
Interaction Design in Agent-based Service-oriented Computing Systems

José Ghislain QUENUM and Fuyuki Ishikawa and Shinichi Honiden
National Institute of Informatics

2-1-2 Hitotsubashi, Tokyo 101-8430, Japan

Abstract

This paper presents a new approach which addresses the issue
of inconsistent message exchange during agent interactions.
We advocate that in agent-based service-oriented computing
systems, only agents should be in charge of executing inter-
actions. We also require that the architecture of an agent be
clearly separated in two distinct parts, a public and a private
parts. The public part contains the interaction model, while
any other data and process the agent needs belong to the pri-
vate part. Our solution consists of automatically constructing
the interaction model. It is based on a unification of the ac-
tions, required of an agent playing a role in a generic protocol,
and the functionalities abstracted from the BPEL4WS model
of this agent. We present the algorithms to perform this uni-
fication as well as the abstract models they manipulate.

Introduction
The recent years have witnessed an increasing interest for
service-oriented computing (SoC). SoC consists of mod-
elling, designing and implementing heterogeneous, dis-
tributed and open systems embedding several compo-
nents, which provide and/or request services. In this new
paradigm, software components provide services to each
other through published and discoverable interfaces, and
these services can be invoked over a network.

The Web service research domain has taken a leading part
of SoC (Haas 2004). Its related technologies rapidly evolved
from basic specifications, e.g., a messaging framework, to
standard languages for specifying how to orchestrate exist-
ing services in order to compose a new service. Business
Process Execution Language for Web services (BPEL4WS)
is one of these languages. It provides a powerful notation
for an executable process interacting with its partners (other
components providing or requesting a service) (Andrews et
al. 2003). Web Service Choreography Description Lan-
guage (WS-CDL) is another standard language, which de-
scribes peer-to-peer collaborations of participants by defin-
ing, from a global viewpoint, their common and comple-
mentary observable behaviour (W3C 2004).

Some research endeavour in multi-agent systems (MAS)
scaled the characteristics of SoC systems to the requirements
of MAS. In the resulting architecture, agents are supposed

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

to control the components providing and/or requesting ser-
vices. A special concern, which still remains unsolved, is the
execution of interactions during a service provision. In this
research, we take a different view on this issue from before.
We claim that in such architectures, only agents should be in
charge of executing the required interactions so that the ser-
vices be provided correctly. Behind our position, lies a de-
sign guideline which helps identify the relationship between
entities in an agent-based SoC, especially between agents
and components providing and/or requesting services. More
precisely, agents are supposed to bring more “intelligence”
and “sociability” in SoC, and interactions are a means to
make both features effective.

A common trend in SoC is to represent a concrete pro-
tocol (message exchange sequence associated with concrete
data types) for each service, and application domain. Addi-
tionally, the messages are described following SOAP (Sim-
ple Object Access Protocol) specifications, which are only
textual description without a precise semantics. In MAS,
agent interactions are often based on generic protocols. In
these protocols, only a general behaviour of the communi-
cating entities can be provided. Introducing generic proto-
cols in agent-based SoC systems, offers the advantage of us-
ing the same protocol for several services and for different
application domains. Moreover, most of the formalisms for
generic protocol representation describe messages following
an agent communication language (ACL). In doing so, they
make it possible to provide a meaning for the exchanged
messages. This approach is an advantage over SOAP mes-
saging protocol. From what precedes, concrete protocols
in SoC can be perceived as a configuration of generic pro-
tocols: a refinement (or specialisation) of the general be-
haviour of the communicating entities. Usually, this config-
uration is performed by hand, and may introduce inconsis-
tencies in message exchange during service provision.

As an illustration of this issue, consider a transporta-
tion MAS, containing among other agents, trader agents
which request good transportation services provided by car-
rier agents. We also consider that there are two indepen-
dent designers in the MAS. A designer A for trader agents,
and a designer B for carrier agents. In our scenario, de-
signer A manually configures the initiator role of the Con-
tract Net Protocol (CNP) (Smith 1980) for a trader agent,
T0. Designer B does the same with the participant role for

an air carrier agent, AC1. The sequence diagram of CNP
is given in figure 3. Most generic protocol specifications fo-
cus on the description of the messages exchanged during the
interaction. They do not propose any pattern for the con-
tent of these messages. CNP specifications suffer the same
limitation. In our scenario, both designers interpreted the
bidding deadline differently. A did not consider any dead-
line for the call-for-proposals (cfp) message T0

