
Two-phased Web Service Discovery

Ruben Lara
Tecnologia, Informacion y Finanzas (TIF)

Grupo Analistas

rlara@afi.es

Abstract
Service-Oriented Architectures enable the consumption

of existing services in a standardized way to solve some

specific needs. In order to consume some services made

available by cooperating parties e.g. for performing

some business activity, such services must be located

based on different criteria. In this paper, we investi-

gate how the semantic description of the capability of

Web services and of customer goals can be exploited

for (semi)automating Web service discovery based on

functional requirements. For this purpose, we propose

a two-phased Web service discovery model. In a first

phase, relevant Web services in terms of the results they

potentially provide are efficiently located. In a second

phase, the inputs required by relevant Web services are

considered and only Web services for which the cus-

tomer can provide appropriate input and for which this

input can lead to the expected results are selected. The

first phase relies on subsumption reasoning with De-

scription Logics, while the second one relies on a com-

bination of query answering for Logic Programs and

subsumption reasoning with Description Logics.

Introduction
Service-Oriented Architectures (SOAs) have emerged as a

paradigm for building scalable and easy-to-integrate IT sys-

tems, relying on the existence of services that perform some

business function and that can be consumed in a standard-

ized fashion. This paradigm is gaining momentum, and

the common goal of many companies is to implement an

enterprise-wide SOA that crosses departmental and geo-

graphical boundaries. Furthermore, special interest is paid

to the extension of the service-oriented view to business col-

laboration, crossing enterprise boundaries as well. The im-

plementation of an enterprise-wide SOA already leads to an

scenario where an important number of business services

are available for their stand-alone or composed exploitation.

This requires advanced facilities for locating services that

can provide some particular business function required for

the task at hand. We believe that the semantic description of

Web services1 can help to (semi)automate the discovery of

Copyright c© 2006, American Association for Artificial Intelli-

gence (www.aaai.org). All rights reserved.
1In the remainder of the paper we will focus on services ex-

posed via Web service interfaces. However, the approach presented

Web services that perform some relevant business function,

avoiding the bottleneck that the increase in the number of

available Web services can create in the location and use of

services in an SOA.

In this paper, building on the work presented in (Keller

et al. 2005), we propose a two-phased model for Web ser-

vice discovery based on the formalization of the functional

requirements of a customer and of the functional offer of

available Web services. The first phase efficiently identifies

Web services that can provide results required by the cus-

tomer. In the second phase, the input values required by

relevant Web services are considered and only Web services

for which the customer can provide appropriate input and for

which this input can lead to the expected results are selected.

Use case
The use case that will be used in the remainder of the paper

is based on the following scenario: an end-user or a busi-

ness process needs: a) to find investment funds meeting cer-

tain criteria e.g. commercialized by a given entity, or b) to

purchase a given investment fund. Different Web services

that provide information on investment funds exist, offer-

ing information about a different set of funds, a different set

of information from each fund, and requiring different in-

puts. Investment funds can also be purchased using different

Web services. The Web service discovery process will locate

those Web services that can be used to request the informa-

tion required or to purchase the desired fund. Throughout

the paper we will use the following set of goals and Web

services in order to illustrate our approach:

• Goal 1 (G1): descriptive information about all investment

funds from Spanish institutions is required.

• Goal 2 (G2): descriptive information about all funds from

Spanish institutions and categorized as FIAMM-CNMV

(a category defined by the Spanish market supervisor) is

required, as well as their ranking in this category.

• Goal 3 (G3): shares from the investment fund myFund
have to be purchased and paid with credit card myCC.

• Web service 1 (WS1): can provide descriptive informa-

tion about all funds from European institutions. It requires

is equally applicable to other technologies such as JMS.

a European country as input, and gives information about

all funds from that country.

• Web service 2 (WS2): can provide descriptive informa-

tion about all funds from Spanish institutions. It requires

a Spanish institution as input, and gives information about

all funds from that institution.

• Web service 3 (WS3): can provide descriptive informa-

tion about all funds from Spanish institutions, as well as

their ranking. It requires a funds category as input, and

provides the Spanish funds classified under that category

as well as their ranking in such category.

• Web service 4 (WS4): can provide the purchase of shares

of any European investment fund with a credit card. It

requires the European fund to be purchased and the card

details as input, as well as the details of a registered user

of the service, and provides the purchase of the fund with

the card given.

The paper is structured as follows: in the next section, we

introduce the concepts of service, Web service and goal in

order to have a common understanding of these terms. Af-

terwards, we present the type of formal descriptions of goals

and Web service functional capabilities that can be generally

expected. The Web service discovery process proposed is

described next, including the restrictions introduced on the

expressivity of the language used for describing goals and

capabilities. Finally, we present our conclusions and con-

duct a brief discussion.

Services, Web services, and goals
In this section we present our understanding of the concepts

of service, Web service, and goal, based on the work in

(Keller et al. 2005).

Services
We understand a service (or business service) as a provision

of value in some domain (Preist 2004). Let us consider G3:

the service sought is the purchase of shares from a given

investment fund with a given credit card, but the purchase

itself is independent on how supplier and provider interact

i.e. it does not matter whether the customer goes to a bank

office to request the purchase of the fund or uses a Web ser-

vice from an institution commercializing the fund. We un-

derstand the term service in this sense, that is, as a provision

of value, irrespective of how customer and provider interact.

The provision of a service serv causes some changes on

the state of the world, called service effects, and the pro-

vision of some information to the customer, called service
outputs (Keller et al. 2005). An example of the former is the

purchase of some shares of an investment fund and the asso-

ciated charge of the customer credit card, while an example

of the latter is the provision of descriptive information about

funds from Spanish institutions.

Web services
A Web service is a computational entity accessible using

some particular standards and protocols, and usable to re-

quest some services. If we consider a Web service like WS4,

we can see that it is an electronic means to request a service

i.e. a purchase, but not the service itself.

