
Adaptive Web Processes Using Value of Change Computations

John Harney
LSDIS Lab, Dept. of Computer Science

University of Georgia
Athens, GA 30602
jfharney@uga.edu

Prashant Doshi
LSDIS Lab, Dept. of Computer Science

University of Georgia
Athens, GA 30602
pdoshi@cs.uga.edu

Abstract

Web service composition is recently receiving much attention
as an important problem for the services oriented architec-
ture community. There have been many planning methods
for building compositions based on pre-defined models of the
process environment. However, these methods have assumed
that the information in the models remain static and accurate
throughout the life cycle of the Web process. We describe
an approach that captures the dynamic nature of web services
by formulating a system that queries external sources intelli-
gently. We use an approach that measures the value of change
that a revised model parameter may potentially introduce. We
provide an algorithm that calculates and uses this value to
optimally adapt the Web process to possible changes in envi-
ronment. Using a supply chain scenario, we demonstrate our
idea and compare its performance to existing methods.

Introduction
Planning based approaches to Web process composi-
tion (Doshi et al. 2005; Wu et al. 2003) rely on pre-
specified models of the process to generate plans. For ex-
ample, decision-theoretic planners such as Markov deci-
sion processes (MDPs) (Puterman 1994) utilize a model,
which describes the state-action transition probabilities and
the costs of service invocations, to generate a policy that
guides the composition. The optimality of the Web pro-
cess is directly dependent on the accuracy with which the
model captures the process environment. In volatile envi-
ronments (Au, Kuter, & Nau 2005) where the characteristics
of the process participants may change frequently, the Web
process may become suboptimal if the model is not updated
with the changes. As a concrete example, consider a sup-
ply chain scenario in which a manufacturer has the option of
ordering goods from either its preferred or some other sup-
plier. The ordering of the manufacturer’s actions depends
on the probability with which the preferred supplier usually
satisfies the orders and the cost of using the preferred sup-
plier. If the preferred supplier’s rate of order satisfaction
drops suddenly (due to unforeseen circumstances), and the
manufacturer does not revise its model to reflect this change,
its Web process will continue utilizing that supplier over oth-
ers.

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

A straightforward approach to address this problem is to
query the model parameters periodically, and update them
if they have changed. However, this approach does not take
into account the cost of the querying the model parameters,
which may turn out to be more expensive than using a sub-
optimal Web process. For example, finding out the preferred
supplier’s current rate of order satisfaction may be more ex-
pensive than the reduction in expected cost that the new in-
formation will entail for the Web process. This is possible,
if the manufacturer has to execute a tedious procedure to ac-
quire the new information, and the new information does not
alter the Web process.

In this paper we introduce a method to intelligently adapt
the Web process to volatile environments by introducing the
value of change mechanism. Through the value of change
mechanism, we compute the tradeoff between the query cost
and the expected value of the change in the Web process on
account of the revised information. We update the model
parameters and compose the Web process again, only if the
value of change is greater than the query cost. We adopt
a myopic approach in that we query only a single parame-
ter of the model and select that parameter which provides
the best value of change. We show that, though myopic,
the approach performs reasonably well in adapting the Web
process. In particular, our experiments demonstrate that the
value of change mechanism avoids ’unnecessary’ queries in
comparison to the naive approach of periodic querying. This
translates to a savings in overall costs for the Web process.
For the purpose of evaluation, we utilize the supply chain
scenario introduced previously. We represent the manufac-
turer’s Web process using WSBPEL (IBM 2005), and sup-
plier’s services using WSDL (W3C 2001). An additional
service that computes the value of change is also added to
the Web process.

We point out that the value of change computation shares
its conceptual underpinnings with the value of perfect infor-
mation (VPI) (Russell & Norvig 2003). This is due to the
fact that they are both essentially special cases of the value of
information idea. However, there is an important difference
between them. While, VPI computes the value of additional
information, the value of change provides the value of re-
vised information. Both these quantities cannot be negative.
The updated information may lead to a Web process whose
total expected cost is greater. For example, if the preferred

supplier’s probability of meeting orders drops considerably,
the manufacturer may be forced to drop the preferred sup-
plier and instead use some other supplier, who may be more
expensive. Nevertheless, as as we show, the revised Web
process incurs less total cost in the changed environment in
comparison to the original Web process.

