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Abstract 

Composing existing Web services to deliver new functionality is 
a difficult problem as it involves resolving semantic, syntactic 
and structural differences among the interfaces of a large 
number of services. Unlike most planning problems, it can not 
be assumed that Web services are described using terms from a 
single domain theory.  While service descriptions may be 
controlled to some extent in restricted settings (e.g., intra-
enterprise integration), in Web-scale open integration, lack of 
common, formalized service descriptions prevent the direct 
application of standard planning methods. In this paper, we 
present a novel algorithm to compose Web services in the 
presence of semantic ambiguity by combining semantic 
matching and AI planning algorithms. Specifically, we use cues 
from domain-independent and domain-specific ontologies to 
compute an overall semantic similarity score between 
ambiguous terms. This semantic similarity score is used by AI 
planning algorithms to guide the searching process when 
composing services.  Experimental results indicate that planning 
with semantic matching produces better results than planning or 
semantic matching alone. The solution is suitable for semi-
automated  composition tools or directory browsers.  
 

Introduction   

In implementing service-oriented architectures, Web 
services are becoming an important technological 
component. Web services matching and composition have 
become a topic of increasing interest in the recent years 
with the gaining popularity of Web services. Two main 
directions have emerged. The first direction investigated 
the application of AI planning algorithms to compose 
services (Ponnekanti, Fox 2002), (Mandel 2003), 
(Traverso, Pistore 2004), (Sirin et al 2003), Synthy 
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(Agarwal et al 2005). The second direction explored the 
application of information retrieval techniques (Syeda-
Mahmood 2004). However, to the best of our knowledge, 
these two techniques have not been combined to achieve 
compositional matching in the presence of inexact terms, 
and thus improve recall.  
 
In this paper, we present a novel approach to compose 
Web services in the presence of semantic ambiguity using 
a combination of semantic matching and AI planning 
algorithms. Specifically, we use domain-independent and 
domain-specific ontologies to determine the semantic 
similarity between ambiguous concepts/terms. The 
domain-independent relationships are derived using an 
English thesaurus after tokenization and part-of-speech 
tagging. The domain-specific ontological similarity is 
derived by inferring the semantic annotations associated 
with Web service descriptions using an ontology.  
Matches due to the two cues are combined to determine an 
overall similarity score. This semantic similarity score is 
used by AI planning algorithms in composing services. By 
combining semantic scores with planning algorithms we 
show that better results can be achieved than the ones 
obtained using a planner or matching alone. 

 
The rest of the paper is organized as follows. First, we 

present a scenario to illustrate the need for Web services 
composition in certain business domains and discuss how 
our approach helps in resolving the semantic ambiguities 
better. Second, we present our solution approach and 
discuss the details of our system SEMAPLAN. Third, we 
present our experimental results. Fourth, we compare our 
work with related work in this area. Finally, we present 
our conclusions and directions for future work. 



A Motivating Scenario   

In this section, we present a scenario from the knowledge 
management domain to illustrate the need for (semi) 
automatic composition of Web services. For example, if a 
user would like to identify names of authors in a given 
document, text annotators such as a Tokenizer, which 
identifies tokens, a LexicalAnalyzer, which identifies parts 
of speech, and a NamedEntityRecognizer, which identifies 
references to people and things etc. could be composed to 
meet the request. Figure 1 summarizes this composition 
flow. Such dynamic composition of functionality, 
represented as Web services, saves tedious development 
time in domains such as life sciences since explicating all 
possible and meaningful combinations of annotators can 
be prohibitive. AI Planning algorithms are well suited to 
generate these types of compositions. However unlike 
most planning problems, in business domains often it can 
not be assumed that web services are described using 
terms from a single domain theory.   

