

SEMAPLAN: Combining Planning with Semantic Matching to Achieve Web

Service Composition

Rama Akkiraju1, Biplav Srivastava2, Anca-Andreea Ivan1, Richard Goodwin1, Tanveer Syeda-Mahmood3

1IBM T. J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY, 10532, USA
2IBM India Research Laboratory, Block 1, IIT Campus, Hauz Khaus, New Delhi, 11016, India

3IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA
{akkiraju@us, sbiplav@in, ancaivan@us, rgoodwin@us, stf@almaden}.ibm.com

Abstract

Composing existing Web services to deliver new functionality is
a difficult problem as it involves resolving semantic, syntactic
and structural differences among the interfaces of a large
number of services. Unlike most planning problems, it can not
be assumed that Web services are described using terms from a
single domain theory. While service descriptions may be
controlled to some extent in restricted settings (e.g., intra-
enterprise integration), in Web-scale open integration, lack of
common, formalized service descriptions prevent the direct
application of standard planning methods. In this paper, we
present a novel algorithm to compose Web services in the
presence of semantic ambiguity by combining semantic
matching and AI planning algorithms. Specifically, we use cues
from domain-independent and domain-specific ontologies to
compute an overall semantic similarity score between
ambiguous terms. This semantic similarity score is used by AI
planning algorithms to guide the searching process when
composing services. Experimental results indicate that planning
with semantic matching produces better results than planning or
semantic matching alone. The solution is suitable for semi-
automated composition tools or directory browsers.

Introduction

In implementing service-oriented architectures, Web
services are becoming an important technological
component. Web services matching and composition have
become a topic of increasing interest in the recent years
with the gaining popularity of Web services. Two main
directions have emerged. The first direction investigated
the application of AI planning algorithms to compose
services (Ponnekanti, Fox 2002), (Mandel 2003),
(Traverso, Pistore 2004), (Sirin et al 2003), Synthy

Copyright © 2005 American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

(Agarwal et al 2005). The second direction explored the
application of information retrieval techniques (Syeda-
Mahmood 2004). However, to the best of our knowledge,
these two techniques have not been combined to achieve
compositional matching in the presence of inexact terms,
and thus improve recall.

In this paper, we present a novel approach to compose
Web services in the presence of semantic ambiguity using
a combination of semantic matching and AI planning
algorithms. Specifically, we use domain-independent and
domain-specific ontologies to determine the semantic
similarity between ambiguous concepts/terms. The
domain-independent relationships are derived using an
English thesaurus after tokenization and part-of-speech
tagging. The domain-specific ontological similarity is
derived by inferring the semantic annotations associated
with Web service descriptions using an ontology.
Matches due to the two cues are combined to determine an
overall similarity score. This semantic similarity score is
used by AI planning algorithms in composing services. By
combining semantic scores with planning algorithms we
show that better results can be achieved than the ones
obtained using a planner or matching alone.

The rest of the paper is organized as follows. First, we

present a scenario to illustrate the need for Web services
composition in certain business domains and discuss how
our approach helps in resolving the semantic ambiguities
better. Second, we present our solution approach and
discuss the details of our system SEMAPLAN. Third, we
present our experimental results. Fourth, we compare our
work with related work in this area. Finally, we present
our conclusions and directions for future work.

A Motivating Scenario

In this section, we present a scenario from the knowledge
management domain to illustrate the need for (semi)
automatic composition of Web services. For example, if a
user would like to identify names of authors in a given
document, text annotators such as a Tokenizer, which
identifies tokens, a LexicalAnalyzer, which identifies parts
of speech, and a NamedEntityRecognizer, which identifies
references to people and things etc. could be composed to
meet the request. Figure 1 summarizes this composition
flow. Such dynamic composition of functionality,
represented as Web services, saves tedious development
time in domains such as life sciences since explicating all
possible and meaningful combinations of annotators can
be prohibitive. AI Planning algorithms are well suited to
generate these types of compositions. However unlike
most planning problems, in business domains often it can
not be assumed that web services are described using
terms from a single domain theory.

