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Abstract

Homeland security missions executed in near-Earth

environments are often time consuming, labor inten-

sive and possibly dangerous. Aerial robots perform-

ing tasks such as bomb detection, search-and-rescue

and reconnaissance could be used to conserve resources

and minimize risk to personnel. Flying in environ-

ments which are heavily populated with obstacles yields

many challenges. Little data exists to guide the design

of vehicles and sensor suites operating in these envi-

ronments. This paper explores the challenges encoun-

tered implementing several different sensing technol-

gies in near-Earth environments. The results of ap-

plying these technologies to control a robotic blimp are

presented to direct future work.

1 Introduction

Homeland security missions bring new and unfamil-
iar territories which must be patrolled and kept safe.
Caves, forests and other near-Earth environments
along with urban structures, such as buildings and
tunnels, are difficult and time consuming to safeguard.
Furthermore, search-and-rescue missions are most of-
ten dangerous and require large, diverse task forces
[2]. Robots offer a means to offset this demand in
resources and personnel. Much of the research effort
has been in applying ground-based robots [8], however
flying or hovering offers capabilities unachievable by
ground based robots.

Small-scale aerial platforms, such as micro-air-
vehicles (MAV’s),1 are capable of flying in environ-
ments heavily populated with obstacles and can as-
sist in such missions. However, there are several
constraints for MAV’s and small unmanned-aerial-
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1MAV’s are defined as aerial vehicles capable of safe, con-
trolled flight in near-Earth environments. For example, vehicles
such as those used in [3], while small, move too fast to navigate
areas densely populated with obstacles.

Figure 1: A 30 inch diameter blimp carrying a 14
gram mini wireless camera can provide surveillance
images for use in disaster scenarios.

vehicles (UAV’s) that conventional UAV’s, such as the
Predator, do not face. For example, equipping MAVs
with larger-scale navigational sensor suites, such as
inertial measurement units (IMU’s), global position-
ing systems (GPS) and pressure sensors is not feasible
due to payload limitations. Furthermore, GPS-based
methods will not work in buildings, tunnels or caves
because satellite signals are occluded. The net effect
is that small, lightweight (i.e. less than 100 g) alterna-
tive sensor suites are required for aerial vehicles flying
in near-Earth environments.

The assessment and evaluation of such sensor suites
demands an aerial platform which is small and can fly
safely and slowly in near-Earth environments. Com-
mercial vehicles currently being developed by Honey-
well, BAE Systems and Piasecki Aircraft are capable
of maneuvering in areas rich with obstacles. How-
ever, they are not yet available as research platforms.
Nonetheless, collision avoidance and autonomous nav-
igation sensor suites will be needed and can be devel-
oped in parallel. A simple and safe platform, such as a
blimp, can serve as a test bed for sensor suite evalua-
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tion. Figure 1 shows a blimp, with a 30 inch diameter
(allowing it to fit through standard doorways) and a
payload capacity of around 60 g. This is enough to
carry a miniature wireless camera or stereo pair, com-
pact sensors and other small electronic packages.

Prior work has demonstrated the ability to control
and navigate aerial vehicles utilizing a variety of sens-
ing techniques. Vision based guidance and control has
been demonstrated by [3]. Optic flow sensors studied
in [1] have been used to perform autonomous tasks
with MAV’s. Localization and guidance using wire-
less motes has been achieved in [12]. However, the
difficulties faced in near-Earth environments tend to
segregate these sensing methods, making them effec-
tive for accomplishing only specific tasks. Little has
been done to evaluate these technologies from a single,
consistent platform.

This paper illustrates how these sensing techniques
can be applied to a blimp. Section 2 discusses a
blimp’s platform characteristics and dynamics. Sec-
tion 3 demonstrates the use of optic flow sensors, com-
puter vision and wireless motes. Finally, section 5
concludes by summarizing and discussing future work.

2 Aerial Platform

Several aerial platforms have been experimented with
and evaluated. Rotorcraft, such as helicopters or
ducted fan units [7], can hover but are extremely dif-
ficult to control. Fixed-wing aircraft can be designed
to fly at extremely slow speeds [9], but are limited by
their payload capacities. Lighter-than-air vehicles, in
contrast, are easy to fly, inexpensive, and capable of
hovering.