Related Work
(Doshi et al. 2005) offers a technique that monitors the

inherent dynamism of Web process environments through
Bayesian learning. Web process model parameters are up-
dated based on previous interactions with the individual Web
services. The Web process is composed and executed based
on the beliefs of the previous values. The composition plan
is regenerated before each instance of the Web process based
on these new beliefs. Of course, this may result in plan re-
computations that do not bring about any change in the com-
positions.

(Au, Kuter, & Nau 2005) attempts to obtain current rel-
evant parameters about the Web process by querying spe-
cific Web service providers for parameters needed for Web
service composition. The values of the paramters obtained
from the queries have a pre-defined life cycle that is mon-
itored by a Web service composition procedure. The val-
ues are considered valid until some specified expiration time
is exceeded. When the values expire, the web services are
queried for these values again, so that an optimal plan can be
re-computed. If a new parameter value differs from an origi-
nal value, the composition procedure backtracks to first deci-
sion point dependent upon the value of that parameter. This
method assumes that the expiration times of the Web service
parameters are pre-specified by the service providers. In the
real-world, it is frequently difficult for service providers to
anticipate, for example, for how long they will be able to sat-
isfy orders at the same rate. Secondly, plan recomputation
is assumed to take place irrespective of whether the revised
parameter values are expected to bring about a change in the
composition. This may lead to frequent unnecessary back-
tracks.

Motivating Example: Supply Chain
In order to illustrate the adaptive composition of Web pro-
cesses, we present an example motivating scenario. The sce-
nario will serve as a running example for the rest of the pa-
per.

Example Scenario A manufacturer receives an order to
deliver some merchandise to a retailer. The manufacturer
may satisfy the order in one of several ways. He may sat-
isfy the order from his own inventory if sufficient stock ex-
ists. The manufacturer may request the required parts from
a preferred supplier in order to produce the goods needed
to satisfy the order. The manufacturer may also search for
a new supplier of parts, or buy them on the Spot Market.
A costing analysis reveals that the manufacturer will incur
least cost if he is able to satisfy the order from his own in-
ventory. The manufacturer will incur increasing costs as he
tries to fulfill the order by procuring parts from his preferred
supplier, a new supplier, and the Spot Market.

 Retailer Manufact.

Preferred
Supplier

Other
Supplier

Spot
Market

Reply = Yes with
prob. 0.2

Reply = Yes
with prob. 0.7

Check availability and order parts
Reply = Yes
with prob. 0.4

Reply = Yes
with prob. 1

Check Inventory

Check availability and order parts

Check availability and order parts

Figure 1: Collaboration diagram showing the interactions
between the business partners in our motivating scenario.
We have used example probability values to aid understand-
ing.

In Figure 1, we illustrate our motivating scenario graph-
ically. Clearly, the manufacturer may choose from several
candidate Web processes. For example, the manufacturer
may initially attempt to satisfy the order from its inventory.
If it is unable to do so, it may resort to ordering parts from
its preferred supplier. Another potential process may in-
volve bypassing the inventory check, since the manufacturer
strongly believes that its inventory will not satisfy the order.
It may then initiate a status check on its preferred supplier.
These example Web processes reveal two important factors
for selecting the optimal one. First, the manufacturer must
know the certainty with which its order will be satisfied by
its inventory, preferred supplier, supplier, and the Spot Mar-
ket. Second, at each stage, rather than greedily selecting an
action with the least cost, the manufacturer must select the
action which is expected to be optimal over the long term.