Figure 1. Text Analysis Composition example with semantic
matching (~= illustrates semantic match)

For example, the term lexemeAttr may not match with
lemmaProp unless the word is split into lexeme and Attr
and matched separately. Using a linguistic domain
ontology one can infer that lemma could be considered a
match to the term lexeme. Abbreviation expansion rule
can be applied to the terms Attr and Prop to expand them
to Attribute and Property. Then a consultation with a
domain-independent thesaurus such as WordNet (Miller
1983) dictionary can help match the term Attribute with
Property since they are listed as synonyms. Putting both
of these cues together, one can match the term
lexemeAttrib with lemmaProp. In the absence of such
semantic cues, two services that have the terms
lexemeAttrib and lemmaProperty as part of their effects
would go unmatched during planning thereby resulting in
fewer results which adversely impacts recall. In the next
section, we explain how we enable a planner to use these
cues to resolve semantic ambiguities in our system -
SEMAPLAN.

Copyright © 2005 American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

Combining Semantic Matching AI with
Planning for Web Service Composition

Figure 2 illustrates the components and the control flow in
SEMAPLAN system. Details of SEMAPLAN system are
described below.

Figure 2. SEMAPLAN system and its components

Service Representation: This step involves preparing
Web Services with semantic annotations and readying the
domain dependent and independent ontologies. We use
WSDL-S (Shivashanmugham et al 2003, Akkiraju et al.,
2005) to annotate Web Services written in WSDL with
semantic concepts from domain ontologies that are
represented in OWL (OWL 2002).

Term Relationship Indexing: After semantic annotation,
the available Web services in the repository are parsed,
processed and an efficient index is created consisting of
related terms/concepts referred to in the service interface
descriptions for easy lookup. This is achieved using the
services of a semantic matcher which uses both domain-
independent and domain-specific cues to discover
similarity between application interface concepts. Below
we explain how the semantic matcher works.

For finding related terms using domain independent
ontologies, we use techniques similar to the one in (Dong
2004). Specifically, multi-term query attributes are parsed
into tokens. Part-of-speech tagging and stop-word
filtering is performed. Abbreviation expansion is done for
the retained words if necessary, and then a thesaurus is
used to find the similarity of the tokens based on
synonyms. The resulting synonyms are assembled back to
determine matches to candidate multi-term word attributes
of the repository services after taking into account the tags
associated with the attributes. More details are in (Syeda-
Mahmood et al., 2005). For finding related terms using
domain-specific ontologies, we use relations such as
subClassOf(A,B), subClassOf(B,A), typeOf (A,B), and
equivalenceClass(A,B) in domain ontologies represented
in OWL (OWL 2002). We use a simple scoring scheme to
compute distance between related concepts in the

Composition
Module

Indexing Module

Prefiltering Module

Request
Interface
Descripti

Semantic
Similarity

Map

Candidate
Compositi

ons

Application
Composition

s

Score Combination Module

Thesaurus

Domain
Ontology

Lexical Matcher

Thesaurus Matcher

Expansion List Matcher

T
okenizer

Ontology Matcher

Semantic Matcher

Semantic Similarity
Matching Using
Domain Independent
Cues

Semantic Similarity
Matching Using Domain
Dependent Cues

Application
Interface
Descriptio

Solution Ranker

Ranked
Application

Composition
s

Matched Services

Request

Any
Service or Service

Combinations

Text Named Entity

Tokenizer Lexical
Analyzer

Named Entity
Recognizer

Document Tokens LemmaProp

Canonical
String

Canonical
Category

Named Entity
subClassOf

Text

subClassOf

LexemeAttr~=

CanStr~=

Matched Services

Request

Any
Service or Service

Combinations

Text Named Entity

TokenizerTokenizer Lexical
Analyzer
Lexical
Analyzer

Named Entity
Recognizer
Named Entity
Recognizer

Document Tokens LemmaProp

Canonical
String

Canonical
Category

Named Entity
subClassOf

Text

subClassOf

LexemeAttr~=

CanStr~=

ontology. subClassOf, typeOf, are given a score of 0.5,
equivalentClass gets a score of 1 and no relationship gets
a score of 0. The discretization of the score into three
values (0, 0.5, 1.0) gives a coarse idea of semantic
separation between ontological concepts (other finer
scoring mechanisms are possible but we have not
considered them in this work). The scores from two
sources are then combined to obtain an overall semantic
score for a given pair of concepts. Several schemes such
as winner-takes-all, weighted average could be used to
combine domain-specific and domain-independent cues
for a given attribute. In SEMAPLAN, these schemes are
configurable. The default scheme is winner-takes-all. As a
result an efficient index is created from this semantic
matching which we call a semantic similarity map.