An abstract service AW is the collection of services that

can be requested using a Web service W . In particular,

an abstract service comprises a set of services ServAW =
{serv1, . . . , servn} and, therefore, a set of outputs and ef-

fects resulting from the provision of each service servi ∈
ServAW . For example, the abstract service provided by

WS4 is the purchase of shares from European investment

funds with credit card. The constituent services are each

concrete purchase that can be requested via the Web service,

for example the purchase of a concrete fund with a given

credit card by a given investor.

A Web service will generally require some input informa-

tion to be sent to it. The concrete service servi ∈ ServAW

provided by W and, therefore, the outputs and effects result-

ing from invoking W , will depend on the state of the world

s that holds when W is used to request a service, and on the

set of input values i1, . . . , in given by the requester to W .

For example, the concrete service provided by WS4 i.e. the

concrete purchase is dependent on the fund and credit card

details given as input. The current state says e.g. whether

the fund requested is being currently commercialized and,

therefore, whether the purchase is possible at all.

In general, we can see a Web service W as a function

that maps a particular set of input values given by the re-

quester and a particular state of the world to a service

servi ∈ ServAW and, in turn, to the outputs and effects of

servi. However, not all states and input values will lead to

the provision of some service by W , but only states fulfilling

some conditions defined by Web service preconditions, and

input values satisfying the information requirements of the

Web service as defined by Web service inputs, will lead to

the provision of a service servi ∈ ServAW i.e. the domain

of the function the Web service offers is restricted to states

and input values satisfying the Web service preconditions

and input requirements.

Goals
A customer will request the provision of a service (via a Web

service) because it has some particular functional value. In

particular, the goal of a customer when requesting the pro-

vision of a service is to know some new information and/or

to make something hold in the real world. A goal expresses

the results that are expected from the provision of a service.

If we take G1 as an example, the functional value ex-

pected is the provision of certain information about funds

meeting certain criteria, while if we consider G3 the func-

tional value expected is the actual purchase of shares of a

given investment fund with credit card i.e. some effects on

the real world are expected from the service provision.

Semantic descriptions
For (semi)automating the Web service discovery process, it

is necessary to count with a formal description of customers’

goals and of the functional value of available Web services.

In this section, we will introduce the generic types of de-

scriptions we expect to have available during the discovery

process. The descriptions introduced in this section will

make use of full first-order logic (Fitting 1996), with clas-

sical first-order semantics. The purpose is to illustrate the

type of descriptions that are considered. In the next section,

however, restrictions on the expressivity allowed will be in-

troduced and local closed world reasoning will be used.

Goal descriptions
The goal of a customer when requesting the provision of

a service via a Web service is to gather some information

and/or to make some conditions hold in the real world.

Therefore, a goal G can be described by the set of results,

both outputs and effects, that are expected from the provi-

sion of a service. These results can be formalized by a first-

order predicate resG(x) defined as:

∀x.resG(x) ↔ φG(x)

where φG(x) denotes a first-order formula over variable x
that defines what conditions an object x must fulfill for being

an expected result and, viceversa, what conditions expected

results fulfill. Intuitively, resG(o) will be true for an object o
iff o is an expected result for achieving goal G. For example,

predicate resG3(x) describing the results expected by G3

would be defined as follows:

∀x.resG3(x) ↔ purchase(x) ∧ ofItem(x, myFund) ∧
withPaymentMethod(x, myCC)

where myFund and myCC are constants denoting a given

investment fund and credit card, and purchase, ofItem and

withPaymentMethod are predicates defined by an under-

lying domain model that provides the necessary vocabulary

for the description of goals in a particular domain. Notice

that, for simplicity, we consider a single predicate for any

kind of results; extending the model for having two predi-

cates, one for outputs and another one for effects, is straight-

forward.

Customer information. Web services will generally re-

quire some input values for providing a service, and these

input values will partially determine the results of the Web

service. One may think that a customer goal should not only

describe the results required, but also what information the

customer has available and is willing to disclose for achiev-

ing such results, as it plays a role in the discovery process.

However, the input required by available Web services, some

of which might solve the customer’s goal, is not known by

the customer before-hand, and it can greatly vary among

them. For example, any Web service might require authen-

tication (user name), as WS4 does, and a customer defining

e.g. goal G3 cannot anticipate whether his user details will

be necessary for achieving his goal. In the best case the

customer can only guess, when defining his goal, what input

values will be required by Web services satisfying such goal.

In addition, the customer might have a considerable vol-

ume of information from which input values to Web services

can be obtained. As an example, consider a business process

that acts as a customer and that has access to information in

corporate databases: input values for a Web service can be

extracted from these databases if this is required for achiev-

ing a goal of the process. Finally, part of this information

might be sensitive and, therefore, it should not be disclosed

to third parties before establishing some trust relation. For

example, and even though a customer trying to achieve G3

might be willing to disclose his credit card details for pur-

chasing shares of an investment fund, he will probably not

do so before the specific Web service that can be used for

this purpose has been identified and a trust relation has been

established with it.

For these reasons, we will assume that the customer will

keep his information locally i.e. it will not be attached to the

goal, so that the description of expected results can be dis-

closed to third parties such as Web service registries with-

out disclosing customer’s information. In particular, we will

assume that a requester knowledge base KBc, containing

all the information known by the customer and usable for

achieving the goal, exists and it is kept locally. If a hu-

man user participates in the discovery process, he can extend

KBc with additional information required by some Web ser-

vice and not in KBc.

Additionally, there might be potential input information

contained in the definition of a goal. For example, G3 gives

details of the customer credit card and of the fund the re-

quester wants to purchase. These details might be later used

as input to a Web service for achieving the goal and, there-

fore, they will be considered as potential input values and

included in KBc. Furthermore, if this kind of information

included in the goal has a sensitive nature, as it is the case

of the credit card details of the customer in G3, it will be re-

placed by a restriction derived from its definition but which

does not reveal sensitive details e.g. credit card number and

expiration date. For example, G3 will only say that a Visa

credit card (assuming the customer credit card is a Visa) has

to be used for the purchase, without giving further details.