Background: Web Process Composition Using
MDPs

As we mentioned before, the challenges and our approach
are applicable to any model based composition technique.
For the purpose of illustration, we select decision-theoretic
planning for composing Web processes (Doshi et al. 2005;
Wu et al. 2003). Decision-theoretic planners such as MDPs
model the the Web process, WP , using a sextuplet:

WP = (S,A, T,C,H, s0)
where S is the set of all possible states; A is the set of all
possible actions; T is a transition function, T : S × A →
Δ(S), which specifies the probability measure over the next
state given the current state and action; C is a cost function,
C : S×A→ R, which specifies the cost of performing each
action from each state; H is the period of consideration over
which the plan must be optimal, also known as the horizon,
0 < H ≤ ∞; and s0 is the starting state of the process.

In order to gain insight into the functioning of MDPs,
let us model the example scenario as a MDP. The state of
the workflow is captured by the random variables – Inven-
tory Availability, Preferred Supplier Availability, New

Supplier Availability, Spot Market Availability, Order
Assembled, and Order Shipped. A state is then a con-
junction of assignments of either Yes, No, or Unknown to
each random variable. Actions are Web service invocations,
A={Check Inventory Status, Check Preferred Supplier
Status, Check New Supplier Status, Check Spot Mar-
ket Status, Assemble Order, Ship Order}. The transi-
tion function, T , models the non-deterministic effect of each
action on some random variable(s). For example, invok-
ing the Web service Check Inventory Status will cause
Inventory Availability to be assigned Yes with a probabil-
ity of T (Inventory Availability=Yes|Check Inventory Sta-
tus, Inventory Availability=Unknown), and assigned No
or Unknown with a probability of (1-T (Inventory Avail-
ability=Yes|Check Inventory Status,Inventory Availabil-
ity=Unknown)). The cost function, C, prescribes the cost
of performing each action. We let H be some finite value
which implies that the manufacturer is concerned with get-
ting the most optimal Web process possible within a fixed
number of steps. Since no information is available at the
start state, all random variables will be assigned the value
Unknown.

Once our manufacturer has modeled its Web process
composition problem as a MDP, it may apply standard MDP
solution techniques to arrive at an optimal process. These
solution techniques revolve around the use of stochastic dy-
namic programming (Puterman 1994) for calculation of the
optimal policy using value iteration:

V n(s) = maxa∈A Qn(s, a) (1)

where:

Qn(s, a) =

⎧⎨
⎩

min
a∈A

{
C(s, a) +

∑
s′∈S

T (s′|a, s)V n−1(s)
}

n>0

0 n=0
(2)

where the function, V n : S → R, quantifies the minimum
long-term expected cost, of reaching each state with n ac-
tions remaining to be performed, and Qn(s, a) is the action-
value function, which represents the minimum long-term ex-
pected cost from s on performing action a.

Once we know the cost associated with each state of the
process, the optimal action for each state is the one which
results in the minimum expected cost.

π∗(s) = argmin
a∈A

Qn(s, a) (3)

In Equation 3, π∗ is the optimal policy which is simply
a mapping from states to actions, π∗ : S → A. The Web
process is composed by performing the WS invocation pre-
scribed by the policy given the state of the process and ob-
serving the results of the actions. Details of the algorithm for
translating the policy to the Web process are given in (Doshi
et al. 2005)

Value of Change Computation
Several characteristics of the process participants i.e. service
providers, may change. For example, the cost of using the

preferred supplier’s services may increase, and/or the prob-
ability with which the preferred supplier meets the orders
reduces. The former requires an update of the cost func-
tion, C, while the latter requires an update of the transition
function, T in the MDP model. In this paper, we focus on
a change in the transition function, though our approach is
generalizable to fluctuations in other model parameters too.

Definition
As we mentioned before, we adopt a myopic approach to
information revision, in which we query a single variable
for information. In the supply chain problem, this would
translate to asking, say, only the preferred supplier for its
current rates of order satisfaction, as opposed to both the
preferred supplier and the other supplier. The new infor-
mation may change the following transition probabilities,
T (Preferred Supplier Availability = Yes | Check Pre-
ferred Supplier Status, Preferred Supplier Availability
= Unknown), and T (Preferred Supplier Availability = No
| Check Preferred Supplier Status, Preferred Supplier
Availability = Unknown). Let Vπ∗(s|T ′) represent the ex-
pected cost following the optimal policy, π∗, from the state
s when the revised transition function, T ′ is used. Since
the new transition probabilities are not available unless we
query the service provider, we average over all possible val-
ues of the revised transition probabilities, using our current
beliefs over their values. These beliefs are esssentially de-
fined by utilizing both quality of service parameters defined
in pre-arranged service level agreements (Pruyne 2006) and
previous interactions with the Web services themselves. For-
mally,