Indexing: With the approach we have described so far, all
services attributes would have to be searched for each
query service to find potential matches and to assemble
the overall match results. We now present attribute
hashing, an efficient indexing scheme that achieves the
desired savings in search time.

To understand the role of indexing, let us
consider a service repository of 500 services. If each
service has about 50 attributes (quite common for
enterprise-level services), and 2 to 3 tokens per word
attribute, and about 30 synonyms per token, the semantic
matching alone would make the search for a query of 50
attributes easily around 50 million operations per query!
Indexing of the repository schemas is, therefore, crucial to
reducing the complexity of search. Specifically, if the
candidate attributes of the repository schemas can be
directly identified for each query attribute without linearly
searching through all attributes, then significant savings
can be achieved.

The key idea in attribute hashing can be
explained as follows. Let ‘a’ be an entity derived from a
repository service description. Let F(a) be the set of
related entities of ‘a’ in the entire service repository (also
called feature set here). In the case of domain-
independent semantics ‘a’ refers to a token and F(a) is the
set of synonyms of ‘a’. In the case of ontological
matching, ‘a’ refers to an ontological annotation term, and
F(a) are the ontologically related concepts to a (e.g. terms
related by subclass, equivalenceClass, is-a, etc.
relationships) . Now, given a query entity q derived from
a query service Q, q is related to a iff q ε F(a). Thus
instead of indexing the set F(a) using the attribute a as a
key as may be done in normal indexing, we use the terms
in the set F(a) as keys to index a hash table and record ‘a’
as an entry in the hash table repeatedly for each such key.
The advantage of this operation is that since q ε F(a), q
is indeed one of the keys of the hash function. If this
operation is repeated for all entities in the service
repository, then each hash table entry indexed by a key
records all entities whose related term set includes the

key. Thus indexing the hash table using the query entity q
directly identifies all related entities from the service
repository without further search! This is the key idea of
attribute hashing. Of course, this is done at the cost of
redundant storage (the entity ‘a’ is stored repeatedly as an
entry under each relevant key). However, with the growth
of computer memory, storage is a relatively inexpensive
tradeoff.

Prefiltering: prefiltering module selects a set of candidate
pool of services from which compositions can be
accomplished. If the number of services in the repository
is relatively small (of the order of dozens), then
prefiltering may not be necessary. However, in data
warehousing type of scenarios or in asset reuse scenarios,
there could be typically hundreds of interfaces from which
suitable applications have to be constructed; thus,
obtaining a manageable set of candidate services via
filtering is crucial to returning results in reasonable
amount of time. Of course, as with any filtering process,
there is the possibility of filtering out some good
candidates and bringing in bad candidates. However,
prefiltering can reduce the search space and allow
planning algorithms to focus on a viable set. We employ a
simple backward searching algorithm to select candidate
services in the prefiltering stage. The algorithm works by,
first, collecting all services that match at least one of the
outputs of the request – denoted as S11, S12, S13.. S1n
where n is the number of services obtained in step 1 and
S1 denotes services collected in step 1. Let S1i represent a
service collected from step 1 where 1 ≤ i ≤ n... Then, for
each service S1i, we collect all those services whose
outputs match at least one of the inputs of S1i. This results
in a set of services added to the collection in step 2 –
denoted as S21, S22, S23.. S2m where m is the number of
services obtained in step 2. This process of collecting
services is repeated until either a predefined set of
iterations are completed or if at any stage no more
matches could be found. The criteria for filtering could
have significant influence on the overall quality of results
obtained. One can experiment with these criteria to fine-
tune the prefiltering module to return an optimal set of
candidate pool of services. The prefiltering module uses
the semantic similarity map obtained from the indexing
stage to determine whether a given interface description
concept is a match to another concept in a different
interface description.