The result of eliminating sensitive information from the for-

malization of G3 is:

∀x.resG3(x) ↔ ∃cc.purchase(x) ∧ ofItem(x, myFund) ∧
withPaymentMethod(x, cc) ∧ visaCreditCard(cc)

Notice that the pre-processing of goals and the identifica-

tion of what information the customer is willing to disclose

for achieving a given goal is currently done manually. The

automation of goal pre-processing and the identification of

information the customer is willing to disclose from KBc

can be based in the definition of information disclosure poli-

cies (Olmedilla et al. 2004). The use of this type of policies

will be part of our future work.

Web service capability descriptions
A Web service W can be seen as a function that maps certain

input values and the current state of the world to a service

servi ∈ AW , with certain outputs and effects.

However, we will drop the dependency of the Web ser-

vice results on the current state. The reason is that the dis-

covery process will generally have partial visibility on the

current state of the world and, thus, a distributed evaluation

of capability descriptions will be required. This means that

evaluating the dependency between the current state of the

world and the results of a Web service might require know-

ing certain information that might only be accessible via

other Web services, which would have to be in turn discov-

ered and executed during the discovery process. This can

considerably degrade efficiency. For example, a precondi-

tion of WS4 might say that only investment funds currently

commercialized can be purchased. For evaluating this pre-

condition and, thus, for determining whether the purchase

of a particular fund can be requested to this Web service, we

will most likely need to locate an invoke a Web service that

can tell us what funds are currently commercialized.

Given this simplification, we can formalize the function

offered by a Web service in first-order logic through a pred-

icate resW(x, i1, . . . , in) defined as follows:

∀x, i1, . . . , in.resW(x, i1, . . . , in) ↔ inW(i1, . . . , in) ∧ (1)

φW(x, i1, . . . , in)

where x denotes a result of the Web service (either an out-

put or an effect) and i1, . . . , in denote the input values given

by the customer. Intuitively, resW(x, i1, . . . , in) formal-

izes the relation between the results of the service provided

by W and the input values given by the customer. From

the predicates defining this relation, inW(i1, . . . , in) cap-

tures the conditions input values must fulfill (Web service

inputs), and φW(x, i1, . . . , in) denotes a first-order formula

over variables x, i1, . . . , in that defines the relation between

Web service results (x) and valid input values. Notice that,

for simplicity, we do not differentiate between outputs and

effects.

For example, resWS1(x, co) would be defined in terms of

the following predicates:

∀co.inWS1(co) ↔ country(co) ∧ inContinent(co, europe)
∀x.co.φWS1(x, co) ↔ ∃f, inst.infoProvision(x) ∧

ofItem(x, f) ∧ fund(f) ∧ commercializedBy(f, inst) ∧
institution(inst) ∧ fromCountry(inst, co)

Input-independent descriptions. A predicate of the type

introduced above formalizes the relation between input val-

ues and results of the Web service. However, a characteriza-

tion of the results of the Web service, dropping the relation

between these and input values, can be of great interest for

increasing the efficiency of the discovery process, as we will

see in the next section. Therefore, we will introduce an al-

ternate description of the Web service functional value that

does not take into account the afore-mentioned relation. In

particular, we will define a predicate res′W(x) as follows:

∀x.res′W(x) ↔ φ′
W(x)

where φ′
W(x) is a first-order formula that formalizes the

conditions results of the Web service fulfill. For WS1, this

predicate would be defined as:

∀x.res′WS1(x) ↔ ∃f, inst, co.infoProvision(x) ∧
ofItem(x, f) ∧ fund(f) ∧ commercializedBy(f, inst) ∧
institution(inst) ∧ fromCountry(inst, co) ∧ country(co) ∧
inContinent(co, europe)

As it can be seen, this type of description is symmetric to

the description of goals.

Relation between descriptions The relation between

predicate res′W(x) and predicate resW(x, i1, . . . , in) de-

scribing the functional value of a Web service W can be

formalized as follows:

∀x.res′W(x) ↔ ∃i1, . . . , in.resW(x, i1, . . . , in)

Intuitively, the formula above states that given any result

x for which res′W(x) is true, there will be some input val-

ues for which resW(x, i1, . . . , in, w) is also true i.e. both

predicates describe the same results as possible outcomes of

the use of Web service W , but considering or not the depen-

dency on input values. In a nutshell, the input-independent

description provides a simplified, but useful, view on the

functional value of the Web service. We conjecture that the

input-independent view can be automatically extracted from

the input-dependent view. However, this is subject of future

work.

Publication of descriptions. When a Web service is pub-

lished so that it can be used by potential customers, the

provider will also publish the formal description (both input-

dependent and input-independent) of the Web service func-

tional offer at a (not necessarily centralized) registry. The

Web service discovery process will have to access this reg-

istry in order to retrieve these descriptions.

However, and although the realization of the discovery

process that will be proposed in the next section is based on

the first-order input-dependent and input-independent types

of descriptions introduced above, it will introduce some

changes to the descriptions expected. As it will be seen in

the next section, these changes are: a) the expressivity al-

lowed for describing the input-independent capability of a

Web service will be restricted to a certain Description Logic,

and therefore the description used will be a Description Log-

ics (DL) (Nardi et al. 2003) concept definition, and b) the

input-dependent capability will be described by a set of pairs

(Logic Programming -LP- rule (Lloyd 1987), DL concept

definition), as it will be explained in the next section. The

descriptions that will be actually published to the registry

are these ones.

Domain model.
The formal description of goals and Web service capabilities

is done in terms of an underlying domain model, which will

be also formally defined. In particular, the domain model

will be given by a set O of ontologies. In our use case, this

set includes: a) an ontology Geo of geographic locations, b)

an ontology Pay of payment methods, c) an ontology Inv of

investment funds, and d) an ontology Res of types of results

of a service provision e.g. information provision, purchase,

booking, etc. Each ontology defines classes (unary predi-

cates), relations (n-ary predicates), individuals (constants),

and general axioms (e.g. subclass axioms) that together pro-

vide the domain vocabulary for its particular domain.

For simplicity, we will assume that the domain model

used for describing goals and capabilities is the same. In

a practical setting, this will usually not be the case, as dif-

ferent parties might use different formalizations of the same

domain, and a mediation mechanism will be necessary.