EV (s|T ′) =
∫
p

Pr(T ′(·|a, s′) = p)Vπ∗(s|T ′)dp (4)

where T ′(·|a, s′) represents the distribution that may
be queried and subsequently may get revised, p =
〈p1, p2, . . . , pn〉 represents a possible revised distribution, n
is the number of values that the variable under question may
assume, and Pr(·) is our current belief over the possible val-
ues. As a simple illustration, let us suppose that we intend
to query the preferred supplier for its current rate of order
satisfaction. Eq. 4 becomes,
EV (s|T ′) =

∫
〈p,1−p〉 Pr(T ′ (Pref. Supp. Avail.=Yes/No

|Check Pref. Supp. Status, Pref. Supp. Avail. = Un-
known)= 〈p, 1− p〉) Vπ∗(s|T ′)dp
assuming that the random variable Preferred Supplier
Availability assumes either Yes or No.

Let Vπ(s|T ′) be the expected cost of following the orig-
inal policy, π from the state s in the context of the revised
model parameter, T ′. We formulate the value of change due
to the revised transition probabilities as:

V OCT ′(·|a,s′)(s) =
∫
p

Pr(T ′(·|a, s′) = p)[Vπ(s|T ′)
−Vπ∗(s|T ′)]dp

(5)
Intuitively, Eq. 5 represents how badly, on average, the orig-
inal policy, π, performs in the changed environment as for-
malized by the MDP model with the revised T ′.

Analogous to the value of perfect information, the follow-
ing proposition holds for VOC.

Proposition 1. ∀s ∈ S, V OC(s) ≥ 0 where VOC(·) is as
defined in Eq. 5.

Proof. The proposition follows trivially if we establish that
∀s,p Vπ(s|T ′)−Vπ∗(s|T ′) ≥ 0. By definition (Eq. 3), π∗ is
an optimal policy for the revised model. This implies that for
any other policy, π′ ∈ Π\π∗, ∀p Vπ′(s|T ′) ≥ Vπ∗(s|T ′).
This holds true over all the states. The required inequality
obtains since π must either be in Π\π∗, or be equal to π∗.

Since querying the model parameters may be expensive,
we must undertake the querying only if we expect it to
pay off. In other words, we query for current informa-
tion from a state of the Web process only if the VOC
due to the revised information in that state is greater than
the query cost. More formally, we query if VOC(s) >
QueryCost(T ′(·|a, s′)), where T ′(·|a, s′) represents the dis-
tribution we want to query.

Beliefs
In Eq. 5, the term Pr(p) represents our belief over the pos-
sible distributions, p, that a query may return. For example,
it represents our belief over the possible probabilities with
which the preferred supplier may meet its orders. We must
keep this belief current if it is to accurately reflect the possi-
ble probabilities.

We represent Pr(p) using a multivariate Beta density
function, also called the Dirichlet density:

Pr(p) ≡ Dirichlet(p;u) =
1

Z(u)
Πn

i=1p
ui−1
i

where Z(u) = Πn
i=1Γ(ui)

Γ(
∑ n

i=1 ui)
, Γ is the Gamma function. We se-

lected the Dirichlet density function, because it not only al-
lows the representation of ”natural” beliefs, but it also forms
a conjugate family under Bayesian update. In other words, if
Pr(p) is represented using a Dirichlet density function and
updated using new evidence, the posterior is also a Dirichlet
density. This is important, since in order to keep the belief
current, we may need to update it using the WS responses
as observations. This is one line of future work that we are
investigating.