Generating Compositions using Metric Planner: The
set of candidate services obtained from the prefiltering
step are then presented to the planner in step 4. A
planning problem P is a 3-tuple < I, G, A> where I is the
complete description of the initial state, G is the partial
description of the goal state, and A is the set of executable
(primitive) actions (Weld 1999). A state T is a collection
of literals with the semantics that information
corresponding to the predicates in the state holds (is true).

An action Ai is applicable in a state T if its precondition is
satisfied in T and the resulting state T’ is obtained by
incorporating the effects of Ai. An action sequence S
(called a plan) is a solution to P if S can be executed from
I and the resulting state of the world contains G. Note that
a plan can contain none, one or more than one occurrence
of an action Ai from A. A planner finds plans by
evaluating actions and searching in the space of possible
world states or the space of partial plans.

The semantic distance represents an uncertainty about the
matching of two terms and any service (action) composed
due to their match will also have uncertainty about its
applicability. However, this uncertainty is not probability
in the strict sense of a probabilistic event which
sometimes succeeds and sometimes fails. A service
composed due to an approximate match of its
precondition with the terms in the previous state will
always carry the uncertainty. Hence, probabilistic
planning (Kushmerick et al. 1995) is not directly
applicable and we choose to represent this uncertainty as a
cost measure and apply metric planning to this problem. A
metric planning problem is a planning problem where
actions can incur different costs. A metric planner finds
plans that not only satisfies the goal but also does in lesser
cost. Note that we can also model probabilistic reasoning
in this generalized setting.

We now illustrate the changes needed in a standard metric
planner to support planning with approximate distances.
Our approach uses planning in the state of world states
(state space planning) but it is applicable to searching in
space of plans as well. Table 1 below presents a pseudo-
code template of a standard forward state-space planning
algorithm, ForwardSearchPlan. The planner creates a
search node corresponding to the initial state and inserts it
into a queue. It selects a node at Step 7 from the queue
guided by a heuristic function. It then tries to apply
actions at Step 10 whose preconditions are true in the
corresponding current state. The heuristic function is an
important measure to focus the search towards completing
the remainder part of the plan to the goals.

ForwardSearchPlan(I, G, A)
1. If I q G
2. Return {}
3. End-if
4. Ninit.sequence = {}; Ninit.state = I
5. Q = { Ninit }
6. While Q is not empty
7. N = Remove an element from Q (heuristic choice)
8. Let S = N.sequence; T = N.state
9. For each action Ai in A (all actions have to be attempted)
10. If precondition of Ai is satisfied in state T
11. Create new node N’ with:
12. N’.state = Update T with result of effect of Ai and
13. N’.sequence = Append(N.sequence, Ai)
14. End-if

15. If N’.state q G
16. Return N’ ;; Return a plan
17. End-if
18. Q = Q U N’
19. End-for
20. End-while
21. Return FAIL ;; No plan was found
Table 1. Pseudo-code for the ForwardSearchPlan algorithm.

To support planning with partial semantic matching, we
have to make changes at Steps 7 and 10. The heuristic
function has to be modified to take the cost of the partial
plans into account in addition to how many literals in the
goals have been achieved. For Step 10, we have to
generalize the notion of action applicability.
Conventionally, an action Ai is applicable in a state T if all
of its preconditions are true in the state. With semantic
distances, a precondition is approximately matching the
literals in the state. We have a number of choices for
calculating the plan cost:

a) In matching of an action’s precondition with the
literals in the state, which semantic distance
should be selected? We can use the first one, the
least distance, or any other possibility.

b) In selecting the semantic cost of the action, how
is the contribution of the preconditions
aggregated? We can take the minimum of the
distances, maximum, or any other aggregate
measure.

c) In computing the semantic cost of the plan, how
is the contribution of each action in the plan
computed? We can simply add the costs of the
actions, take their products, or use any other
function.