Expressivity. We introduce some restrictions on the ex-

pressivity of the formal language used for formalizing do-

main models. In particular, we restrict it to Description

Logic Programs (DLP) (Grosof et al. 2003), the language

underlying WSML-Core (de Bruijn, J. (ed.) 2005). The rea-

son is that: a) proper language extensions of DLP (Kifer

et al. 2005) in the direction of Logic Programming, prop-

erly semantically layered on top of DLP, are possible e.g.

WSML-Flight (de Bruijn, J. (ed.) 2005) and b) proper lan-

guage extensions of DLP in the direction of First-Order

Logic, properly semantically layered on top of DLP, are also

possible e.g. WSML-DL (de Bruijn, J. (ed.) 2005)2. This

will be an important feature for our Web service discovery

process, as LP and DL extensions of DLP will be used at the

different phases of discovery introduced by our model.

By restricting domain ontologies to a common fragment

of LP and DL, we will be able to use the same domain on-

tologies when extensions of DLP in the direction of DL are

used, as well as when extensions of DLP in the direction

of LP are used i.e. we do not need to duplicate domain

ontologies to be used under these two different paradigms.

Remarkably, and according to (Volz 2004), it turns out that

most OWL (and DAML+OIL) ontologies in popular ontol-

ogy libraries fall in the fragment of First-Order Logic cap-

tured by DLP.

Restrictions in the expressivity allowed for describing

goals and Web services will be also introduced, but they will

be described in the next section.

Web service discovery process
The formal description of requester goals and Web service

capabilities provides the ingredients for (semi)automating

the Web service discovery process, as automated reasoning

can be applied to determine whether a certain relation holds

between the set of results required by a given goal and the

set of results offered by available Web services. In particu-

lar, we want to check whether the results offered by a given

Web service for some input values are a) a superset of, b)

a subset of, c) a set equivalent to, or d) a set intersecting

with the set of results required by the customer. That means

that, given the descriptions of a goal G and a Web service

W , both referring to the same domain model O, we want to

check whether given O and the knowledge base KBc some

of the following relations hold:

O, KBc |= ∀x.(∃i1, . . . , in.resG(x)RresW(x, i1, . . . , in)) (2)

O, KBc |= ∃x, i1, . . . , in.resG(x) ∧ resW(x, i1, . . . , in) (3)

with R ∈ {←,↔,→}. Notice that the expressions above

allow the use of the same Web service multiple times with

different input values, for obtaining all the results required,

but not the composition of different Web services.

In the following, we present how the Web service dis-

covery process is articulated in two phases in order to lo-

cate Web services that, for certain input values the customer

2This layering is argued to be incorrect in (Horrocks et al.
2005). However, we recommend reading (Kifer et al. 2005) for

an answer to the concerns raised and a clarification of the issue.

knows and is willing to disclose to the Web service, provide

all or some of the results required by a given goal.

1st phase: results-based Web service discovery
Let us consider G3 and WS4 and let us suppose we want to

evaluate whether WS4 can offer, for some input values, all

the results requested by G3. In this setting, we would have

to evaluate the following expression (see (2))

O, KBc |= ∀x.(∃fund, cc, user.resG3(x) →
resWS4(x, fund, cc, user))

If we use classical first-order semantics (Fitting 1996),

the Open World Assumption (OWA) is made when trying to

prove the expression above. However, input values, which

will have to be latter submitted to the Web service in order to

get appropriate results for fulfilling the goal, can only come

from information the customer using the Web service knows.

We believe that, in practice, values for variables fund, cc
and user can only come from the domain knowledge given

by O and the knowledge base KBc and, therefore, we want

to locally close the world (Heflin & Munoz-Avila 2002) to

obtain possible assignments for these variables i.e. we want

to consider only values from the knowledge base formed by

the union of O and KBc.

For evaluating the expression above locally closing the

world as explained in the previous paragraph, access not

only to domain knowledge (domain ontologies O) but also to

the customer’s knowledge base KBc is required. As the cus-

tomer is expected to keep his information i.e. KBc locally,

we will only be able to have access to the full knowledge

from which input values can be obtained and, therefore, to

evaluate the expression above, on the customer side.

In this setting, we first need to retrieve the capability de-

scriptions of available Web services for their evaluation on

the customer side, as this kind of descriptions will be usu-

ally stored in a registry or set of registries external to the

customer. However, we do not want to retrieve all available

Web services, as there might exist a big number of them.

Instead, we want to retrieve only relevant Web services for

their evaluation on the requester side, so that the number

of Web services that must be evaluated is reduced. This is

precisely the purpose of the results-based discovery phase:

efficiently retrieving Web services relevant for the goal at

hand in terms of the complete set of results they offer, there-

fore reducing the number of Web services to be evaluated in

more detail (considering possible input values and the rela-

tion between these and the results of the Web service).

Kind of descriptions used. In this phase we will make use

of input-independent descriptions of Web service capabili-

ties, as we will not have access to the customer knowledge

base and, therefore, to all possible input values. Therefore,

we will use predicates resG(x) and resW(x), which for-

mally describe the set of results expected by the customer

and the set of results offered by the Web service.

Relations. The relations that are of interest are the set-

theoretic relations between the sets of results required by the

goal and offered by a Web service. In particular, we have to

evaluate, given goal G and a Web service W whether:

O |= ∀x.resG(x)RresW(x)

or

O |= ∃x.resG(x) ∧ resW(x)

holds, with R ∈ {←,↔,→}. In general, and given a goal

G, we will want to obtain Web services W for which some

of the above expressions hold i.e. Web services that offer at

least some results from the set requested. For a detailed dis-

cussion on the possible ranking of Web services according

to the relation between the goal and the Web service, also

considering meta-annotations denoting different intentions,

we refer the reader to (Keller et al. 2005).

