berlin:
Springer Verlag. 766–769.
von Hundelshausen, F., and Rojas, R. 2003. Tracking re-
gions. InProceedings of the RoboCup 2003 International
Symposium, Padova, Italy.
von Hundelshausen, F. 2004.Computer Vision for Au-
tonomous Mobile Robots. Ph.D. Dissertation, Depart-
ment of Computer Science, Free University of Berlin,
Takustr. 9, 14195 Berlin, Germany. http://www.diss.fu-
berlin.de/2004/243/indexe.html.

60

