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Abstract

Cognitive robotics is an approach to robot programming that
draws inspiration from ideas in cognitive science, such as
visual routines (Ullman 1984), dual-coding representations
(Paivio 1986), and perceivable affordances (Gibson 1977;
1979). We have implemented primitives based on these ideas
as part of Tekkotsu, an open source application development
framework for the Sony AIBO.

Introduction

Tekkotsu (the name means “framework”, literally “iron
bones” in Japanese) is an application development frame-
work for the Sony AIBO robot dog (Tira-Thompson 2004).
It provides a layer of abstraction above the Sony OPEN-
R software interface and offers a variety of services, in-
cluding an efficient event routing architecture, the ability
to share C++ objects across processes, a hierarchical state
machine formalism for constructing behaviors, and an ex-
tensive collection of wireless remote monitoring and tele-
operation tools. The latter are written in Java for portabil-
ity. Tekkotsu is an open source project and builds on the
work of several other open source developers: it provides
forward and inverse kinematics solvers based on ROBOOP
(Gordeau 2005), simple object detection using CMVision
(Bruce, Balch, & Veloso 2000), and two walking engines,
one from CMPack-02 (Velosoet al. 2002) and one from the
University of Pennsylvania (Cohenet al. 2004). Tekkotsu is
currently in use at over 20 universities around the world, ei-
ther in introductory robotics courses or for robosoccer. Itis
available atwww.Tekkotsu.org .

Over the last two years we have been developing a new
layer of Tekkotsu to support an approach to robot program-
ming that we call “cognitive robotics”. The idea is to provide
a set of higher level primitives for perception and action, in-
spired by ideas from cognitive science, so that programmers
can construct intelligent behaviors at a much more abstract
level. Three components of our approach are described here:
visual routines, dual-coding representations, and perceivable
affordances.
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Visual Routines
Ullman proposed that low-level vision might be imple-
mented as a set of composable parallel operators he called
visual routines (Ullman 1984). There is some evidence
that such operations are performed in primary visual cor-
tex (Roelfsema, Lamme, & Spekreijse 2000). Tekkotsu pro-
vides a set of visual routines that operate on 2D “sketches,”
starting with a color-segmented camera image (Halelamien
2004; Tira-Thompsonet al. 2004). We use simple, uniform-
colored objects (Figure 1) so that object segmentation can be
done based on color alone. Tekkotsu’s visual routine opera-
tors include color masking, connected components labeling,
flood-fill, boundary distance, skeletonization, and neighbor
sum, along with basic pixel-wise arithmetic, comparison,
and boolean functions.

Sketches are automatically organized into a derivation
tree, i.e., the result of applying an operator to a sketch is
a new sketch that references the original sketch as its parent
(Figure 2). A remote viewing tool allows the programmer to
“look inside the dog’s head” and examine the derivation tree
and any of its component sketches.

Figure 1: AIBO examining a tic-tac-toe board.

Dual-Coding Representations
Paivio’s “dual coding theory” of representations posits par-
allel verbal and non-verbal (imagistic) systems with exten-
sive referential connections between them (Paivio 1986). In
Tekkotsu, sketches provide the imagistic representation,and
“shapes” provide a complementary symbolic representation.
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Figure 2: Derivation tree showing sketches and shapes ex-
tracted from a tic-tac-toe board image.

Shape data structures such as lines and ellipses can be ex-
tracted from images using visual routines operators.

Lines are described by parameters(r, θ) defining the dis-
tance and angle to the perpendicular, as in the Hough trans-
form, although our line extraction process utilizes a different
algorithm. A line’s endpoints may also be specified, but are
not required, since one or both endpoints may not be visi-
ble in a given image. Ellipses are described by their centroid
coordinates, semimajor and semiminor axis lengths, and ori-
entation of the major axis.

Built-in rendering operators automatically convert from
a symbolic representation back to an iconic one, yield-
ing a sketch of the shape. Thus, computations can be car-
ried out using a mix of iconic and symbolic operations.
Some types of computations are more easily performed in
the symbolic space, e.g., constructing a line perpendicular
to another, while others are essentially iconic. Shapes are
recorded in the same derivation tree as sketches. Figure 2
shows a derivation tree representing a tic-tac-toe board that
has been parsed into a collection of sketches and shapes.
Figure 3 shows a sketch containing the pixels making up the
game board, with four shapes (the extracted lines) superim-
posed on top of it.