will send to the potential service providers. A then designed
a method, callForTransportation, which generates
the cfp message. The content of the message has the fol-
lowing pattern: transport good ? from ? to ?. On the other
hand, B expects the deadline to be explicitly mentioned in
the content of the cfp. Therefore, B designed a method,
handleCallForTransportation, to handle the cfp
message and especially its content. The content pattern this
method expects, comes as follows: transport good ? from
? to ? deadline ?. At runtime, a cfp exchange between
T0 and AC1 will lead to an inconsistent message exchange.
A message exchange is inconsistent, on the receiver’s view-
point, when at least one of the fields in the structure of this
message (as defined in the ACL following which this mes-
sage is represented) or its content does not match the ex-
pected pattern. A consequence of this inconsistency is the
cancellation of the intended service, the transportation of the
good.

To address this issue, we propose an approach to automat-
ically configure generic protocols. Our approach prevents
agent designers from deviating from the correct interpreta-
tion of a protocol by adopting identical (or at least similar)
specifications for this protocol. In the remainder of the pa-
per, we elaborate on the mechanisms our approach is based
on.

Automatic Protocol Configuration
The automatic protocol configuration approach we devel-
oped unifies the actions executed in the context of a protocol
and the internal functionalities of an agent. Unification is
a well known technique in artificial intelligence (and sev-
eral other research areas (Knight 1989)), which consists of
checking the similarity between two terms, and if necessary
adapt one of them so that the matching becomes effective.

We introduce two new models for an agent: an interac-
tion model and a functional model. The interaction model
belongs to the public part of the agent’s architecture. It is
the final output of the configuration process. It contains a
formal description of the sequence of communicative acts
an agent commits to with respect to a number of coordi-
nation scenarios. These coordination scenarios are inspired
from generic protocols, which we assume are specified in a
formalism and stored in a public library. Generic protocols
specify the external behaviour of agents only in a general
way. They do not precisely describe the actions which gov-
ern this external behaviour. The configuration mechanism
thus helps refine these descriptions, matching them with
some elements of the agent’s architecture. In a SoC con-
text, we require agent designers to describe the interaction
model following WS-CDL specifications. The behavioural
bricks that appear in the interaction model are controlled by

the functional model. This latter belongs to the private part
of the architecture. It contains a description of the function-
alities of an agent in terms of information transformation
during an interaction. It is abstracted from the BPEL4WS
model of the agent. BPEL4WS offers two usage patterns
to describe business processes: business protocols (which
describe the message exchange between partners) and exe-
cutable business process (which offers an abstract represen-
tation of the business processes implied in a service provi-
sion). We agree with (Desai & Singh 2004) that a mono-
lithic representation of business processes has several short-
comings. In our approach we delegate the representation of
interactions to generic protocol descriptions. Therefore, we
focus on the description of abstract business processes in the
BPEL4WS model. The abstraction from BPEL4WS model
to the functional model consists of a generalisation of the
first. We discuss the rules which govern this generalisation
in the following section. We also shed light on the functional
model representation formalism, which is close to the one
we proposed to represent generic protocols. Our modelling
approach fulfils our initial claim to separate agents’ archi-
tecture in two distinct parts. Both parts being related by the
functional model. These three models (protocol model, func-
tional model and interaction model) play an essential part in
our approach. They are manipulated by the algorithms we
devised for the automatic configuration.

BPEL4WS
Model

WS-CDL
Model

Functional Model

<method category=...>

<signature ... />

Protocol Model

<protocol ...>

<roles ... >

... ...

Abstract Models

R2R1
msg1

Generic
Protocols

Unification

Figure 1: Automatic construction of an agent’s interaction
model

Figure 1 depicts our configuration approach. At the heart
of the mechanism are the functional model and a standard
library of generic interaction protocols, represented in an
abstract model. Given a library of generic protocols, our
automatic configuration process starts with the design of the
functional model. Next, for each role of a protocol the de-
signer wishes to support, we look for similarities between
the functionalities (in the functional model) and the actions
which are executed by this role. This similarity checking
is achieved by a matching algorithm. The algorithm iden-
tifies the possible similarities between the agent’s methods
and the actions required by the protocol. When every ac-
tion in a role (any communicating entity in a protocol) is
not paired with a method, an adaptation algorithm imme-
diately provides the designer with the specifications of the
missing functionalities to support the protocol (actually the
role) at hand. Finally, when a role is completely unified (all
the actions in the definition of the role are associated with
functionalities), we explicitly link each action and the corre-
sponding method in the WS-CDL model associated with the

configured role. Our mechanism is organised in four steps:

1. abstract representation of generic interaction protocols
following a formalism we developed;

2. abstract representation of the functionalities the agent will
use during interactions;

3. matching of actions of generic protocols (actually roles)
to the functionalities of the agent;

4. insertion of the configured roles into the interaction
model, following WS-CDL specifications.