2.1 Lighter-Than-Air Vehicles

Helium is the most common gas used in blimps today,
with a lifting capacity of 1.02 kg/m3 at standard tem-
perature and pressure. The blimp holds roughly .17
m3 of helium, giving it a theoretical lifting capacity
of 174 g. Experimental results show an actual lifting
capacity of 200 g. The total mass of the balloon, gon-
dola, fins and mounting tape is 135.8 g. Therefore, the
maximum payload that can be carried by the blimp is
64.2 g. This is substantially greater than typical near-
Earth MAV’s, making it an ideal platform for testing
a variety of sensors.

The blimp has two electric motors with attached pro-
pellers positioned on the gondola which allow forward
and backward movement. These two motors can also

pivot via a radio-controlled (RC) servo to provide an
upward or downward angle to the thrust vector, as de-
picted in Figure 2. This allows the blimp to increase
or decrease its altitude respectively. Yaw (i.e. rota-
tion about the vertical axis) is controlled by an electric
motor and propeller placed in the blimp’s rear fin.

The general approach for modeling a blimp followed
by [13], [14] and [15] assumes that:

1. The airship can be modeled as a rigid body,
thereby neglecting aeroelastic effects.

2. The volume and mass of the airship can be con-
sidered constant.

This model is often applied to much larger blimps
that use control surfaces to direct the craft. Since
the system under investigation is much smaller, the
following assumptions can be made to simplify the
model:

3. The blimp is symmetric about the XZ plane.

4. The blimp is moving slow enough and is designed
in such a way that the aerodynamic forces are
negligible.

Therefore, the dynamics for the blimp can then be
written as:

MV̇ = Fd + Fg + Fp

V = [ Vx Vy Vz ωx ωy ωz ]T (Velocities
along and angular rates about the axes)

M = 6x6 mass and inertia matrix
Fd = Dynamic force vectors (coriolis and centrifu-

gal terms)
Fg = Gravity and buoyancy vectors
Fp = Propulsive force vectors

The remainder of the system definition closely follows
the derivation presented in [13]. All equations of mo-
tion are defined about a reference frame fixed to the
body of the blimp whose origin is located at the center
of buoyancy, which is assumed to be coincident with
the center of volume. The center of gravity of the
airship is defined relative to the center of buoyancy.
The mass matrix accounts for all masses and inertias
present in the system, including virtual terms associ-
ated with the apparent added inertia of a blimp. The
dynamic force vector Fd is defined as follows:
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The gravity and buoyancy vector Fg is given by:
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Where kx, ky and kz are components of a unit vec-
tor in the direction of gravity. Finally, the propulsive
forces vector Fp for this specific actuation scheme is
given by:
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Tp = Force from thrust propellers
Tt = Force from turning propeller
µ = Angle of inclination of thrust propellers

dx, dz = x and z location of thrust propellers
dtx, dtz = x and z location of turning propeller

Utilizing these equations of motion, it is possible to
apply an input force to the thrust propellers and the
turning propeller so the resulting linear and angular
velocities can be observed. By tuning the various con-
stants used to characterize the system, the model can
be made to closely approximate the reactions of the
real world system.

2.2 PC-to-RC

In order to allow the blimp to be autonomously con-
trolled by a ground-based PC, a PC-to-RC circuit was
constructed [10]. Figure 3 shows how the circuit is in-
terfaced with the PC and a standard 4-channel RC
transmitter. This setup allows digital commands sent

Figure 2: Blimp diagram

Figure 3: A PC-to-RC circuit converts digital com-
mands to RC signals. Commands are then sent wire-
lessly to the blimp through a RC transmitter.

from the PC to be converted into pulse width modu-
lated (PWM) signals. PWM signals can then be sent
wirelessly to the blimp’s onboard receiver.