Map Construction
The AIBO’s camera has a limited field of view, so a map
of its environment must be constructed incrementally, from
multiple camera images (Tira-Thompsonet al. 2004). This
is more easily done in symbolic space. The camera image,

Figure 3: Display of selected objects from the derivation
tree. Pink pixels are rendered here in blue; extracted line
shapes are superimposed over the underlying sketch.

imported as a sketch, forms the root of the “camera space”
derivation tree. As shown in Figure 4, shapes are extracted
from the camera sketch, yielding a set of objects in camera
shape space. Then, information about the camera’s position
and orientation, computed from the robot’s joint angles, is
used to project the camera shapes onto the ground plane in
front of the robot. (We make the simplifying assumption that
all lines and ellipses lie in the ground plane, that spheres
rest on the ground, etc.) The ground space shapes are then
matched against and imported into the “local map,” an ego-
centric map with the robot’s body at the origin. As multiple
camera images are processed, the local map develops into
a description of the nearby environment. The shape match-
ing and update process allows the robot to construct accurate
representations of lines in the local map shape space even if
an entire line cannot fit into any one camera image.

Figure 4: Dual-coding representations in various coordinate
systems are used to derive a world map from a series of cam-
era iamges.
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The local map is in turn matched against an allocentric
world map using a particle filter, and new local map shapes
are imported into the world map shape space as appropri-
ate. The robot’s own location and orientation on the world
map are represented using a special “agent” shape. The dual-
coding nature of the maps means that an iconic representa-
tion of world space is also available; this can be useful for
path planning operations.

Perceivable Affordances
A high-level approach to robot programming should relieve
the programmer from having to perform complex percep-
tual or kinematics calculations to manipulate objects in the
world. A perceptual system based on J. J. Gibson’s theory
of “affordances” (Gibson 1977; 1979) can meet this goal,
by representing objects in terms of the actions that can be
performed on them.

On Gibson’s view. affordances describe relationships be-
tween an organism and its environment: they are what the
environment “offers, provides, or furnishes [the organism],
either for good or ill” (Gibson 1979). Don Norman popu-
larized this idea in his bookThe Psychology of Everyday
Things (Norman 1988). In a later essay, Norman summa-
rized Gibson’s affordances as “the actionable properties be-
tween the world and an actor,” and strongly emphasized the
distinction between actual affordances, which exist naturally
in the world, andperceived affordances arising in the actor’s
mental representations (Norman 1999).

Figure 5: A ball affords pushing with the paw, chest, or head.

Edirisinghe and Touretzky implemented a first version of
an affordance recognizer for the AIBO that uses visual rou-
tines plus knowledge of the body’s physical constraints to
determine the feasibility of actions (Edirisinghe 2005). For
example, a ball affords pushing, and there are several ways
to accomplish this (Figure 5). Which type of pushing is ap-
propriate depends on the size of the ball relative to size of the

Figure 6: Small balls afford pushing with a paw; large balls
afford pushing with the chest.

Figure 7: Joint limits constrain motion. In this position, the
head can not turn far enough to the left to see both endpoints
of the line.

robot’s body (Figure 6). Small balls cannot be pushed with
the chest; the robot would simply walk over them. Large
balls should be pushed with the chest; use of a paw is inad-
visable due to greater weight and awkward geometry. The
criteria for assessing which actions are feasible for which
objects must be determined empirically. Presently we do this
by experimentation, but it should also be possible for the
robot to learn this for itself by trying actions and noting suc-
cesses and failures, as Gibson (1979) suggests children do.

Another source of physical constraints is the limited range
of travel of joints. Suppose the robot is looking at a segment
of a line drawn on the ground. The Trace Line action moves
the robot’s gaze along the line in order to locate the end-
points and determine the line length. Any line potentially
“affords” such a tracing action, but if one of the robot’s head
or neck joints has reached a turning limit, the tracing action
may not be feasible in the current context (Figure 7). The
affordance recognizer uses Tekkotsu’s kinematics solver to
detect this situation, and report that a potential trace action
is blocked due to a positioning problem. Fortunately, objects
also afford locomotion actions that can move the robot to a
position where other afforded actions become feasible.