We have implemented such a metric planner in the Java-
based Planner4J framework (Biplav et. al 2003).
Planner4J provides for planners to be built exposing a
common programmatic interface while they are built with
well-tested common infrastructure of components and
patterns so that much of the existing components can be
reused. Planner4J has been used to build a variety of
planners in Java and it has eased their upgrade and
maintenance while facilitating support for multiple
applications. The planner can be run to get all plans within
a search limit, different plans by changing the threshold
for accepting semantic distances and by experimenting
with various choices of cost computations for the actions
and plans as outlined above.

Solution Ranking: The ranking module can use various
criteria to rank the solutions. For example, one way to
rank the criteria would be to sort the compositions in
ascending order of the overall cost of the plan. Another
way is to rank the compositions based on the length of the
plan (i.e., the number of services in the plan).
Multidimensional sorting approach could be used to sort

based on both cost and the length of the plan. Multiplying
the normalized costs is another approach. This approach
brings in notions of probabilistic planning and enables to
take both cost and length into account at once. In
SEMAPLAN, these approaches are configurable.

Experimental Results

The goal of our evaluation section is to demonstrate the
value of combining domain-independent and domain-
dependent semantic scores with a metric planner when
composing Web services. For this, we ran several
experiments on a collection of over 100 Web services in
three domains: (1) Text analysis - 20 WSDLs that provide
text analysis services, (2) Alphabet – 7 WSDLs manually
built to test the correctness of the planner when the
relationships between services are very complex, and (3)
Telco – 75 WSDLs defined from a real life
telecommunication scenario. For clarity, we report only
the results for the first domain, as the other two domains
presented similar behavior.

The planner performance is measured through the recall
function (R), defined as the ratio between the number of
direct plans retrieved by the planner and the total number
of direct plans in the database. We define a direct plan as
a correct plan (i.e., it reaches the goal state, given the
initial state) with a minimum number of actions (i.e., we
discard plans that contain loops or redundant actions). Our
definition of the recall function was due to an interesting
observation we made when contrasting the results returned
by a search engine in the information retrieval domain and
the ones returned by a planner in the Web Services
domain. In Web search, recall is defined by relevancy. A
search query that is looking for ‘Soprano’ could find
results consisting of Sopranos (the HBO show) as well as
information on sopranos from Wikipedia etc. Depending
on what the user meant, the user would find one of the two
categories of search results to be more relevant than the
others. However, when composing Web services using a
planner, the notion of relevancy needs to be interpreted
slightly differently. Since planners are goal directed, and
the semantic matches are often driven by closely related
terms in the domain-independent and domain-dependent
ontologies, all the results obtained were found to be
relevant. Therefore, we redefined relevancy as the direct
matches SEMAPLAN is able to find with minimal length
(fewer number of services composed to meet the request)
without redundancies in our experiments. For example, in
the text analysis example, one of the direct plans is the
sequence of: Tokenizer, Lexical Analyzer and
NamedEntityRecognizer services. We have noticed that
depending on the number of states we allow the
SEMAPLAN system to run, it finds compositions that

include sequences such as: Tokenizer, LexicalAnalyzer,
Tokenizer, and NamedEntityRecognizer. In this plan, the
second Tokenizer is redundant. The total number of direct
plans in the database was computed by manually
performing an exhaustive search and counting all plans.
The number of direct plans retrieved by the planner was
computed by intersecting the set of planners found by the
planner with the set of direct plans defined by the
database.

The experiments were executed by varying the following
levers in the SEMAPLAN system and observing the
planner performance: (a) the semantic threshold (ST)
allows different levels of semantic ambiguity to be
resolved (b) the number of state spaces explored (#SS)
limits the size of the searching space (c) the cost function
(CF), defined as [w*semantic distance+(1-w)*length of
the plan] where 0 <= w <= 1, directs SEMAPLAN system
to consider the semantic scores alone or the length of the
plan alone or a combination of both in directing the
search. We ran the following four experiments to measure
the performance of SEMAPLAN.

1. Metric Planner alone Vs. SEMAPLAN
2. SEMAPLAN: f(ST) where CF, and #SS are constants.
3. SEMAPLAN: f(#SS) where CF, and ST are constants.
4. SEMAPLAN: f(#CF) where ST, #SS are constants.