The control software running on the PC generates 8-
bit numbers for each of the 4 channels on the trans-
mitter. The numbers correspond to the length of the
PWM signal. Pulse lengths vary from 1 to 2 ms, where
1.5 ms usually represents the neutral position of a RC
servo. The microcontroller, integrated into the PC-
to-RC circuit, receives the numbers and generates the
pulse to be sent to the RC transmitter. The pulses
are grouped into frames, with a frame containing one
pulse for each channel. Figure 5 shows the signal that
would be sent to a 4 channel transmitter.

The frames sent from the microcontroller are received
through the buddy port on the transmitter. Tradi-
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Figure 4: Optic flow is used to sense when an obstacle is within close proximity of the blimp. The blimp avoids
the collision by giving full throttle to the yawing motor.

Figure 5: Signal from microcontroller to transmitter.

tionally, the buddy port is used to allow a trainer to
take over the control of an amateur under their tute-
lage. This port can also be used to allow the com-
puter to take control of the transmitter. Autonomous
control can then be achieved based on information
gathered about the surrounding environment.

3 Sensors

Intelligence obtained from sensors allows the robot’s
control system to make sophisticated decisions. In
addition to traditional sensors such as sonar, in-
frared (IR) and vision, biomimetic sensors can be
constructed as lightweight packages. Integrating such
hardware can produce a robust sensor suite for near-
Earth environments.

3.1 Biomimetic Sensing

Insects make heavy use of vision, especially optic flow,
for perceiving the environment [4]. Optic flow refers
to the apparent movement of texture in the visual field
relative to the insect’s velocity. Insects perform a va-
riety of tasks in complex environments by using their
natural optic flow sensing capabilities. While in flight,
for example, objects which are in close proximity to
the insect have higher optic flow magnitudes. Thus,
flying insects, such as fruit flies [11] and dragon flies,
avoid imminent collisions by saccading (or turning)
away from regions of high optic flow.

Capturing such sensing techniques into a packaged
sensor is a vast research area. Neuromorphic chips
have been available for many years [6]. However, to
achieve the desired weight of 1-2 grams, mixed-mode
and mixed-signal VLSI techniques [5] are used to de-
velop compact circuits that directly perform compu-
tations necessary to measure optic flow [1].

Centeye has developed the one-dimensional Ladybug

optic flow microsensor based on such techniques. A
lens focuses an image of the environment onto a focal
plane chip which contains photoreceptors and other
circuitry necessary to compute optic flow. Low level
feature detectors respond to different spatial or tem-
poral entities in the environment, such as edges, spots,
or corners. The elementary motion detector (EMD)
is the most basic circuit that senses visual motion,
though its output may not be in a ready to use form.
Fusion circuitry fuses information from the EMD’s
to reduce errors, increase robustness, and produces
a meaningful representation of the optic flow for spe-
cific applications.

The resulting sensor, including optics, imaging, pro-
cessing, and I/O weighs 4.8 grams. This sensor grabs
frames up to 1.4 kHz, measures optic flow up to 20
rad/s (4 bit output), and functions even when tex-
ture contrast is just several percent. Integrating in-
sect flight patterns with Centeye’s hardware collision
avoidance was demonstrated using the blimp (see Fig-
ure 4). Although Centeye’s optic flow sensors are
not yet available commercially, Agilent Technoligies’
ADNS-2051 optical sensor can be utilized to achieve
similar results.

3.2 Computer Vision

To perform more sophisticated vision techniques such
as line following, a wireless image acquisition system
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Figure 6: A wireless camera is coupled with a com-
puter vision algorithm to achieve line following.

is required. RC Toys’ Eyecam 2 provides a reliable
wireless video feed when utilized indoors. It is about
as small as a US quarter coin, weighs just 15 grams
and transmits color video on 2.4 GHz frequency. The
output from the receiver is composite video, which can
be digitized with Hauppauge’s USB-Live 3 in order to
plug-and-play into a PC.

To demonstrate line following, the blimp was placed
over a black line with a white background. A program
was created to process the video feed. The video was
then thresholded into a simple black and white image.
Code was written to calculate the location of the cen-
troid of the line within the image plane. PD control
was then implemented to direct the blimp along the
line (see Figure 6). Realisticaly, such ideal environ-
ments will not be encountered. However, the same
path following techniques can be applied if the loca-
tion of the blimp is known.