Incremental Value Iteration
Calculating the VOC as shown in Eq. 5 is computationally
intensive. The probability p represents a revised probabil-
ity of transition on performing a particular action. To calcu-
late VOC, we must compute the revised values Vπ(s|T ′) and
Vπ∗(s|T ′) for all possible p and average over their differ-
ence based on our distribution over p. We note that comput-
ing Vπ(s|T ′), which represents the expected cost of follow-
ing the policy π from state s is straightforward since it does
not involve the minimization operation. However, comput-
ing the revised value function, Vπ∗(s|T ′) using the standard
value iteration as defined in Eq. 1 may get computationally
intensive.

S0

H = 1H = 2

S1

S2

S3

S4

A1

A1

A0

A0

A1

A0

Figure 2: Directed graph representation of the transitions in
the MDP.

We present a method, Fig. 3, to compute the revised value
function in an incremental manner. We identify the state
transition trajectories that are affected by the revised transi-
tion probabilities (for some action), and focus on recomput-
ing the action-values of these transitions. In order to illus-
trate, in Fig. 2, we show an example of the possible state
transitions unfolded up to horizon N = 2. Suppose that
the transition probabilities of the action, a0, are revised.We
identify the transitions caused by a0, and focus on recom-
puting the action-values of those states that participate in
the identified transitions. Specifically, the revised action-
value is optimal for the state, if it is less than the previous
best value for the state, otherwise, if a0 was not the previous
best action, then we may simply return the existing value of
that state. We need to compute the value for the state, in
a manner similar to the Eq. 1 , only if a0 was the previous
best action for that state and its revised action-value is worst
than the original best value. The incremental method incurs
savings in that we need not compute the value function, as
in Eq. 1, everytime. Rather, for many states, we may be
able to exploit the existing value function or just compute
the action-value function (which requires less computations
than Eq. 1). If the Web process contains more than two ac-
tion choices at some state, our algorithm will typically in-
cur computational savings in comparison to performing the
complete value iteration again. Of course, in the worst case,
our incremental algorithm does not incur any savings, and it
collapses to the complete value iteration.

Web Process Composition with VOC
In order to formulate and execute the Web process, we sim-
ply look up the current state of the Web process in the policy
and execute the WS prescribed by the policy for that state.
The response of the WS invocation determines the next state
of the Web process. We adapt the formulation of the Web
process to fluctuations in the model parameters, by inter-
leaving the formulation with VOC computations. The re-

Incremental Value Iteration
Input: H , s, T ′(·|a, s′)
Output: V

for n = 1 to H do
for all s ∈ S do

calculate Qn(s, a|T ′)
if Qn(s, a|T ′) < existing V n(s)

V n(s|T ′)← Qn(s, a|T ′)
else

if Qn(s, a|T ′) > existing V n(s) and a was
the previous best action

Compute V n(s|T ′) using Eq. 1
else

V n(s|T ′)← V n(s)
return V n(s|T ′)

end algorithm

Figure 3: Incremental algorithm to compute the revised
value function for new transition probabilities, T ′(·|a, s′).

sulting algorithm for the adaptive Web process composition
is shown in Fig. 4.

Algorithm for generating Web process
Input: π∗, s0

s← s0

while goal state not reached
if VOC∗(s) > QueryCost

Query service provider for new probabilities
Form the new transition function, T ′
Calculate policy π∗ using the new MDP model
with T ′

a← π∗(s)
Execute the Web service a
Get response of a and construct next state, s’
s← s′

end while
end algorithm

Figure 4: Algorithm for adapting and executing the Web
process.

For each state encountered during the execution of the
Web process, we query a service provider for new infor-
mation if the query is expected to bring about a change in
the Web process that exceeds the query cost. For example,
in the supply chain process, we select and query a service
provider for its current rate of order satisfactions. We select
the service provider whose possible new rate of order sat-
isfaction is expected to bring about the most change in the
Web process, and this change exceeds the cost of querying
the provider. In other words, we select the service provider
associated with the WS invocation, a, to possibly query for
whom the VOC is maximum.

a = argmax
a∈A

V OCT (·|a,s′)(s) (6)

Let VOC∗(s) represent the corresponding maximum VOC.
Our algorithm does not consider the cost of VOC com-

putation in deciding whether to query a service provider.
In particular, this would require knowing what the possi-
ble VOC computation cost could be, and a way to com-
pare computation cost with WS invocation cost using inter-
convertible units. We avoid these complications under the
assumption that sufficient inexpensive computational re-
sources are available to perform VOC computations.