Figure 1. Text Analysis Composition example with semantic 
matching (~= illustrates semantic match) 

For example, the term lexemeAttr may not match with 
lemmaProp unless the word is split into lexeme and Attr
and matched separately. Using a linguistic domain 
ontology one can infer that lemma could be considered a 
match to the term lexeme. Abbreviation expansion rule 
can be applied to the terms Attr and Prop to expand them 
to Attribute and Property. Then a consultation with a 
domain-independent thesaurus such as WordNet (Miller 
1983) dictionary can help match the term Attribute with 
Property since they are listed as synonyms. Putting both 
of these cues together, one can match the term 
lexemeAttrib with lemmaProp. In the absence of such 
semantic cues, two services that have the terms 
lexemeAttrib and lemmaProperty as part of their effects 
would go unmatched during planning thereby resulting in 
fewer results which adversely impacts recall. In the next 
section, we explain how we enable a planner to use these 
cues to resolve semantic ambiguities in our system -
SEMAPLAN. 
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Combining Semantic Matching AI with 
Planning for Web Service Composition 

Figure 2 illustrates the components and the control flow in 
SEMAPLAN system. Details of SEMAPLAN system are 
described below. 

Figure 2. SEMAPLAN system and its components 

Service Representation: This step involves preparing 
Web Services with semantic annotations and readying the 
domain dependent and independent ontologies.  We use 
WSDL-S (Shivashanmugham et al 2003, Akkiraju et al., 
2005) to annotate Web Services written in WSDL with 
semantic concepts from domain ontologies that are 
represented in OWL (OWL 2002).  

Term Relationship Indexing: After semantic annotation, 
the available Web services in the repository are parsed, 
processed and an efficient index is created consisting of 
related terms/concepts referred to in the service interface 
descriptions for easy lookup. This is achieved using the 
services of a semantic matcher which uses both domain-
independent and domain-specific cues to discover 
similarity between application interface concepts. Below 
we explain how the semantic matcher works.  

For finding related terms using domain independent 
ontologies, we use techniques similar to the one in (Dong 
2004).  Specifically, multi-term query attributes are parsed 
into tokens.  Part-of-speech tagging and stop-word 
filtering is performed. Abbreviation expansion is done for 
the retained words if necessary, and then a thesaurus is 
used to find the similarity of the tokens based on 
synonyms. The resulting synonyms are assembled back to 
determine matches to candidate multi-term word attributes 
of the repository services after taking into account the tags 
associated with the attributes. More details are in (Syeda-
Mahmood et al., 2005). For finding related terms using 
domain-specific ontologies, we use relations such as 
subClassOf(A,B), subClassOf(B,A), typeOf (A,B), and 
equivalenceClass(A,B) in domain ontologies represented 
in OWL (OWL 2002). We use a simple scoring scheme to 
compute distance between related concepts in the 
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ontology. subClassOf, typeOf, are given a score of 0.5, 
equivalentClass gets a score of 1 and no relationship gets 
a score of 0. The discretization of the score into three 
values (0, 0.5, 1.0) gives a coarse idea of semantic 
separation between ontological concepts (other finer 
scoring mechanisms are possible but we have not 
considered them in this work). The scores from two 
sources are then combined to obtain an overall semantic 
score for a given pair of concepts. Several schemes such 
as winner-takes-all, weighted average could be used to 
combine domain-specific and domain-independent cues 
for a given attribute. In SEMAPLAN, these schemes are 
configurable. The default scheme is winner-takes-all. As a 
result an efficient index is created from this semantic 
matching which we call a semantic similarity map. 

Indexing: With the approach we have described so far, all 
services attributes would have to be searched for each 
query service to find potential matches and to assemble 
the overall match results. We now present attribute 
hashing, an efficient indexing scheme that achieves the 
desired savings in search time. 

To understand the role of indexing, let us 
consider a service repository of 500 services. If each 
service has about 50 attributes (quite common for 
enterprise-level services), and 2 to 3 tokens per word 
attribute, and about 30 synonyms per token, the semantic 
matching alone would make the search for  a query of 50 
attributes easily around 50 million operations per query! 
Indexing of the repository schemas is, therefore, crucial to 
reducing the complexity of search. Specifically, if the 
candidate attributes of the repository schemas can be 
directly identified for each query attribute without linearly 
searching through all attributes, then significant savings 
can be achieved.   