Metric Planner alone Vs. SEMAPLAN: In this
experiment, our hypothesis was that a planner with
semantic inferencing would produce more relevant
compositions than a planner alone. The intuition is that the
semantic matcher allows concepts such as lexemeAttr and
lemmaProp to be considered matches because it considers
relationships such as word tokenization, synonyms, and
other closely related concepts (such as subClassOf,
typeOf, instanceOf, equivalentClass) defined by the
domain ontologies; such relationships are not usually
considered by the planner. As Figure 3 shows,
SEMAPLAN finds more relevant results than a classic
metric planner, thus confirming our hypothesis.

0

5

10

15

20

25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Threshold

N
u

m
be

r
o

f
se

rv
ic

es
 r

et
ri

ev
ed

 b
y

p
la

nn
er

Planner with inferencing (SEMAPLAN) Planner without inferencing

Figure 3: Comparison of Metric Planner Vs. SEMAPLAN

The increased number of solutions is more prevalent with
certain semantic thresholds. This behavior is explained in
the context of next experiment. As the semantic threshold

decreased, more and more loosely related concepts are
considered matches by the semantic matcher. This
increased the number of services available for the planner
to plan from thereby increasing the search space.
Therefore, for a given number state spaces to be explored,
SEMAPLAN could not come up with some of the good
results that it was able to find at higher semantic
threshold. This indicates that for a given cost function and
for a given number of state spaces to be explored, there is
an optimal threshold. In most domains, this was found to
be 0.6.

SEMAPLAN: f(ST) where CF, and #SS are constants:
In this experiment, we varied the semantic threshold for a
given number of state spaces to be explored (1000) and a
given cost function for each domain (w=0.5). As the
semantic threshold increases, only those concepts that are
above the threshold would be considered matches;
therefore, we expected that the number of results
produced by the planner would decrease and vice versa.
While this is confirmed by our results in figure 4, we
noticed an interesting phenomenon. As the semantic
threshold decreased, more and more loosely related
concepts are considered matches by the semantic matcher.
This increased the number of services available for the
planner to plan from thereby increasing the search space.
Therefore, for a given number state spaces to be explored,
SEMAPLAN could not come up with some of the good
results that it was able to find at higher semantic
threshold. Therefore both in figure 3 and figure 4, we can
notice a drop in the number of plans retrieved by the
planner at higher threshold. Our observation from this
experiment is that for a given cost function and for a given
number of state spaces to be explored, there is an optimal
threshold. In most domains, this was found to be 0.6. This
led us to run the third experiment to see if SEMAPLAN
can discover the missing good plans if the number of state
spaces explored are increased.

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Threshold

R
ec

al
l

Figure 4: SEMAPLAN performance when varying threshold

SEMAPLAN: f(#SS) where CF, and ST are constants:
Based on the insights from the second experiment, we
varied the number of state spaces by keeping the weight w
in cost function and semantic threshold at the optimal

levels (w= 0.5, and ST=0.6). The results of this
experiment, as shown in figure 5, revealed that as the
number of state spaces explored increases, SEMAPLAN
finds more plans in general and more direct relevant plans
than it could at the same ST and w. This is consistent with
our expectations.

1

10

100

1000

50 100 500 1000 2500 5000 10000

Number of states

N
um

b
er

 o
f

p
la

ns

Direct plans Redundant

Figure 5: SEMAPLAN performance when increasing number of
state spaces searched

SEMAPLAN: f(#CF) where ST, #SS are constants:
Finally, we varied the weight in the cost function to see
how the quality of the plans generated get impacted by
this. As weight approaches 1, the cost function gives less
preference to length, therefore we expect to see more
number of longer plans (sometimes with redundancies)
than those expected at lower weights and vice versa. The
results illustrated in Table 2 confirm this intuition.

Weight Direct Redundant Recall

0 20 234 1

0.5 20 374 1

1 20 423 1
Table 2: SEMAPLAN performance when changing the cost
function

Related Work

The literature on Web services matching and composition
has focused on two main directions. One body of work
explored the application of AI planning algorithms to
achieve composition while the other investigated the
application of information retrieval techniques for
searching and composing of suitable services in the
presence of semantic ambiguity from large repositories.
In this section we contrast our approach with those taken
by these two bodies of work.