Restrictions on expressivity. Evaluating, for a given goal,

the individual relation between this goal and each avail-

able Web service can be rather costly. In order to improve

the efficiency of this process, so that Web services provid-

ing results required by the customer can be quickly identi-

fied and returned to the customer for further evaluation, we

will restrict the expressivity allowed for defining predicates

resG(x) and resW(x) to a subset of full first-order logic,

namely to the SHOIN (D) Description Logic (Nardi et
al. 2003), which is the Description Logic underlying OWL-

DL (Horrocks & Patel-Schneider 2003) and WSML-DL3 (de

Bruijn, J. (ed.) 2005).

The reason for using this subset of first-order logic is that

the unary predicates resG(x) and resW(x) can be regarded

as the definition of Description Logics concepts, and the set-

theoretic relation between the formalized sets of results can

be determined through DL subsumption reasoning (Nardi et
al. 2003) over these concepts, for which efficient reasoners

such as RacerPro (RAC 2005) exist, and for which off-line

classification is possible, as we will see later.

For example, if we consider goal G1, predicate resG1(x)
defined as:

∀x.resG1(x) ↔ ∃f, inst.infoProvision(x) ∧
ofItem(x, f) ∧ fund(f) ∧ commercializedBy(f, inst) ∧
institution(inst) ∧ fromCountry(inst, spain)

can be seen as equivalent to the definition of a concept

RG1 (using DL syntax (Nardi et al. 2003)) as follows:

RG1 ≡ infoProvision � ∃ofItem.(fund �
∃commercializedBy.(institution �
∃fromCountry.{spain}))

Web service classification and querying. In order to

avoid individually checking the subsumption relation be-

tween a given goal and the capability of each Web ser-

vice available, which would result in unacceptable response

times if a relatively big number of Web services has to be

evaluated, we exploit the possibility of classifying Web ser-

vices off-line at publication time (Li & Horrocks 2003) .

For this purpose, each time a new Web service is pub-

lished the concept formalizing the set of results it offers is

added to the T-Box of a DL reasoner (Nardi et al. 2003)

3To be precise, the Description Logic underlying WSML-DL

is SHIQ(D), but future versions of the language might allow for

the use of nominals.

(possibly integrated with registries), and this T-Box is clas-

siffied. Given a particular goal G and the DL concept RG

defining the set of results required, we can query the T-Box

for Web services whose set of results i.e. the concept defin-

ing the results they offer: a) is equivalent to, b) is more gen-

eral than, c) is more specific than, and d) has a non-empty

intersection4 with RG. In this way, we can obtain all relevant

Web services for the goal at hand with only four queries.

The key benefit of following this approach is that once the

concepts describing the results of available Web services are

classified, the response times for incoming queries are quite

low, enabling an efficient retrieval of relevant Web services.

Evaluation. For evaluation purposes, we have used the

RacerPro (RAC 2005) DL reasoner5. First, we have for-

malized the goals and Web services from our use case and

checked their subsumption relation by submitting the appro-

priate queries to the DL reasoner. The results are summa-

rized as follows:

• G1: RWS2 is equivalent to RG1. RWS1 and RWS3 are

more general (subsume) RG1.

• G2: RWS3 subsumes RG2. RWS2 is subsumed by RG2.

RWS1 has a non-empty intersection with RG2.

• G3: RWS5 subsumes RG3 (assuming myFund is a Eu-

ropean fund).

If the concept defining the results of a Web service sub-

sumes the concept defining the results required by the goal,

that means that the Web service can offer all the results re-

quired plus additional results not required. If the subsump-

tion relation is in the other direction, that means that the

Web service only offers a subset of the results required. If

they are equivalent, that means that the set of results offered

and requested coincide. Finally, if they only intersect, that

means that the Web service offers some results from the set

requested, and some other results not requested. As it can

be seen, we obtain for each goal the Web services that are

relevant for the goal in the sense that they provide some or

all the results required by the customer.

The relations considered between the concepts defining

the complete results offered by a Web service and the results

expected by the customer have been used by several works

e.g. (Keller et al. 2005; 2006; Li & Horrocks 2003; Paolucci

et al. 2002; Benatallah et al. 2005) and they partly have their

roots in the work on automated software component retrieval

(Zaremski & Wing 1997). Meta-annotations of concepts in

order to capture the intention of the modeler when defining

their sets of required or offered results are also considered in

4In practice, as RacerPro does not allow for this type of query,

we actually query for Web services not intersecting the goal and we

return Web services not in this set and not having a subsumption

relation (equivalent, more general, more specific) with the goal.
5As RacerPro does not fully support nominals, we translate

nominals into pair-wise disjoint atomic concepts. As presented in

(Horrocks & Sattler 2002), incorrect inferences can be drawn for

A-Box reasoning applying such translation, but the the subsump-

tion and satisfiability relations computed will be correct, which is

enough for our purposes.

Figure 1: Classification and querying response times

(Keller et al. 2005), as well as how they affect the matching

relation between goals and Web services.

The second part of our evaluation has focused on the

response times of T-Box classification and querying when

a big number of Web services is available. For this pur-

pose, we have generated random variations of the Web ser-

vices from our use case and measured these response times.

The results are shown in Figure 1. The X axis shows the

number of Web services available, and the Y axis the time

in milliseconds. As it can be seen, classification is time-

consuming. However, this is not a problem as it can be done

off-line i.e. at publication time and without affecting the re-

sponse times of the discovery process. Once Web service

capabilities are classified, the response time for an incoming

query (goal) is around 20 milliseconds for 2000 Web ser-

vices available, as it can be observed from the figure.

2nd phase: considering input values
Once we have identified relevant Web services in terms of

the results they offer, their complete descriptions, including

the input-dependent description of their capabilities, will be

retrieved and available to the customer. We can now evalu-

ate on the customer side, where KBc is accessible, the ex-

pressions (2) and (3) above for each Web service retrieved,

locally closing the world for querying possible values to be

assigned to input variables i.e. we can evaluate whether ap-

propriate input values can be provided from O and KBc to

each such Web service, and whether the set of results offered

for such input values, which will be in general a subset of the

complete set of results offered by the Web service, satisfies

the goal of the customer. Notice that input values will not be

actually provided to Web services during discovery, but the

evaluation of whether appropriate input values are available

for relevant Web services and how they restrict the results

offered will be a formal one, only based on the static de-

scription of goals and Web service capabilities and on the

information in O and KBc, without any direct communica-

tion with external parties.