The key idea in attribute hashing can be 
explained as follows. Let ‘a’ be an entity derived from a 
repository service description. Let F(a) be the set of 
related entities of ‘a’ in the entire service repository (also 
called feature set here).  In the case of domain-
independent semantics ‘a’ refers to a token and F(a) is the 
set of synonyms of ‘a’. In the case of ontological 
matching, ‘a’ refers to an ontological annotation term, and 
F(a) are the ontologically related concepts to a (e.g. terms 
related by subclass, equivalenceClass, is-a, etc. 
relationships) .  Now, given a query entity q derived from 
a query service Q, q is related to a iff q ε  F(a).  Thus 
instead of indexing the set F(a) using the attribute a as a 
key as may be done in normal indexing,  we use the terms 
in the set F(a) as keys to index a hash table and record ‘a’ 
as an entry in the hash table repeatedly for each such key. 
The advantage of this operation is that since q ε  F(a), q 
is indeed one of the keys of the hash function. If this 
operation is repeated for all entities in the service 
repository, then each hash table entry indexed by a key 
records all entities whose related term set includes the 

key. Thus indexing the hash table using the query entity q 
directly identifies all related entities from the service 
repository without further search! This is the key idea of 
attribute hashing. Of course, this is done at the cost of 
redundant storage (the entity ‘a’ is stored repeatedly as an 
entry under each relevant key). However, with the growth 
of computer memory, storage is a relatively inexpensive 
tradeoff. 

Prefiltering: prefiltering module selects a set of candidate 
pool of services from which compositions can be 
accomplished. If the number of services in the repository 
is relatively small (of the order of dozens), then 
prefiltering may not be necessary. However, in data 
warehousing type of scenarios or in asset reuse scenarios, 
there could be typically hundreds of interfaces from which 
suitable applications have to be constructed; thus, 
obtaining a manageable set of candidate services via 
filtering is crucial to returning results in reasonable 
amount of time.  Of course, as with any filtering process, 
there is the possibility of filtering out some good 
candidates and bringing in bad candidates. However, 
prefiltering can reduce the search space and allow 
planning algorithms to focus on a viable set. We employ a 
simple backward searching algorithm to select candidate 
services in  the prefiltering stage. The algorithm works by, 
first, collecting all services that match at least one of the 
outputs of the request – denoted as S11, S12, S13.. S1n
where n is the number of services obtained in step 1 and 
S1 denotes services collected in step 1. Let S1i represent a 
service collected from step 1 where 1 ≤ i ≤ n... Then, for 
each service S1i, we collect all those services whose 
outputs match at least one of the inputs of S1i. This results 
in a set of services added to the collection in step 2 – 
denoted as S21, S22, S23.. S2m where m is the number of 
services obtained in step 2. This process of collecting 
services is repeated until either a predefined set of 
iterations are completed or if at any stage no more 
matches could be found.  The criteria for filtering could 
have significant influence on the overall quality of results 
obtained. One can experiment with these criteria to fine-
tune the prefiltering module to return an optimal set of 
candidate pool of services. The prefiltering module uses 
the semantic similarity map obtained from the indexing 
stage to determine whether a given interface description 
concept is a match to another concept in a different 
interface description.  

Generating Compositions using Metric Planner: The 
set of candidate services obtained from the prefiltering 
step are then presented to the planner in step 4. A
planning problem P is a 3-tuple < I, G, A> where I is the 
complete description of the initial state, G is the partial 
description of the goal state, and A is the set of executable 
(primitive) actions (Weld 1999). A state T is a collection 
of literals with the semantics that information 
corresponding to the predicates in the state holds (is true). 