First, we consider work that is done on composing Web
services using planning based on some notion of
annotations. A general survey of planning based
approaches for web services composition can be found in
(Peer 2005). SWORD (Ponnekanti, Fox 2002) was one of

the initial attempts to use planning to compose web
services. It does not model service capabilities in an
ontology but uses rule chaining to composes web services.
In (McIlraith 2001), a method is presented to compose
Web services by applying logical inferencing techniques
on pre-defined plan templates. The service capabilities
are annotated in DAML-S/RDF and then manually
translated into Prolog. Now, given a goal description, the
logic programming language of Golog (which is
implemented over Prolog) is used to instantiate the
appropriate plan for composing the Web services. In
(Traverso, Pistore 2004), executable BPELs are
automatically composed from goal specification by
casting the planning problem as a model checking
problem on the message specification of partners. The
approach is promising but presently restricted to logical
goals and small number of partner services. Sirin et al.
(Sirin et al 2003) use contextual information to find
matching services at each step of service composition.
They further filter the set of matching services by using
ontological reasoning on the semantic description of the
services as well as by using user input. Web Services
Modeling Ontology is a recent effort for modeling
semantic web services in a markup language (WSML) and
also defining a web service execution environment
(WSMX) for it. Our logical composition approach is not
specific to any particular modeling language and can
adapt to newer languages. Synthy (Agarwal et al 2005)
takes an end-to-end view of composition of Web Services
and combines semantic matching with domain ontologies
with planning. While these bodies of work use the notion
of domain annotations and semantic reasoning with
planning, none of them use domain-independent cues such
as thesaurus. Moreover, they do not consider text analysis
techniques such as tokenization, abbreviation expansions,
and stop word filtering etc. in drawing the semantic
relationships among the terms referenced in Web services.
Shivashanmugam et al., (Shivashanmugam 2003) propose
semantic process templates to capture the semantic
requirements of Web process in their work on MWSCF.
However, they do not specify combining domain-
independent with domain-dependent cues with planning
approaches for achieving composition.

 The second body of work looked at composition of Web
services using domain independent cues alone. Syeda-
Mahmood (Syeda-Mahmood 2004) models Web service
composition as bipartite graph and solves a maximum
matching problem while resolving the semantic
ambiguities using domain-independent ontologies and text
analysis approaches. This work takes its roots in schema
matching. However, this work does not use domain-
dependent ontologies which are crucial to resolving the
differences between domain-specific contextual terms.

SEMAPLAN, to the best of our knowledge, is the first
attempt at combining semantic matching consisting of

domain-dependent and domain-independent ontologies
with AI planning techniques to achieve Web services
composition.

Conclusions and Future Work

In this paper, we have presented a novel approach to
compose Web services in the presence of semantic
ambiguity using a combination of semantic matching and
AI planning algorithms. Specifically, we use domain-
independent and domain-specific ontologies to determine
the semantic similarity between ambiguous
concepts/terms. Matches due to the two cues are
combined to determine an overall similarity score. This
semantic similarity score is used by AI planning
algorithms in composing services. The experimental
results confirmed our intuitions: (1) the number of direct
plans improved by combining semantic matching with
planning algorithms; thus, SEMAPLAN achieved better
recall than the metric planner alone, and (2) there is a
tradeoff between the semantic threshold, the limit on the
state search space, the cost function, and the quality of
results obtained. We noticed that there is an optimal
threshold, which when set, helps focus the planner and at
the same time provides enough semantic variety to
improve recall.

The notion of planning in the presence of semantic
ambiguity is conceptually similar to planning under
uncertainty. In the future we intend to investigate the
application of probabilistic planning techniques to
consider semantic differences and compare the results.

References

Akkiraju R, Farrell J, Miller, J. Nagarajan M, Sheth A, Verma

K. 2005 Web Services Semantics - WSDL-S. A W3C

submission.