However, expressions (2) and (3) above cannot be eval-

uated using pure first-order theorem proving if we want to

locally close the world for obtaining input values. For this

reason, we propose a work-around in three steps, based on

query answering for Logic Programs and DL subsumption

reasoning.

Step 1: querying for input values. First, we want to re-

trieve from O and KBc, and for each Web service, possi-

ble sets of input values that satisfy the requirements of the

Web service considered. For this task, we want to use LP

query answering, as the Closed-World Assumption (CWA)

must be made. Furthermore, the size of the knowledge bases

from which we will have to retrieve appropriate input values

might be big, and LP reasoners are highly optimized for this

task.

We remind from the previous section that predicate

resW(x, i1, . . . , in), which formalizes the results of a Web

service in relation to the input values provided, was defined

using a predicate inW(i1, . . . , in) that formalized the con-

ditions such input values must fulfill (see (1)). Therefore,

only values for variables i1, . . . , in satisfying this predicate

are valid input values which can make expressions (2) and

(3) true.

In this context, we can translate the conditions on input

values formalized by inW(i1, . . . , in) into an LP query, in

order to retrieve only valid input values for the Web service.

In particular, predicate inW(i1, . . . , in) will be translated

into the body of an LP rule. Let us take WS1 as an example,

for which inWS1(co) was defined as follows:

∀co.inWS1(co) ↔ country(co) ∧ inContinent(co, europe)

The rule resulting from the translation (written using

FLORA-26 syntax) is:

#(Input) : assignmentSet[forCapability → RWS1P,

assg → #1(Input), fromInputs → Input],

#1(Input) : assignment[to → ”!co”, value → Input]

: −Input : country[inContinent → europe].

Notice that the body of the rule, to the right of symbol :-,

corresponds to the LP translation of the first-order predicate

inWS1(co), querying for facts Input that are an instance of

country and that are located inContinent europe7.

If we evaluate this rule using an LP reasoner e.g. FLORA-

2 over the knowledge base formed by O and KBc, the body

of the rule will query for input values satisfying the condi-

tions described. For each set of input values satisfying the

conditions posed by such body, an (anonymous) instance of

the class assignmentSet, representing a set of assignments

6http://flora.sourceforge.net
7This translation is currently done manually. Automating this

translation is subject of future work.

of values to some parameters, will be generated. This in-

stance will have the following information: for what capa-

bility this set of assignments was generated, the set of as-

signments itself (of some values retrieved by the query in

the body to some parameters of the capability -!co-), and

what input values generated it. What kind of capabilities

and parameters are used will be explained in the next step.

For example, if in the knowledge base considered (formed

by O and KBc) there is an instance spain that is defined as

being a country located in continent europe, the example

rule above will yield the facts #(spain) and #1(spain) as

follows:

#(spain) : assignmentSet[forCapability → RWS1P,

assg → #1(spain), fromInputs → spain].

#1(spain) : assignment[to → ”!co”, value → spain].

Step 2: parameterizing sets of results. The set of results

offered by a Web service will depend on the input values

given to it. In this step we will introduce DL concepts de-

scribing the set of results offered by the Web service, but

depending on some parameters. These parameters will be

replaced by input values obtained in the previous step.

Remind from the previous section that, given a Web ser-

vice W , predicate resW(x, i1, . . . , in) was defined using

also a predicate φW(x, i1, . . . , in) that formalized the rela-

tion between results and input values. We will capture this

relation by defining a DL concept that characterizes the set

of results provided by the Web service, but with certain pa-

rameters. Let us illustrate this point by translating predicate

φWS1(x, co):

∀x.co.φWS1(x, co) ↔ ∃f, inst.infoProvision(x) ∧
ofItem(x, f) ∧ fund(f) ∧ commercializedBy(f, inst) ∧
institution(inst) ∧ fromCountry(inst, co)

into the DL concept RWS1P8:

RWS1P ≡ infoProvision � ∃ofItem.(fund �
∃commercializedBy.(institution � ∃fromCountry.!co))

where !co denotes a parameter that must be replaced by

an actual value. The values that will replace !co will be

obtained by the LP rule introduced before, yielding a new

concept RWS1P ′. For example, !co would be replaced by

spain if the facts derived from the evaluation of the rule are

the ones shown above i.e. we will have:

RWS1P ′ ≡ infoProvision � ∃ofItem.(fund �
∃commercializedBy.(institution � ∃fromCountry.spain))

In a nutshell, we provide parameterized formalizations of

the set of results a Web service can provide. These para-

meters will correspond to those input values, required by

the Web service, that restrict in some way the set of results

provided. The rules extracted in the previous step will ob-

tain valid input values for the Web service from the set O
of domain ontologies and from the knowledge base KBc i.e.

8This translation is currently done manually, and its automation

will be studied in the future.

locally closing the world, which will be used to replace the

parameters in the description of the set of results offered by

the Web service. This way, the set of results offered by the

Web service for available input values is obtained.

Notice that multiple assignments for parameters in the

DL concept definition, corresponding to different valid sets

of input values, might be generated by the LP rules. We

will perform the parameter replacement in the DL descrip-

tions for each such set of input values, yielding concepts

RWSPi for each such replacement. The set of results that

can be provided by the Web service when executing with

all these sets of input values will be defined by a concept

RWSP ′ ≡ RWSPi � . . . � RWSPn i.e. the set of results

offered is the union of the sets of results obtained for the

possible execution with each of these sets of input values.

Step 3: using DL subsumption reasoning. Once we have

applied the LP rules over O and KBc, obtaining the DL con-

cept RWSP ′ defining the results offered by a given Web

service for the input values that can be provided by the re-

quester, we can again apply DL subsumption reasoning for

determining the relation between this concept and the con-

cept defining the results expected by the customer. This way,

we will obtain the relation between the results required and

the results the relevant Web services retrieved in the first

phase can provide for the input values available. The re-

lations that are of interest are the same ones introduced in

the first phase of the discovery process, which actually cor-

respond to the relations considered by expressions (2) and

(3) for available input values.