An action Ai is applicable in a state T if its precondition is 
satisfied in T and the resulting state T’ is obtained by 
incorporating the effects of Ai. An action sequence S
(called a plan) is a solution to P if S can be executed from 
I and the resulting state of the world contains G. Note that 
a plan can contain none, one or more than one occurrence 
of an action Ai from A. A planner finds plans by 
evaluating actions and searching in the space of possible 
world states or the space of partial plans.  

The semantic distance represents an uncertainty about the 
matching of two terms and any service (action) composed 
due to their match will also have uncertainty about its 
applicability. However, this uncertainty is not probability 
in the strict sense of a probabilistic event which 
sometimes succeeds and sometimes fails. A service 
composed due to an approximate match of its 
precondition with the terms in the previous state will 
always carry the uncertainty. Hence, probabilistic 
planning (Kushmerick et al. 1995) is not directly 
applicable and we choose to represent this uncertainty as a 
cost measure and apply metric planning to this problem. A 
metric planning problem is a planning problem where 
actions can incur different costs. A metric planner finds 
plans that not only satisfies the goal but also does in lesser 
cost. Note that we can also model probabilistic reasoning 
in this generalized setting. 

We now illustrate the changes needed in a standard metric 
planner to support planning with approximate distances. 
Our approach uses planning in the state of world states 
(state space planning) but it is applicable to searching in 
space of plans as well. Table 1 below presents a pseudo-
code template of a standard forward state-space planning 
algorithm, ForwardSearchPlan. The planner creates a 
search node corresponding to the initial state and inserts it 
into a queue. It selects a node at Step 7 from the queue 
guided by a heuristic function. It then tries to apply 
actions at Step 10 whose preconditions are true in the 
corresponding current state. The heuristic function is an 
important measure to focus the search towards completing 
the remainder part of the plan to the goals. 

ForwardSearchPlan(I, G, A) 
1.  If I q G
2.     Return {}  
3.  End-if 
4.  Ninit.sequence = {}; Ninit.state = I 
5.  Q = { Ninit } 
6.  While Q is not empty 
7.  N = Remove an element from Q (heuristic choice) 
8.  Let S = N.sequence; T = N.state 
9.  For each action Ai in A (all actions have to be attempted) 
10.    If precondition of Ai is satisfied in state T
11.           Create new node N’ with: 
12.              N’.state = Update T with result of effect of Ai and 
13.              N’.sequence = Append(N.sequence, Ai) 
14.   End-if 

15.    If N’.state q G 
16.         Return N’   ;; Return a plan 
17.    End-if 
18.     Q = Q U N’
19.   End-for 
20.  End-while 
21. Return FAIL  ;; No plan was found 
Table 1. Pseudo-code for the ForwardSearchPlan algorithm.  

To support planning with partial semantic matching, we 
have to make changes at Steps 7 and 10. The heuristic 
function has to be modified to take the cost of the partial 
plans into account in addition to how many literals in the 
goals have been achieved. For Step 10, we have to 
generalize the notion of action applicability. 
Conventionally, an action Ai is applicable in a state T if all 
of its preconditions are true in the state. With semantic 
distances, a precondition is approximately matching the 
literals in the state. We have a number of choices for 
calculating the plan cost: 

a) In matching of an action’s precondition with the 
literals in the state, which semantic distance 
should be selected? We can use the first one, the 
least distance, or any other possibility. 

b) In selecting the semantic cost of the action, how 
is the contribution of the preconditions 
aggregated? We can take the minimum of the 
distances, maximum, or any other aggregate 
measure. 

c) In computing the semantic cost of the plan, how 
is the contribution of each action in the plan 
computed? We can simply add the costs of the 
actions, take their products, or use any other 
function. 

   
We have implemented such a metric planner in the Java-
based Planner4J framework (Biplav et. al 2003). 
Planner4J provides for planners to be built exposing a 
common programmatic interface while they are built with 
well-tested common infrastructure of components and 
patterns so that much of the existing components can be 
reused. Planner4J has been used to build a variety of 
planners in Java and it has eased their upgrade and 
maintenance while facilitating support for multiple 
applications. The planner can be run to get all plans within 
a search limit, different plans by changing the threshold 
for accepting semantic distances and by experimenting 
with various choices of cost computations for the actions 
and plans as outlined above.  