Ankolekar A., Burstein M., Hobbs J. J., et al. 2001. DAML-
S/OWL-S: Semantic Markup for Web Services. In Proceedings
of the International Semantic Web Working Symposium (SWWS)

Agarwal V. Chafle G, Dasgupta K. et al 2004. Synthy. A System
for End to End Composition of Web Services.
http://www.research.ibm.com/people/b/biplav/areas.html

Bigus J., and Schlosnagle D. 2001. Agent Building and
Learning Environment Project: ABLE.
http://www.research.ibm.com/able/

Biplav S. 2004. A Framework for Building Planners. In the
Proc. Knowledge Based Computer Systems

Christenson E., Curbera F., Meredith G., and Weerawarana S..
“Web services Description Language” (WSDL) 2001.
www.w3.org/TR/wsdl

Dong X. et al. 2004. Similarity search for Web services. In
Proc. VLDB, pp.372-283, Toronto, CA.

DQL Technical Committee 2003. DAML Query Language
(DQL) http://www.daml.org/dql

Lee J., Goodwin R. T., Akkiraju R., Doshi P., Ye Y. 2003.
SNoBASE: A Semantic Network-based Ontology Ontology
Management. http://alphaWorks.ibm.com/tech/snobase.

Mack. R, Mukherjea S., Soffer A., Uramoto N. et. al. 2004. Text
Analytics for Life sciences using the Unstructured Information
Management Architecture (UIMA). IBM Systems Journal.
Volume 43. Number 3.

Mandel, D., McIIraith S., 2003 Adapting BEL4WS for the
semantic web: The bottom up approach to web service
interoperation Second International Semantic Web Conference
(ISWC2003), Sanibel Island, Florida.

McIlraith S. and Son T.C and Zeng H. 2001. Semantic Web
Services. IEEE Intelligent Systems, Special Issue on the
Semantic Web. March/April. Number 2, Pages 46-53
Volume 16.

Melnik S. et al, “Similarity flooding: A versatile graph matching
algorithm and its application to schema matching,” in Proc.
ICDE, 2002.

Miller G.A 1983. WordNet: A lexical database for the English
language, in Comm. ACM 1983.

Nicholas Kushmerick and Steve Hanks and Daniel S. Weld
1995. An Algorithm for Probabilistic Planning, Artificial
Intelligence, volume 76 number 1-2, pages 239-286.

OWL Technical Committee. “Web Ontology Language (OWL)”.
2002. http://www.w3.org/TR/2002/WD-owl-ref-20021112/

Peer J. 2005. Web Service Composition as a Planning Problem
– a survey. http://elektra.mcm.unisg.ch/pbwsc/docs/pfwsc.pdf

Ponnekanti S. Fox A. 2002. SWORD: A Developer Toolkit for
Web Service Composition. Proc. Of the 11th International
World Wide Web Conference.

Sirin E., Hendler J., and Parsia B. 2003. Semi-automatic
composition of web services using semantic descriptions. Web
Services: Modeling, Architecture and Infrastructure workshop
in conjunction with ICEIS2003, April 2003.

Shivashanmugam K., Verma K., Sheth A., Miller J. Adding

Semantics to Web Services Standards. In the proceedings of The

2003 International Conference on Web Services (ICWS'03), Las

Vegas, NV, June 23 - 26, 2003,, pp. 395-401.

Sivashanmugam, K. , Miller, J., Sheth, A., Verma, K., 2003.

Framework for Semantic Web Process Composition, Special

Issue of the International Journal of Electronic Commerce

(IJEC)

Syeda-Mahmood T., Shah G., Akkiraju R., Ivan A., and
Goodwin R.. 2005 Searching Service Repositories by
Combining Semantic and Ontological Matching. Third
International Conference on Web Services (ICWS), Florida.
Syeda-Mahmood 2004. Minelink: Automatic Composition of
Web Services through Schema Matching. Poster paper World
Wide Web Conference. 2004.

Traverso P. and Pistore M., 2004. Automated Composition of
Semantic Web Services into Executable Processes. 3rd Int.
Semantic Web Conf., November.

Weld D. 1999. Recent Advances in AI Planning. AI Magazine,
20:2.

WSMO Technical Committee Web Services Modeling Ontology
2003, http://www.wsmo.org

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 2
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