Abstract Models
Protocol Model
Several formalisms have been proposed to represent
agent interaction protocols, e.g., (Casella & Mascardi
2001),(Domingue, Galizia, & Cabral 2006) (Walton 2005).
However, neither these formalisms emphasise the represen-
tation of actions needed to generate or handle the exchanged
messages, nor do they fulfil our claim to separate interac-
tion concerns from agents’ internal activities. To address
this weakness, we developed a generic protocol representa-
tion formalism, which is based on the AUML protocol dia-
gram (Bauer & Odell 2005). Thereof, we identified five fun-
damental concepts: protocol, role, event, action and phase.
We formally define these concepts in the remainder of the
section. The formal specifications we developed to repre-
sent generic protocols using these concepts are discussed
in (Quenum et al. 2006). The description of these speci-
fications is out of the scope of this paper.

Definition 1. Generic Protocol
A generic protocol is a collection of roles R, which inter-

act with one another through message exchange. The mes-
sages belong to a collection M , and are described follow-
ing an ACL e.g., FIPA ACL (FIPA 2001), KQML (Labrou &
Finin 1997). The exchange sequence is represented by Ω.
A protocol also has some intrinsic properties Θ (attributes
and keywords) which are propositional contents that provide
a context for further interpretation of the protocol. We note

P
def=< Θ, R, M,Ω >.

Definition 2. Role A role consists of a collection of phases,
Π (see definition 4). It can have some global actions,
Ag , which are executed outside all phases and some data

other than message content, variables V . ∀r ∈ R, r
def=<

Θr, Π, Ag, V >, where Θr corresponds to the role’s in-
trinsic properties (e.g., cardinality) which are propositional
contents that help further interpret the role.

The behaviour of a role is governed by events. An event
is perceived as an atomic change which occurs in the envi-
ronment of the MAS. We consider several types of events:
message reception, variable value change, message genera-
tion, etc. Actions help describe the behaviour of a role.

Definition 3. Action
An action is an operation a role performs while execut-

ing. This operation transforms the whole environment or the

internal state of the agent currently playing this role. An ac-
tion has a category ν, a signature Σ and a set E of events it

reacts to or produces. We note a
def
=< ν,Σ, E >.

Since the protocols we specify are generic, it is not pos-
sible to provide a concrete and complete description of the
actions required by these protocols. We fix this limitation
by introducing action categories, so that we can provide a
semantics for actions in generic protocols. These categories
also serve as a classification means. We consider six action
categories. (1) append, to append a data to a collection; (2)
remove, to remove a data from a collection; (3) set, to assign
a value to a data; (4) update, to update the value of a variable
(5) send, to send some information to another agent; and (6)
compute, to perform a (more complex) computation.

Definition 4. Phase
Some successive actions sharing direct links can be

grouped together. Each group is called a phase. Two ac-
tions share a direct link if the input arguments (or only a
part of them) of one are generated by the other (f.i. when a
send action sends the message generated in a prior action).

We note ∀ph ∈ Π, ph
def=< A,≺>, where A is a set of actions

and ≺ a causality relation.

The concept of phase helps define the behaviour of a role
through smaller logical blocks.

Agent Functional Model
The functional model contains the set of functionalities an
agent can achieve during collaborative tasks. Each function-

ality is called a method1. We note f
def= {mı}. A method

is represented by: (1) its category ν, the same as in actions
of protocols; (2) its signature Σ, where we introduce user-
defined data types in addition to the built-in types used in ac-
tion signature; (3) its constraints C, immediately following
methods (succession constraints) and those excluded once
the current method has completed (exclusion constraints).

We note mı
def= < ν,Σ, C >.