3.3 Wireless Mote Localization

Wireless motes provide a means for localizing the
blimp. The term ”motes” refers to a general class of
technologies aimed at having small, robust and versa-
tile sensors that are easily deployable over a wide area.
Such sensor networks could be distributed in facto-
ries to monitor manufacturing conditions, spread over
fields to log environmental conditions for agriculture,
or mixed into concrete to actively measure building
stresses and vibrations.

2http://www.rctoys.com/eyecam.php
3http://www.hauppauge.com

The smartdust series of motes manufactured by
Crossbow Technologies4 consists of small wireless
transceivers which can be interfaced with any sensor.
Crossbow offers two common packages, the MICA2
and the MICA2DOT. At the core of these motes is
an ATmega128L AVR microprocessor. This micro-
processor executes all of the code programmed into
the mote.

Code is written for the TinyOS operating system.
TinyOS is an event driven operating system that han-
dles low level microprocessor and radio networking
tasks. This intrinsic networking ability allows for
quick development of networks of wireless motes. The
motes decide the most efficient network arrangement,
resulting in an adhoc network. The TinyOS architec-
ture also supports multihopping, allowing two motes
out of range of each other to pass their information
between intermediate motes.

The radio module used by the MICA2 and
MICA2DOT provides a measurement of the strength
of received signals. The signal strength between a mo-
bile mote attached to the blimp and wireless motes on
the ground can be used to determine the relative posi-
tion of the robot. If the location of the ground based
motes is known, the robot can be localized. Such a
strategy could be used to determine the absolute po-
sition of an aerial vehicle, the location of a vehicle
relative to a target, or the position of an aerial vehi-
cle relative to ground based robots carrying motes.

To demonstrate this capability, a program was writ-
ten to cause one of the motes to act as a beacon.
Ground based motes that detected this beacon were
programmed to relay the strength of the received sig-
nal to a computer base station. These strengths were
displayed using a visual basic GUI which indicated
motes in proximity to the beacon (see Figure 7).

4 Aerial Robot Competition

In investigating different sensing methodologies, sev-
eral questions arose about the use of aerial robots in
near-Earth environments. Problems such as the use
of distributed versus local computing, the affect of
environmental obscurrants, and the range, resolution
and robustness of sensors were common across dif-
ferent sensing technologies and aerial platforms. An
annual indoor aerial robot competition was conceived
to help identify these issues and encourage innovative
solutions. The challenges addressed would increase in

4http://www.xbow.com
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Figure 7: Signal strength is measured between a mobile node attached to the blimp and fixed nodes placed on a
table. As the blimp passes by, the graphic corresponding to the nearest node is lit.

complexity, with the goal of achieving full autonomy
by the year 2015.

In May 2005, Drexel University organized the first
indoor aerial robot competition. The inaugural com-
petition, featuring undergraduate teams from Drexel
University and Swarthmore College (advised by Pro-
fessor Bruce Maxwell), focused on both autonomous
navigation and target identification in urban-like ar-
eas5.

4.1 Autonomous Collision Avoidance

One of the major challenges of autonomous flight in
near-Earth environments is the limited availability of
GPS. This was mimicked by hosting the competition
indoors. The autonomous collision avoidance section
utilized a 90 x 20 foot space populated with obsta-
cles such as telephone poles and wire, urban struc-
tures, trees, etc (see Figure 8). While these obstacles
were symbolic of an outdoor setting, hosting the com-
petition indoors prevents the use of GPS for future
competitions. The obstacles were overlaid on a white
cloth, and a black line ran through the course to de-
note a collision-free path. Teams had to implement
a line following algorithm in real-time that was in-
variant to changing lighting conditions (i.e. a glass
roof enable sun to light up portions of the course)
and noise from indoor video transmission. Towards
the end of the course, robots were met with a low-
speed fan to simulate wind disturbances. Points were
awarded based on how far through the course robots
were able to travel.