Empirical Evaluation
We first oultine our services-oriented architecture, and in
particular, we wrap the VOC computations with WSDL
based internal Web services. This is followed by our ex-
perimental results on the performance of the adaptive Web
process.

Architecture
The algorithm described in the previous section is incorpo-
rated into a simple and implementable services-oriented ar-
chitecture. In Fig. 5, we depict our architecture. An MDP
model of the process environment is fed to a policy genera-
tor WS that computes the optimal policy and and serializes it
into a WS-BPEL flow logic that can be executed by a BPEL
engine (for e.g. IBM’s BPWS4J). Execution of the BPEL
document reflects the composition algorithm described in
Fig. 4.

. . . Service 4 Service 3 Service 2 Service 1 Service 5 Service n

Web Service
Invocation

Web Service
Response

WSDL WSDL WSDL WSDL WSDL WSDL

MDP

Generator

Policy

Provider

Query

Calculator

VOC
 Process
 State

 Web State

 New T Obtain Revised T

 Optimal Policy

 Check

 Value
 New

Internal Services

External Services

 VOC* Value

WS−BPEL

Figure 5: Adaptable Services Oriented Architecture

At each state of the Web process, the BPEL flow in-
vokes the VOC calculator. The VOC calculator responds
with the VOC∗ value at the current state computed using
Eq. 6. VOC∗ is compared to the cost of querying the selected
service provider (assumed to remain constant and stored in
BPEL). If the VOC∗ value is less than the query cost, then

the original policy is used to prescribe the optimal external
service to invoke at the current state. If the VOC∗ value
is greater than the query cost, then the service provider is
queried for new information, the new rate is incorporated
into the MDP, and the policy is regenerated. The new policy
re-writes the BPEL flow logic and the optimal external ser-
vice to invoke at the current state is determined by the new
flow. Note that the dashed arrow from the BPEL process to
the query provider service represents a conditional invoca-
tion of querying the service providers if VOC∗ exceeds the
query cost. The external provider services are described by
their associated WSDL files. The BPEL engine simply in-
vokes these services as the policy presribes. This procedure
continues until the goal state is reached.

Existing BPEL engines such as BPWS4J do not allow the
interruption of the BPEL execution and the BPEL document
replaced by another during execution. This posed a problem
for us, since we may need replace the policy and hence the
associated BPEL document with a new one. We circumvent
this problem by running a new and different instance of the
BPEL engine with the new BPEL document, and terminate
the original one.

Performance
We empirically compared the performance of the VOC
based Web process composition with two other methods
within the supply chain process outlined previously in Fig. 1.
The first uses the same policy for every execution instance of
the process. The MDP is solved once before the first execu-
tion instance and the resulting policy used for every instance
afterwards. This signifies no adaptation to a volatile environ-
ment. The second method implements a periodic querying
strategy, in which a service provider is selected at random
and queried for new information. Using the new informa-
tion, the policy is resolved and the Web process continues to
run using the new policy.

For the experiements, we use beta curve parameters (α
and β) to reflect the true nature of the services. These param-
eters attempt to model the beliefs described by the Pr(p)
term discussed in Eq. 5. Here, the inventory is considered
to have a smaller likelihood of satisfying an order than a
preferred supplier, who in turn has a smaller likelihood of
satisfying an order than some other possible supplier. The
spot market is assumed to always satisfy the order. Figure 6
shows a possible simplified example using the supply chain
model of each supplier’s belief system in graphical form.
It is important to reiterate that these estimation curves at-
tempt to quantify all parameters that may influence a sup-
plier’s ability to satisfy an order, such as the time that an or-
der is placed and quantity of the order. In a sense, this may
be an oversimplification of the model. In general, a more
analytical approach of each dependency must be carefully
conducted to obtain these estimates. Costs were set such
that the usage of the inventory, preferred supplier, other sup-
plier, and Spot Market services were increasingly expensive.
Since Eq. 1 is difficult to compute analytically, we computed
it using Monte Carlo integration utilizing a large number of
samples.