Solution Ranking: The ranking module can use various 
criteria to rank the solutions. For example, one way to 
rank the criteria would be to sort the compositions in 
ascending order of the overall cost of the plan. Another 
way is to rank the compositions based on the length of the 
plan (i.e., the number of services in the plan). 
Multidimensional sorting approach could be used to sort 



based on both cost and the length of the plan. Multiplying 
the normalized costs is another approach. This approach 
brings in notions of probabilistic planning and enables to 
take both cost and length into account at once. In 
SEMAPLAN, these approaches are configurable.

Experimental Results 

The goal of our evaluation section is to demonstrate the 
value of combining domain-independent and domain-
dependent semantic scores with a metric planner when 
composing Web services. For this, we ran several 
experiments on a collection of over 100 Web services in 
three domains: (1) Text analysis - 20 WSDLs that provide 
text analysis services, (2) Alphabet – 7 WSDLs manually 
built to test the correctness of the planner when the 
relationships between services are very complex, and (3) 
Telco – 75 WSDLs defined from a real life 
telecommunication scenario. For clarity, we report only 
the results for the first domain, as the other two domains 
presented similar behavior.  

The planner performance is measured through the recall 
function (R), defined as the ratio between the number of 
direct plans retrieved by the planner and the total number 
of direct plans in the database. We define a direct plan as 
a correct plan (i.e., it reaches the goal state, given the 
initial state) with a minimum number of actions (i.e., we 
discard plans that contain loops or redundant actions). Our 
definition of the recall function was due to an interesting 
observation we made when contrasting the results returned 
by a search engine in the information retrieval domain and 
the ones returned by a planner in the Web Services 
domain. In Web search, recall is defined by relevancy. A 
search query that is looking for ‘Soprano’ could find 
results consisting of Sopranos (the HBO show) as well as 
information on sopranos from Wikipedia etc. Depending 
on what the user meant, the user would find one of the two 
categories of search results to be more relevant than the 
others. However, when composing Web services using a 
planner, the notion of relevancy needs to be interpreted 
slightly differently. Since planners are goal directed, and 
the semantic matches are often driven by closely related 
terms in the domain-independent and domain-dependent 
ontologies, all the results obtained were found to be 
relevant. Therefore, we redefined relevancy as the direct 
matches SEMAPLAN is able to find with minimal length 
(fewer number of services composed to meet the request) 
without redundancies in our experiments. For example, in 
the text analysis example, one of the direct plans is the 
sequence of: Tokenizer, Lexical Analyzer and 
NamedEntityRecognizer services. We have noticed that 
depending on the number of states we allow the 
SEMAPLAN system to run, it finds compositions that 

include sequences such as: Tokenizer, LexicalAnalyzer, 
Tokenizer, and NamedEntityRecognizer. In this plan, the 
second Tokenizer is redundant. The total number of direct 
plans in the database was computed by manually 
performing an exhaustive search and counting all plans. 
The number of direct plans retrieved by the planner was 
computed by intersecting the set of planners found by the 
planner with the set of direct plans defined by the 
database. 

The experiments were executed by varying the following 
levers in the SEMAPLAN system and observing the 
planner performance: (a) the semantic threshold (ST)
allows different levels of semantic ambiguity to be 
resolved (b) the number of state spaces explored (#SS) 
limits the size of the searching space (c) the cost function 
(CF), defined as [w*semantic distance+(1-w)*length of 
the plan] where 0 <= w <= 1, directs SEMAPLAN system 
to consider the semantic scores alone or the length of the 
plan alone or a combination of both in directing the 
search. We ran the following four experiments to measure 
the performance of SEMAPLAN. 

1. Metric Planner alone Vs. SEMAPLAN 
2. SEMAPLAN: f(ST) where CF, and #SS are constants.  
3. SEMAPLAN: f(#SS) where CF, and ST are constants.  
4. SEMAPLAN: f(#CF) where ST, #SS are constants.  