The functional model is a generalisation of the BPEL4WS
model. Actually the protocol representation formalism does
not comply with the BPEL4WS specifications (f.i., activity
and action though similar concepts cannot be automatically
compared because of their initial descriptions). However,
our approach needs to match elements in both models and
none of the formalisms can be modified. Indeed, BPEL4WS
is a well established standard in SoC. And to our knowl-
edge, our protocol representation formalism is the one, thus
far, to allow the description of generic protocols needed in
open and heterogeneous MAS. Hence, we generalise the
BPEL4WS into a formalism, which is compliant with the
protocol representation formalism. Note that we developed
some formal specifications for the functional model, which
we do not discuss in this paper. In the remainder of this
section, we present the rules for the generalisation. For this
purpose, we introduce a new relation generalise, which
we define as follows.

1The term method, here, has nothing to do with object-oriented
programming.

Definition 5. Given a business process bp and a
functional model f , f generalises bp (notation being
generalise(f, bp)) iff ∀act ∈ bp,∃m ∈ f

• given the semantics of any activity act of the business pro-
cess, it can be classified in the category m belongs to;

• the data types act handles or generates are compatible
with the signature of m;

• given the position of act in the process flow, the con-
straints placed on m comply with the links between act
and its neighbours.

Property 1. Given a business process, bp, there exists a col-
lection of methods {mı} which generalises bp.

Proof. We discuss the proof of this property in three stages.

category in our protocol representation formalism, we con-
sider six action categories: append, remove, set, update,
send, and compute. The semantics of an activity in a busi-
ness process always permits its classification in one of
these categories.

signature we copy the data types of the variables each ac-
tivity manipulates as input arguments and output result.
These data-types, when they are not equivalent to the
built-in types used for action signature in our protocol rep-
resentation formalism, should inherit from these built-in
types.

constraints the syntactic constructs (sequence, flow, etc.)
available in BPEL4WS make it possible to derive the suc-
cession and exclusion constraints placed on methods.

Using these rules, we can consider the whole BPEL4WS
model as a graph, and generalise each node of this graph. By
doing so, we obtain a graph similar to the initial one, which
corresponds to the agent’s functional model. Our generalisa-
tion rules thus guarantee that the semantics of the functional
model is equivalent to that of the BPEL4WS model.

Unification
Algorithms
The unification process consists of a matching mechanism
possibly followed by an adaptation mechanism. Algorithm 1
achieves the matching part of the unification. As described
above, the process starts with two models: a functional
model and a protocol model. The methods in the functional
model are represented as nodes of a directed graph, Gm.
The edges in this graph correspond to succession constraints
placed on methods: an edge mımj means that mj can be
executed once mı. Note that the graph corresponding to a
functional model may not be connected. As an example,
Figure 2(a) contains a partial representation of the graph cor-
responding to T0’s functional model. For each role the de-
signer wants to support, its actions are represented as nodes
of a directed graph, Ga. The edges in this graph express the
causal links between actions, derived from the events. Fig-
ure 2(b) depicts the action graph of the initiator role of CNP.
Our matching process is actually a graph unification. But

callForTrans
portation

errorInCall

timeIsOver

bidding
Denial handleTrans

Plan
selectTrans

Plan

notify
Selection

transpResult

failureInTransp

transpNotif

(a) T0’s partial method graph

prepareCFP

sendCFP

handle
Denial/NUD

close
Interaction

handle
Proposal

Deliberate

notify
Deliberation

send
Deliberation

handle
Result

handle
FR/EN

(b) Action graph of the initiator role in the CNP

Figure 2: Example of action and method graphs

we dramatically reduced its complexity by exploring only
one graph, the action graph. Adopting a breadth-first explo-
ration, we compare each node of Ga to all the methods in
Gm at the same level, considering successful prior match-
ings. The comparison takes place in three stages: (1) cate-
gory: check whether the method and the action being com-
pared have the same category; (2) signature: check whether
the signature of the method is a valid instance of that of the
action; (3) constraints: check whether the constraints of the
method comply with the events associated with the action.
When there are several methods an action may correspond
to, we consider this situation as a conflict. As soon as a
successor of this action (an adjacent node) is paired with
a method, we try, if possible, to resolve existing conflicts.
Properties 2 and 3 discuss the termination and the complex-
ity of this algorithm respectively.

Property 2. Given a collection R of roles to configure, and
an agent functional model, algorithm 1 always terminates.