Figure 7 shows the average costs when each of the three

Figure 6: The probability density functions of service
providers beliefs of rates of satisfaction in the supply chain
model. Note that the Inventory Service’s rate of satisfaction
is much lower than the Preferred and Other Suppliers’ rate
of satisfaction.

Figure 7: Plots comparing the VOC strategy with the static
policy and periodic querying strategies. The VOC maintains
lowest cost until the query costs become too expensive and
a which point it reflects a static policy.

strategies, mentioned previously, are followed. We plot the
average cost incurred by the Web process as a function of the
cost of querying the service providers. Each data point is the
average over 1000 executions of the Web process to account
for the randomness in simulating the external services. Our
results show that when the same policy is used, the aver-
age cost of the Web process does not change much. This
is because the approach does not involve any querying. On
the other hand, the average cost of the VOC approach starts
out by being lower than the previous one, as the Web pro-
cess queries and adapts itself to the changes of the service
providers. However, as query cost increases, the VOC ap-
proach queries less and eventually stops adapting itself due

to mounting query costs. This behavior is reflected by the
curve following that of the previous approach. The periodic
querying strategy however, incurs mounting average costs,
as it queries providers “blindly” ie. without any regard to
the mounting query costs.

Our experiments provide two conclusions: First, by
adding a VOC calculation mechanism to Web process com-
position, important information changes in volatile environ-
ments may be captured and used to make better decisions
about the actions to perform. The comparison of VOC and
static policy implementations show the impact these deci-
sions can make, as the overall average cost of the Web pro-
cess using VOC is less than utilizing a non-changing policy.
Second, we showed that an intelligent strategy of query-
ing results in less expensive Web processes than a naive
method of querying for new information. In particular, our
results demonstrate that anticipating the possible changes
in a volatile environment pays off in comparison to simple
querying strategies.

Discussion
In this paper, we have addressed some of the problematic
issues in composing Web services in volatile environments.
We proposed a method that intelligently adapts to changes
in external Web service parameters in a cost efficent manner
by introducing the value of change mechanism. We believe
that our work is novel based on the fact that our method
selectively and conditionally obtains information from ex-
ternal environments based on its expected value of changing
the current Web process. Through empirical experiments,
we have demonstrated the usefulness of the VOC mecha-
nism, which effectively decreases overall average Web pro-
cess cost over both simple querying methods and using a
static policy. We believe that the implementation of this new
strategy may encourage greater emphasis on monitoring the
dynamic events in the life cycle of a realistic Web process.

As part of our future work, we will continue to explore
ways to exploit the value of change mechanism for Web
processes on a larger scale. We would like to incorporate
learning techniques to approximate the importance of vari-
ous web process parameters and our beliefs about these pa-
rameters. We would also like to add elements of time and
risk as essential parameters in adapting Web process com-
positions.

References
Au, T.-C.; Kuter, U.; and Nau, D. S. 2005. Web service
composition with volatile information. In International Se-
mantic Web Conference, 52–66.
Doshi, P.; Goodwin, R.; Akkiraju, R.; and Verma, K.
2005. Dynamic workflow composition using markov deci-
sion processes. Journal of Web Services Research 2(1):1–
17.
IBM. 2005. Business Process Execution Language for Web
Services version 1.1.
Pruyne, J. 2006. WS-Agreement Specification.
Puterman, M. L. 1994. Markov Decision Processes. New
York: John Wiley & Sons.

Russell, S., and Norvig, P. 2003. Artificial Intelligence: A
Modern Approach (Second Edition). Prentice Hall.
W3C. 2001. Web Services Description Language (WSDL)
1.1.
Wu, D.; Parsia, B.; Sirin, E.; Hendler, J.; and Nau, D. 2003.
Automating daml-s web services composition using shop2.
In International Semantic Web Conference (ISWC).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 2
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