Metric Planner alone Vs. SEMAPLAN: In this 
experiment, our hypothesis was that a planner with 
semantic inferencing would produce more relevant 
compositions than a planner alone. The intuition is that the 
semantic matcher allows concepts such as lexemeAttr and 
lemmaProp to be considered matches because it considers 
relationships such as word tokenization, synonyms, and 
other closely related concepts (such as subClassOf, 
typeOf, instanceOf, equivalentClass) defined by the 
domain ontologies; such relationships are not usually 
considered by the planner. As Figure 3 shows, 
SEMAPLAN finds more relevant results than a classic 
metric planner, thus confirming our hypothesis.  
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Figure 3: Comparison of Metric Planner Vs. SEMAPLAN

The increased number of solutions is more prevalent with 
certain semantic thresholds. This behavior is explained in 
the context of next experiment. As the semantic threshold 



decreased, more and more loosely related concepts are 
considered matches by the semantic matcher. This 
increased the number of services available for the planner 
to plan from thereby increasing the search space. 
Therefore, for a given number state spaces to be explored, 
SEMAPLAN could not come up with some of the good 
results that it was able to find at higher semantic 
threshold. This indicates that for a given cost function and 
for a given number of state spaces to be explored, there is 
an optimal threshold. In most domains, this was found to 
be 0.6. 

SEMAPLAN: f(ST) where CF, and #SS are constants: 
In this experiment, we varied the semantic threshold for a 
given number of state spaces to be explored (1000) and a 
given cost function for each domain (w=0.5). As the 
semantic threshold increases, only those concepts that are 
above the threshold would be considered matches; 
therefore, we expected that the number of results 
produced by the planner would decrease and vice versa. 
While this is confirmed by our results in figure 4, we 
noticed an interesting phenomenon. As the semantic 
threshold decreased, more and more loosely related 
concepts are considered matches by the semantic matcher. 
This increased the number of services available for the 
planner to plan from thereby increasing the search space. 
Therefore, for a given number state spaces to be explored, 
SEMAPLAN could not come up with some of the good 
results that it was able to find at higher semantic 
threshold. Therefore both in figure 3 and figure 4, we can 
notice a drop in the number of plans retrieved by the 
planner at higher threshold. Our observation from this 
experiment is that for a given cost function and for a given 
number of state spaces to be explored, there is an optimal 
threshold. In most domains, this was found to be 0.6. This 
led us to run the third experiment to see if SEMAPLAN 
can discover the missing good plans if the number of state 
spaces explored are increased. 
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SEMAPLAN: f(#SS) where CF, and ST are constants: 
Based on the insights from the second experiment, we 
varied the number of state spaces by keeping the weight w
in cost function and semantic threshold at the optimal 

levels (w= 0.5, and ST=0.6).  The results of this 
experiment, as shown in figure 5, revealed that as the 
number of state spaces explored increases, SEMAPLAN 
finds more plans in general and more direct relevant plans 
than it could at the same ST and w. This is consistent with 
our expectations. 
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SEMAPLAN: f(#CF) where ST, #SS are constants: 
Finally, we varied the weight in the cost function to see 
how the quality of the plans generated get impacted by 
this. As weight approaches 1, the cost function gives less 
preference to length, therefore we expect to see more 
number of longer plans (sometimes with redundancies) 
than those expected at lower weights and vice versa. The 
results illustrated in Table 2 confirm this intuition. 

Weight Direct Redundant Recall 

0 20 234 1 

0.5 20 374 1 

1 20 423 1 
Table 2: SEMAPLAN performance when changing the cost 
function 

Related Work 

The literature on Web services matching and composition 
has focused on two main directions. One body of work 
explored the application of AI planning algorithms to 
achieve composition while the other investigated the 
application of information retrieval techniques for 
searching and composing of suitable services in the 
presence of semantic ambiguity from large repositories.  
In this section we contrast our approach with those taken 
by these two bodies of work. 