Proof. The proof of the termination lies behind that of the
non existence of an infinite loop. Indeed, the matching pro-
cess is taken for a finite set of roles. And every action, from
the finite set of actions associated with each role, is explored
once. Additionally, each action can be compared only to a
finite number of methods in the functional model. Conse-
quently, algorithm 1 always terminates.

Algorithm 1 Matching Action-Method

Input: Set Methods (methods of the agent); Set Roles;
Result: Associative-Array Unified; Set Unpaired;

Gm ← DiGraph(Methods);
for all role in Roles do

initialise explorer and candidates to ∅;
actions ← genActionSet(role);
Ga ← DiGraph(actions);
insert initial(Ga) into explorer;
map initial(Ga) onto initials(Gm) in candidates;
while explorer is not empty do

curact ← first(explorer);
result ← match(curact, candidates.get(curact));
if result is empty then

insert curact into Unpaired;
else if result is a singleton {mk} then

for all act adjacent node of curact do
if act is not explored yet then

insert act into explorer;
end if
map act onto mk’s children in candidates;
map curact onto mk in Unified; resolve await-
ing conflicts;

end for
else

for all act child node of curact do
if act is not explored yet then

insert act into explorer;
end if
map curact onto result in conflicts;
map in candidates act onto each child node of
each result’s element;

end for
end if

end while
insert all the keys into conflicts and unpaired;

end for

Property 3. For each role to configure, represented by an
action graph Ga with v action nodes and e connections be-
tween these nodes, algorithm 1 completes in time propor-
tional to v + e. As a consequence, given a collection of
n roles, each represented by an action graph, algorithm 1
completes in time proportional to n(vmax + emax), where
vmax and emax are the node and edge counts respectively,
in the largest graph.

Proof. The complexity of a Breadth-First exploration of a
graph (with v nodes and e edges) using adjacency lists is
known to complete in time proportional to v + e. Since we
configure several roles during the process, the complexity
evaluates (at most) to a value proportional to n times the
sum of the number of the nodes and edges of the largest
graph (role). Moreover, each action in Ga is compared to
methods in Gm whose adjacent nodes matched the adjacent
nodes of the current action. Let ϕ be the cost of this compar-
ison. For each method, the comparison is held for the cat-
egory, the signature and the events/constraints. Comparing

categories is the simplest of the three comparisons; it con-
sists of strings equivalence. The signature correspondence is
generally of low cost by introducing some pattern matching
techniques with regular expressions. Finally, events versus
constraints comparison demands some inference in order to
deduce the causality links as well as the exclusion between
actions. Roughly, these comparisons prove not to be costly,
since the number of methods is not greater than the number
of nodes in any of the connected sub-graph. Once a compar-
ison is held, the decision to make consists of storing some
information whether in a collection or in an associative ar-
ray, which is also of low cost. As a conclusion, ϕ is of low
cost.

For actions which do not have any correspondent in the
functional model as well as actions involved in conflicts that
the algorithm did not resolve, we propose an adaptation.
This is achieved by algorithm 2, which generates the de-
scription of each unpaired action in the form of a method.

Algorithm 2 Action Adaptation

Input: S, set of unpaired actions
Result: S’, set of generated methods

for all action ai ∈ S do
initialise mi;
set ai’s category to mi;
derive mi’s signature from that of ai;
identify the constraints to place on mi;
insert mi into S’;

end for

Illustration

As an illustration of our approach, we dis-
cuss the matching between prepareCFP and
callForTransportation. prepareCFP is the
initial action of the initiator role of CNP, whose sequence
diagram is given in figure 3. callForTransportation
is one of the initial methods in T0’s functional model. The
action graph and method graph both the action and the
method belong to are depicted in figure 2(a) and figure 2(b),
respectively.

To let the reader have a better understanding of the match-
ing, we sketch out the specifications for CNP and the func-
tional model following the formalisms we developed purpo-
sively. Actually, the specifications are written in XML. But
here, we adopt a bracket-based representation for the sake of
readability. Note that these specifications are a simpler and
incomplete version of the ones we developed in (Quenum et
al. 2006).

ParticipantInitiator

X

X

X

Failure

Inform−Done

Inform−Ref

Cfp

Not−Understood

Refuse

Propose

Reject−Proposal

Accept−Proposal

[deadline]

Figure 3: The Contract Net Protocol

(protocol (properties ...)

(roles (role id=’initiator’

(variables ...)

(actions ...)