In a nutshell, we will determine whether some Web ser-

vices can provide some or all the results required for achiev-

ing the customer’s goal given the input values that can be

provided by the customer. Notice that, in order to be able

to efficiently check the relation between the customer’s goal

and the set of results offered by the Web service for available

input values, the expressivity of the DL concept formalizing

such set of results is restricted to SHOIN (D), like in the

first phase of our model.

Evaluation. For evaluation purposes we have used

FLORA-2 as LP reasoner, and again RacerPro as DL rea-

soner. For the goals in our use case, we obtained the fol-

lowing results (assuming O defines the country spain, and

KBc contains the user information myUser; the funds cat-

egory FIAMMCNMV, the credit card myCC, and the fund

myFund are extracted from the description of the goals

where they are used):

• G1: the set of results RWS1P’, parameterized with in-

put spain, is equivalent to RG1. There are no input val-

ues (institution and fund category) available for WS2 and

WS3 and, therefore, they cannot be used to achieve the

goal.

• G2: the set of results RWS3P’, parameterized with input

FIAMMCNMV, is equivalent to RG2. RWS1P’, parame-

terized with input spain, intersects RG2. Input for WS2

(institution) is not available.

• G3: the set of results RWS4P’, parameterized with input

myFund and myCC, and given that myUser is a valid

user for WS4, is equivalent to RG3.

Therefore, and given O and KBc above, WS1 can pro-

vide all the results required for achieving G1 and part of the

results for achieving G2, WS3 can provide all the results re-

quired for achieving G2, and WS4 can provide all the results

required for achieving G3.

Interoperability. We use LP rules in combination with

Description Logic concepts, which can lead to interoper-

ability problems as LP semantics are slightly different from

classical first-order semantics. First, in order to avoid dupli-

cating the definition of ontologies, under LP semantics and

under first-order semantics, and possible unintended seman-

tic differences in models describing the same domain, we

need to provide formalizations of domain models that can

be consistently used by LP extensions of DLP and by first-

order extensions of DLP. This is achieved by restricting the

expressivity of domain models (and, therefore, of the cus-

tomer knowledge bases expressed in terms of this model) to

DLP, as the extensions in the direction of LP and in the direc-

tion of FOL used in our approach are properly semantically

layered on top of DLP and, thus, all consequences inferred

from a DLP specification are also valid consequences in the

LP and FOL extensions used.

Second, Description Logics usually make the Open-

World Assumption (OWA), while the Closed-World As-

sumption (CWA) is made in Logic Programming, which can

constitute a difficulty for the combined used of both lan-

guages, as the consequences entailed can vary depending on

the kind of assumption made. However, in our setting we

precisely exploit this feature of each paradigm. LP is used

for querying input values from a defined (closed) knowledge

base and, thus, the CWA must actually be made. On the con-

trary, for reasoning with the DL concepts describing the set

of results requested and offered, the OWA must be made, as

the details of results not specified should not be deemed to

be false.

In a nutshell, we use an LP reasoner for obtaining valid

input values, locally closing the world to O and KBc when

querying for such input values. The interface between LP

reasoning and DL reasoning is the assignment of the in-

put values obtained to the parameters in DL concept defi-

nitions. After replacing these parameters by the values ob-

tained, FOL semantics are used and the OWA is made in the

DL subsumption reasoning performed. Therefore, we ex-

ploit the features of each type of semantics and reasoning at

different points in time.

Discussion
In this paper, we have presented a Web service discovery

process articulated in two phases in order to be able to con-

sider the input values required by Web services and how

these restrict the results of the Web service, but keeping the

process efficient and without requiring customers to antici-

pate what information might be needed as input values for

Web services satisfying their goal and to include this infor-

mation along with their goals.

We have introduced restrictions on the expressivity al-

lowed for semantic descriptions so that these features are

possible, and we have realized the process relying on the

joint use of Description Logics subsumption reasoning and

query answering for logic programs. We have also imple-

mented a preliminary prototype for carrying out the process

presented in the paper, which will be further evolved.

Future work will concentrate on further analyzing possi-

ble interoperability issues that might arise in the combined

use of DL and LP, on integrating the descriptions necessary

for our proposal in existing frameworks, and on automating

certain parts of the process which are currently done manu-

ally.

Related work. The major advantages introduced by our

proposal with respect to previous works in the area are the

following:

a) We are able to consider the relation between the in-

put values provided to a Web service and its results during

the discovery process, which is not possible in approaches

that exclusively rely on Description Logics e.g. (Li & Hor-

rocks 2003; Paolucci et al. 2002; Benatallah et al. 2005;

Gonzalez-Castillo, Trastour, & Bartolini 2001; Verma et al.
2004; Noia et al. 2003).

Being able to formalize and consider the relation between

available input values and the set of results offered by a Web

service is beyond what can be achieved by using pure De-

scription Logic approaches such as (Benatallah et al. 2005).

This increases the complexity of the descriptions required

and of the discovery process. However, we believe it has the

following benefits: i) the results yielded by the Web service

discovery process are more accurate, as they are obtained

based on a description of the functional offer of Web ser-

vices closer to the real function they implement, and ii) not

only what Web services match a given goal and to what ex-

tent can be obtained, but also for what input values such

matches are expected; this can serve to guide the actual in-

teraction with the Web service in order to request the provi-

sion of the desired service. Still, our model allows for three

(increasingly complex) types of discovery: discovery based

only on the results offered by available Web services, eval-

uation of whether the customer has valid input values for

relevant Web services, and evaluation of whether valid input

values restrict the results of relevant Web services in a way

such that these Web services still satisfy the goal.

b) We can efficiently identify relevant Web services for

further evaluation even when a big number of Web services

is available, which is usually not possible when pure LP rea-

soning is used e.g. (Kifer et al. 2004). Furthermore, follow-

ing a pure LP-based approach implies making the Closed-

World Assumption in all proof obligations, which presents

certain problems if Web service capability descriptions are

not completely accurate and if no communication with Web

services is allowed.

c) We do not expect customers to describe the informa-

tion they can provide for fulfilling their goals along with

their goal definition, but we expect them to keep it locally

without requiring its explicit listing with each of their goals;

we believe this is a more realistic assumption than which is

implicitly made by most DL-based works, for the reasons

introduced in this paper.