First, we consider work that is done on composing Web 
services using planning based on some notion of 
annotations. A general survey of planning based 
approaches for web services composition can be found in 
(Peer 2005). SWORD (Ponnekanti, Fox 2002) was one of 



the initial attempts to use planning to compose web 
services. It does not model service capabilities in an 
ontology but uses rule chaining to composes web services. 
In (McIlraith 2001), a method is presented to compose 
Web services by applying logical inferencing techniques 
on pre-defined plan templates.  The service capabilities 
are annotated in DAML-S/RDF and then manually 
translated into Prolog. Now, given a goal description, the 
logic programming language of Golog (which is 
implemented over Prolog) is used to instantiate the 
appropriate plan for composing the Web services. In 
(Traverso, Pistore 2004), executable BPELs are 
automatically composed from goal specification by 
casting the planning problem as a model checking 
problem on the message specification of partners. The 
approach is promising but presently restricted to logical 
goals and small number of partner services. Sirin et al. 
(Sirin et al 2003) use contextual information to find 
matching services at each step of service composition. 
They further filter the set of matching services by using 
ontological reasoning on the semantic description of the 
services as well as by using user input. Web Services 
Modeling Ontology is a recent effort for modeling 
semantic web services in a markup language (WSML) and 
also defining a web service execution environment 
(WSMX) for it. Our logical composition approach is not 
specific to any particular modeling language and can 
adapt to newer languages. Synthy (Agarwal et al 2005) 
takes an end-to-end view of composition of Web Services 
and combines semantic matching with domain ontologies 
with planning. While these bodies of work use the notion 
of domain annotations and semantic reasoning with 
planning, none of them use domain-independent cues such 
as thesaurus. Moreover, they do not consider text analysis 
techniques such as tokenization, abbreviation expansions, 
and stop word filtering etc. in drawing the semantic 
relationships among the terms referenced in Web services. 
Shivashanmugam et al., (Shivashanmugam 2003) propose 
semantic process templates to capture the semantic 
requirements of Web process in their work on MWSCF. 
However, they do not specify combining domain-
independent with domain-dependent cues with planning 
approaches for achieving composition. 
  
 The second body of work looked at composition of Web 
services using domain independent cues alone. Syeda-
Mahmood (Syeda-Mahmood 2004) models Web service 
composition as bipartite graph and solves a maximum 
matching problem while resolving the semantic 
ambiguities using domain-independent ontologies and text 
analysis approaches. This work takes its roots in schema 
matching. However, this work does not use domain-
dependent ontologies which are crucial to resolving the 
differences between domain-specific contextual terms.   

SEMAPLAN, to the best of our knowledge, is the first 
attempt at combining semantic matching consisting of 

domain-dependent and domain-independent ontologies 
with AI planning techniques to achieve Web services 
composition.  

Conclusions and Future Work 

In this paper, we have presented a novel approach to 
compose Web services in the presence of semantic 
ambiguity using a combination of semantic matching and 
AI planning algorithms. Specifically, we use domain-
independent and domain-specific ontologies to determine 
the semantic similarity between ambiguous 
concepts/terms. Matches due to the two cues are 
combined to determine an overall similarity score. This 
semantic similarity score is used by AI planning 
algorithms in composing services. The experimental 
results confirmed our intuitions: (1) the number of direct 
plans improved by combining semantic matching with 
planning algorithms; thus, SEMAPLAN achieved better 
recall than the metric planner alone, and (2) there is a 
tradeoff between the semantic threshold, the limit on the 
state search space, the cost function, and the quality of 
results obtained. We noticed that there is an optimal 
threshold, which when set, helps focus the planner and at 
the same time provides enough semantic variety to 
improve recall.  

The notion of planning in the presence of semantic 
ambiguity is conceptually similar to planning under 
uncertainty. In the future we intend to investigate the 
application of probabilistic planning techniques to 
consider semantic differences and compare the results. 
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