(phases (phase id=’phs1’

(actions (action category=’compute’ desc=’prepareCFP’

(signature(arg type=’date’ dir=’in’)

(arg type=’any’ dir=’out’))

(events (event type=’variablecontent’ dir=’in’

object=’deadline’)

(event type=’messagecontent’ dir=’out’

object=’cfp’ id=’evt2’)))

(action category=’send’ description=’sendCFP’

(signature (message id=’cfp’))

(events(eventref dir=’in’ id=’evt2’)

(eventref type=’custom’ dir=’out’ id=’cus01’)

(event type=’endphase’ dir=’out’ id=’evt3’))))))))

(messagepatterns ...))

(agent

(types

(bits (bit id=’boolean’ name=’Boolean’)

(bit id=’string’ name=’String’)...)

(udts(udt id=’transdesc’ name=’TransportDescriptor’

supertype=’any’)...))

(methods(method id=’m0’ (name=’callForTransportation’

category=’compute’)

(signature (arg typeid=’date’ dir=’in’)

(arg typeid=’cfp’ dir=’out’)))

(method id=’m3’ (name=’storeTransportationProposal’

category=’append’)

(signature (arg typeid=’proposal’ dir=’in’)

(arg typeid=’proposals’ dir=’inout’))

(constraints (constraint status=’executed’ id=’m0’)

(constraint status=’notexecuted’ id=’m1’)))))

In these specifications, the reserved word eventref used in
the CNP specifications serves for causality between actions.
In addition, the reserved words bits and udts define built-in
types and user-defined types respectively. The matching be-
tween prepareCFP and callForTransportation is
detailed in the few lines below. As stated above, the match-
ing process takes place in three stages:

1. category: both have the same category, which is compute;

2. signature: From our specifications, it turns out that the
signature of prepareCFP can be instantiated as that of
callForTransportation. Indeed, the input argu-
ment of prepareCFP is a date (a built-in type) while
the output result is an object of type any (a built-in type
too). On the other hand, callForTransportation
handles a date data and generates a data of type cfp.
Since cfp is a user-defined type, inherited from any, the
signature of callForTransportation is a valid in-
stance of that of prepareCFP.

3. events versus constraints: On the one hand,
callForTransportation is one of the initial
methods of the graph. Therefore, no constraints (follow
and exclusion) is associated with it. On the other hand,
from the events associated with prepareCFP, the
corresponding constraint set is empty. As a conclusion,
the events in prepareCFP comply with the constraints
on callForTransportation.

Translating Configured Roles
When every action of a role is paired with a method, we
consider this role as configured. As a final step in our ap-
proach, we generate the specifications for configured roles.
We offer two representations of a configured role: (1) an
abstract representation following WS-CDL, and (2) a con-
crete representation in the form of a finite state automaton
(FSA), similarly to the approach in (Romero-Hernandez &
Koning 2004). Note that in cases where several activities
are to be launched at the same time (f.i., the flow construct
in BPEL4WS), a FSA might not be suitable. In such cases,
designers can resort to formalisms like Petri-Nets.

The automaton we generate contains three types of states:
initial, final and standard states. As well, four types of
events are considered in our translation. (1) message recep-
tion, (2) timeout: a delay has elapsed and an action should be
taken, (3) done: an internal operation has been executed and
generated the expected result, (4) true: which are associated
with automatic transitions. The translation converts actions
into transitions. The causality between actions help identify
the correct transition sequence. Thus, actions without pre-
decessors correspond to transition from an initial state. As
well, actions without successors correspond to transitions to
a final state. Actions having a predecessor and/or a succes-
sor correspond to transition from and/or to a standard state.

Property 4. An action ak corresponds to a transition tıj
from state Sı to state Sj iff

source state Sı:
• ak has no predecessor and Sı is an initial state, or;

• ak follows another action ak−1 which transitions to Sı;

destination state Sj:
• ak precedes an action ak+1 which transitions from Sj,

or;

• ak has no successor and Sj is a final state.