Communication with Web services. The approach pre-

sented exclusively relies on the formal and static descrip-

tion of the function offered by Web services, and no direct

communication with Web services will take place before the

discovery process ends. The reason is that direct commu-

nication with Web services is costly, and it should not be

done before the number of Web services that can potentially

fulfill a goal is considerably narrowed down. However, the

formal descriptions used in the discovery process will be

a static, public characterizations of the Web service func-

tional offer, being complete but not correct (Preist 2004;

Lara & Olmedilla 2005). Thus, for a complete guaran-

tee that Web services selected during the discovery process

will actually fulfill the customer’s goal, direct interaction

with them will be required after discovery in what can be

called service definition or contracting phase (Preist 2004;

Keller et al. 2005; Lara & Olmedilla 2005).

Note on the language used. For evaluating the model pre-

sented we have used WSML, restricting domain models and

the customer knowledge base to WSML-Core (as DLP is the

formalism underlying this language and it provides an inter-

esting interoperability layer), the DL definition of concepts

to WSML-DL with nominals, and the definition of LP rules

to WSML-Flight. WSML-DL and WSML-Flight are prop-

erly layered on top of WSML-Core and, therefore, every

WSML-Core expression is a valid WSML-DL and WSML-

Flight expression. The choice of the WSML family of lan-

guages is justified by the fact that it provides the layering of

languages we require for realizing our discovery model.

Acknowledgements.
This work has been partially funded by CDTI under grant

CDTI05-0436. The author also thanks Holger Lausen for

fruitful discussions, and Jos de Bruijn and Axel Polleres for

comments on a preliminary version of this paper.

References
Benatallah, B.; Hacid, M.; Leger, A.; Rey, C.; and

Toumani, F. 2005. On automating web services discov-

ery. VLDB 14:84–96.

de Bruijn, J. (ed.). 2005. The Web Service Modeling Lan-

guage WSML. WSML d16.1v0.21.

Fitting, M. 1996. First order logic and automated theorem
proving. Springer Verlag, 2nd edition.

Gonzalez-Castillo, J.; Trastour, D.; and Bartolini, C. 2001.

Description logics for matchmaking of services. In KI-
2001 Workshop on Applications of Description Logics.

Grosof, B.; Horrocks, I.; Volz, R.; and Decker, S. 2003.

Description logic programs: Combining logic programs

with description logic. In 12th International Conference
on the World Wide Web (WWW-2003).

Heflin, J., and Munoz-Avila, H. 2002. LCW-based agent

planning for the semantic web. In AAAI Workshop on On-
tologies and the Semantic Web.

Horrocks, I., and Patel-Schneider, P. F. 2003. Reduc-

ing OWL entailment to Description Logic satisfiability. In

ISWC 2003.

Horrocks, I., and Sattler, U. 2002. Optimised Reasoning

for SHIQ. In ECAI 2002, 277–281.

Horrocks, I.; Parsia, B.; Patel-Schneider, P.; and Hendler,

J. 2005. Semantic web architecture: stack or two towers?

In Principles and Practice of Semantic Web Reasoning.

Keller, U.; Lara, R.; Lausen, H.; Polleres, A.; and Fensel,

D. 2005. Automatic location of services. In ESWC 2005.

Keller, U.; Lara, R.; Lausen, H.; and Fensel, D. 2006.

Semantic Web Services: Theory, Tools and Applications.

chapter Semantic Web Service Discovery in the WSMO

Framework. To appear.

Kifer, M.; Lara, R.; Polleres, A.; Zhao, C.; Keller, U.;

Lausen, H.; and Fensel, D. 2004. A Logical Framework

for Web Service Discovery. In Semantic Web Services Wor-
shop at ISWC 2004.

Kifer, M.; de Bruijn, J.; Boley, H.; and Fensel, D. 2005.

A realistic architecture for the semantic web. In RuleML-
2005.

Lara, R., and Olmedilla, D. 2005. Discovery and Con-

tracting of Semantic Web Services. In W3C Workshop on
Frameworks for Semantics in Web Services.

Li, L., and Horrocks, I. 2003. A Software Framework

for Matchmaking Based on Semantic Web Technology. In

WWW’03.

Lloyd, J. W. 1987. Foundations of Logic Programming
(2nd edition). Springer-Verlag.

Nardi, D.; Baader, F.; Calvanese, D.; McGuinness, D. L.;

and Patel-Schneider, P. F., eds. 2003. The Description
Logic Handbook. Cambridge.

Noia, T. D.; Sciascio, E. D.; Donini, F. M.; and Mongiello,

M. 2003. A system for principled matchmaking in an elec-

tronic marketplace. In Proc. Intl. Conf. on the World Wide
Web 2003 (WWW2003).

Olmedilla, D.; lara, R.; Polleres, A.; and Lausen, H. 2004.

Trust Negotiation for Semantic Web Services. In SWSWPC
Workshop at ICWS 2004.

Paolucci, M.; Kawamura, T.; Payne, T.; and Sycara, K.

2002. Semantic Matching of Web Service Capabilities. In

ISWC, 333–347. Springer Verlag.

Preist, C. 2004. A Conceptual Architecture for Semantic

Web Services. In ISWC 2004.

2005. RacerPro user’s guide. version 1.8. Technical report,

RACER Systems GmbH & Co. KG.

Verma, K.; Sivashanmugam, K.; Sheth, A.; and Patil, A.

2004. METEOR-S WSDI: A Scalable P2P Infrastructure

of Registries for Semantic Publication and Discovery of

Web Services. Journal of Information Technology and
Management.

Volz, R. 2004. Web Ontology Reasoning with Logic Data-
bases. Ph.D. Dissertation, AIFB, Karlsruhe.

Zaremski, A., and Wing, J. 1997. Specification Matching

of Software Components. ACM Transactions on Software
Engineering and Methodology (TOSEM) 6:333–369.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