Our approach potentially allows the robot’s behavior to
be determined by specifying a policy for selecting from the
set of affordances the robot currently perceives. When inte-
grated with visual routines and a world map, this will pro-
vide a powerful high level approach to robot programming.
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The pushing action afforded by a ball is very different
than that afforded by a wooden block. Blocks can be ei-
ther translated across the groundplane, or rotated about their
center of mass, depending on where pressure is applied.
These considerations don’t exist for balls. We are planning
on adding block recognition to the visual routines code in
the near future.

The idea of perceived affordances could be further ex-
tended by introducing gestalt perception mechanisms, e.g.,
a set of lines on the ground suggesting a bounded region
might be perceived as a “container” that affords moving an
object into it. In the case of the tic-tac-toe board, only the
central square is bounded on all four sides. The other eight
board positions have only two or three explicit bounding
lines; the remaining boundaries are implied by the convex
hull of the board. Seeing board positions as enclosed rectan-
gles therefore entails a kind of gestalt perception. We view
this as an important component of affordance recognition
which should be pursued further.

A drawback to our current approach is that affordances
are tied to specific objects that the robot must be able to rec-
ognize. To allow the robot to deal with novel objects, per-
ception must operate at a more primitive level, where size
and shape information give rise to affordances even when
the robot does not know what the object is for. Consider an
AIBO learning about pushing a banana: a complex, unfamil-
iar shape. Regions of maximal and minimal curvature along
the object boundary might provide interest points where a
push action could be applied. Experimenting with various
pushing actions could then lead to knowledge about the best
place to push a banana depending on whether the goal is to
translate or rotate it.

Another difficulty with our current approach is that our
affordances describe an operation on a single object, such
as tracing a line. Often one wishes to alter the relationship
of an object to something else, e.g., “push this game piece
to that board position.” To avoid a combinatorial explosion,
we need a way to independently describe the roles each ob-
ject can play in an action, and then compose those roles to
test the viability of a specific action. For example, the game
piece affords pushing, while an open board square affords
receiving an object. Moving a piece onto a board square can
thus be seen as the composition of two mutually reinforcing
affordances. In richer domains, domain knowledge might be
employed to filter the set of perceivable affordances so that
the most common actions are the most salient.

Conclusions
High-level robot programming systems provide abstract
primitives for perceiving and manipulating objects. This
idea can be traced all the way back to the block pushing
primitives of Shakey the robot (Nilsson 1984). There are
many other examples in the literature. One of the more re-
cent ones is the Personal Rover system of Illah Nourbakhsh
and colleagues (Falconeet al. 2003), where users program
missions in terms of high-level primitives such as “locate a
landmark” or “follow a hallway,” without having to know
how these operations are implemented.

Our current implementation of affordances resembles
Millikan’s notion of a “pushmi-pullyu” representation (Mil-
likan 2004). The “pushmi” component isdescriptive: a rep-
resentation of a perceived potential for action, while the
”pullyu” component isdirective: its function is to “guide
the mechanisms that use it so that they produce its satisfac-
tion condition” (Millikan 1996). Our directive components
are hand-coded state machines that perform the actions de-
scribed by the affordance.

As Millikan notes, affordances provide direct connec-
tions between perception and action. To proponents of sit-
uated cognition, affordances exemplify the specialized na-
ture of perception, i.e., perception does not produce neu-
tral representations of the world, but rather is purposely
tailored for action (Clark 1997). This may be true for in-
sects or lower vertebrates, but we share Clark’s skepticism
that neutral mental representations can be dispensed with in
higher organisms. Our robots do not perceive objectsonly
in terms of the actions they afford; they also construct maps
of the world, where objects are represented in other ways.
An extensive literature survey on affordances and their use
in robotics is given in (Ugur 2005).

The next major class of primitives to be developed for
our cognitive robotics framework are manipulation opera-
tions on objects. We have hand-coded state machines for a
few manipulation actions, such as pushing balls across lines,
but this is only a crude first step. Ideally we would like to
have geometry-based primitives such as “apply a transla-
tional force in directionφ to the estimated center of mass of
this object.” Implementing such primitives on a quadruped
robot will require a more detailed physical model of the
robot’s body that takes balance, pose, and foot placement
constraints into account.
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