Additionally, we generate an abstract model for further
reasoning about agent interactions. This model is the agent’s

interaction model, and is represented following WS-CDL
specifications. One advantage we benefit from our proto-
col representation formalism, is its closeness to WS-CDL
specifications: most of the specifications constructs can be
easily found in our formalism. For instance, roleType, re-
lationshipType and participantType can be extracted from
the general description of protocols. Moreover, informa-
tionType corresponds to all the variable and message con-
tent types used in the protocol and enriched with the user-
defined types from the functional model. In this paper, we
do not formally prove the correspondence. Rather, we em-
phasise some clues to show evidence of this correspondence.
Table 1 defines the correspondence between the concepts in
our protocol representation and those in WS-CDL specifica-
tions. However, some concepts like channels and semantics

WS-CDL Our Formalism
roleType role properties
relationshipType protocol properties
participantType protocol and role properties
informationType variable and message content
choreography exchange sequence
channelType undefined
workunit properties and events
activities actions
interaction activity send actions
semantics external

Table 1: Correspondence between WS-CDL and our Formal-
ism

are to be explicitly added to our protocol specifications in
order to fully comply with WS-CDL.

Using the correspondence, we automatically translate the
configured role from our formalism to WS-CDL. During our
translation, we allocate the required channels to establish
communication between agents during interactions. As far
as the semantics is concerned, we define an external file cor-
responding to the semantics of each role, which we intro-
duce in the WS-CDL specifications.

Related Work
Many studies in SoC focused on the abstraction of pub-
lic and private parts of agent (and service) architecture, for
verification purpose. Some of these studies ((Domingue,
Galizia, & Cabral 2006; Desai & Singh 2004; Baldoni
et al. 2005; Foster 2006) to quote a few) addressed is-
sues relevant to the relationship between the specifications
of protocols and the behaviour of each of the partakers
(requesters and providers) to a service provision. Espe-
cially, most of these studies (f.i., (Baldoni et al. 2005;
Foster 2006)) aim at checking the conformance of each par-
taker’s behaviour to an adopted protocol, under the assump-
tion that formal descriptions of concrete protocols (config-
ured version of generic protocols) are given. Although our
matching and adaptation algorithms can be used for this pur-
pose as well, our work originally supports situations where

concrete protocols are not given formally, as discussed be-
low.

The from scratch design of interaction protocols that
cover normal as well as faulty situations, is a tedious ac-
tivity and inconsistency prone. Generic protocols have been
introduced in MAS research to allow for reuse of typical
interaction patterns for task allocation, auctions, etc. In-
teraction patterns for Web services often refer to messag-
ing patterns, e.g., send and then receive, and receive multi-
ple messages until end-notification, see (Barros & Boerger
2005). Generic protocols combine such messaging patterns
and provide conversation patterns based on goals of interac-
tion. Several studies (f.i., (Paurobally. & Jennings 2005)) at-
tempt to introduce generic protocols into existing SoC tech-
nologies. They focused on the support of ACL performa-
tives by means of translator gateways or extension of exist-
ing standards for Web Services. However, relationships be-
tween abstract generic protocols and concrete protocols, or
choreography, have not been discussed so far. Our approach
enables to configure role specifications of generic protocols
and obtain those of concrete protocols. This approach allows
programmers to develop concrete specifications of choreog-
raphy while making use of generic protocols to implement
interaction.

Conclusion
In this paper we discuss some architectural aspects of SoC,
where agents play a central role by controlling the com-
ponents which provide services or request them. Mainly,
we focus on the design of the interaction model of such
agents by configuring roles of generic protocols. In our ap-
proach, the configuration process is automated. Doing so,
agent interactions can be executed consistently with respect
to initial generic protocol specifications. Clearly, the in-
consistent message exchange situation we faced in the in-
troductory example, and which is due to the non compli-
ant representations of callForTransportation and
handleCallForTransportation is fixed using our
approach.

As another advantage of our approach, a designer who
wishes to support the same protocols through several execu-
tions can dramatically reduce the modelling step. He (she)
can develop the new functional model by taking inspiration
from both the functional and the interaction models. Ac-
cordingly, the generation of the new functional model goes
faster and in this case there will be no need for an adaptation
of this functional model. As well, by separating the interac-
tion and functional models, there can be flexible updates any
of them.

This approach, in a more general version, has been imple-
mented (in Java and XML) and applied to two non-trivial ap-
plication projects, namely Safir (www.projet-safir.org) and
Princip (www.princip.net), which both use multi-agent sys-
tems to realise sophisticated information retrieval systems.
The applicability of the method has then been proved on sev-
eral tens of generic interaction protocols. Likewise, we en-
vision to apply the approach to real world agent-based SoC
systems.