5Thanks to Professors Hong Zhang and Rungun Nathan
from Rowan and Villanova Universities, respectively, for judg-
ing the competition

Figure 8: Swarthmore College’s blimp following the
collision-free path.

4.2 Teleoperated Target Identification

The other section of the competition consisted of sev-
eral mock victims spaced out in a 90 x 50 foot area.
These victims were positioned in a non-conscious
manner, perhaps as a result of a chemical or biolog-
ical agent released through the ventilation system of
an office building (see Figure 9). Using a wireless
camera mounted on the blimp’s gondola, teams uti-
lized teleoperated control to identify survivors and de-
ploy markers (symbolic of radio beacons) pinpointing
their locations before hazmat teams can arrive. Blimp
operators were only permitted to view video images
transmitted wirelessly from the blimp’s camera and
could not directly view the search area. Points in this
section were awarded based on the marker proximity
to survivors.
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Figure 9: In the search-and-rescue portion, teams will
have to locate victims by viewing images transmitted
from the robot’s wireless camera.

4.3 Results

The difficulty of the line following section was evi-
dent after practice runs for each team. To compen-
sate for this, each team was allotted two restarts (i.e.
the blimp can be placed back in the position it last
lost the line). With the incorporation of this rule,
both teams were able to follow the line until reaching
the fan area, a distance of 75 feet. Once confronted
with low speed wind currents, each team’s blimp was
immediately blown off course, unable to demonstrate
gust stabilization. The target identification task also
proved to be difficult. Teams were only able to locate
and mark 1 to 4 victims out of a possible 8. In addi-
tion to the scores accumulated in the collision avoid-
ance and target identification sections, each team was
also judged on the design of both the flight system
and the marker deployment mechanism. The overall
winner of the 2005 competition was Drexel University.

The key challenges identified in the inaugural com-
petition were found mostly in the line following sec-
tion. For example, sunlight shined sporadically on the
course resulting in large gradients which effected the
efficiency of the computer vision algorithms. Also,
wireless video transmission indoors is diminished, but
still usable at short distances (i.e. ¡ 100 feet). Fur-
thermore, stabilizing an aerial robot in the presence
of wind gusts is still a prevalent challenge.

In the teleoperated portion of the competition, teams
found it difficult to interpret the raw video trans-
mitted from the blimp’s wireless camera. A bird’s

eye view is oftentimes unfamiliar to the operator and
may require some image processing (e.g. object recog-
nition) techniques to identify victims, tables, chairs,
etc. During the teleoperated portion of the course,
one of the teams lost control of their blimp when it
was flown over a portion of the course that had been
heated by sunlight. This observation identified ther-
mals as a major concern for aerial robots operating in
near-Earth environments.

5 Conclusions

The design of a sensor suite for a MAV varies greatly
from the sensor suites utilized on traditional UAVs.
Flying below tree tops or in and around urban struc-
tures prevents the use of GPS. Furthermore, devices
such as IMU’s and gyros often strain the payload ca-
pacities of small, lightweight aircraft. Design then
focuses on achieving fundamental autonomous tasks
such as altitude control and obstacle avoidance us-
ing the smallest packages possible. However, even the
most highly-developed control system will fail when
presented with unforeseen obstacles. Telephone wires,
for example, are extremely thin, but could easily be
fatal to a MAV. Such near-Earth environment imped-
iments demand the use of varied sensing technologies
to ensure robustness. Through fusion of optic flow
sensing, vision based guidance and wireless network
localization, aerial vehicles are provided with a diverse
sensor suite capable of addressing the issues faced.

This paper demonstrates the porting of these tech-
niques onto a robotic blimp, which provides a robust,
versatile platform who’s dynamics are well understood
and documented. To begin to characterize these sen-
sor suites, future work must be conducted to measure
the reactions of these sensors to variables introduced
in a controlled near-Earth environment. To facilitate
controller design, experimental results must be du-
plicated in simulated models. With well understood
models and corroborating physical data, design can
then move towards making MAV’s fully autonomous
in near-Earth environments.
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