As a future work, we wish to provide agents with the abil-
ity to dynamically configure their interaction model. In fact,
an agent might need, at runtime, to execute a protocol (as
initiator or participant) that does not exist in its interaction
model yet. Then, the approach we described in this pa-
per should be automatically and dynamically applied. For
this purpose, the agent (the algorithm it uses) is requested to
know about the connection between the goals to achieve or
task to execute, and the generic versions of interaction pro-
tocols the system is provided with, in order to select a set of
generic interaction protocols that could be fit.

Furthermore, since agents may have many protocols (pre-
cisely roles of these protocols) at their disposal, the issue of
protocol selection is raised. This issue is usually solved in a
rather simple way. We think that since agents dispose of an
explicit interaction model, they might be able to dynamically
select a protocol whether to respond to a received message
or to achieve a goal (start a protocol). This dynamic protocol
selection better suits open and heterogeneous systems, and
SoC systems are endowed with both features.

References
Andrews, T.; Curbera, F.; Dholakia, H.; Goland, Y.;
Leymann, F.; Liu, K.; Roller, D.; Smith, D.; Thatte, S.;
Trickovic, I.; and Weewarana, S. 2003. Business Process
Execution Language for Web Services, version 1.1.
http://www-106.ibm.com/developerworks/
webservices/library/ws-bpel/.

Baldoni, M.; Baroglio, C.; M., A.; Patti, V.; and Schi-
fanella, C. 2005. Verifying the Conformance of Web Ser-
vices to Global Interaction Protocols: A First Step. In In-
ternational Workshop on Web Services and Formal Meth-
ods (WS-FM 2005), 257–271.

Barros, A., and Boerger, E. 2005. A Compositional
Framework for Service Interaction Patterns and Interaction
Flows. In The Seventh International Conference on Formal
Engineering Methods (ICFEM’2005), 5–35.

Bauer, B., and Odell, J. 2005. UML 2.0 and Agents: how
to Build Agent-based Systems with the new UML Stan-
dard. Journal of Engineering Applications of Artificial In-
telligence 18:141–157.

Casella, G., and Mascardi, V. 2001. From AUML to WS-
BPEL. Technical report, Computer Science Department,
University of Genova, Italy.

Desai, N., and Singh, M. 2004. Protocol-based Business
Process Modelling and Enactment. In The IEEE Interna-
tional Conference on Web Services (ICWS), 35–42.

Domingue, J.; Galizia, S.; and Cabral, L. 2006. The Chore-
ography Model for IRC-III. In Proceedings on Hawai In-
ternational Conference for System Sciences, 62–70.

FIPA. 2001. Fipa Communicative Act Library Specifica-
tion. Technical report, Foundation for Intelligent Physical
Agents.

Foster, H. 2006. LTSA - WS-Engineer Eclipse Plugin.
http://www.doc.ic.ac.uk/ltsa/bpel4ws/.

Haas, H. 2004. Web Services. http://www.w3.org/
2002/ws/. (Access: May 2005).

Knight, K. 1989. Unification: A Multidisciplinary Survey.
ACM Computing Surveys.

Labrou, Y., and Finin, T. 1997. A proposal for a new
KQML Specification. Technical report, University of
Maryland Baltimore County (UMBC).

Paurobally., S., and Jennings, N. R. 2005. Protocol
Engineering for Web Services Conversations. Int. Jour-
nal of Engineering Applications of Artificial Intelligence
18(2):237–254.

Quenum, J. G.; Aknine, S.; Briot, J.-P.; and Honiden, S.
2006. A Modelling Framework for Generic Agent Interac-
tion Protocols. In Endriss, U., and Boldoni, M., eds., Pro-
ceedings of the Fourth International Workshop on Declar-
ative Agent Languages and Technologies.

Romero-Hernandez, I., and Koning, J.-L. 2004. State Con-
trolled Execution for Agent-object Hybrid Languages. In
Proceedings of the International School and Symposium on
Advanced Distributed Systems (ISSAD), 78–90.

Smith, G. 1980. The contract Net Protocol: High-
level Communication and Control in a Distributed Problem
Solver. IEEE Trans. on Computers 29(12):1104–1113.

W3C. 2004. Web Services Choreography Description Lan-
guage version 1.0. http://www.w3.org/TR/2004/
WD-ws-cdl-10-20040427/.

Walton, C. 2005. Protocols for Web Service Invocation. In
Proceedings of the AAAI Fall Sympossium on Agents and
Semantic Web (ASW05).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 2
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

