
Modeling Web Service Composition using Symbolic Transition Systems

Jyotishman Pathak and Samik Basu and Vasant Honavar
Department of Computer Science

Iowa State University
Ames, IA 50011-1040, USA

{jpathak, sbasu, honavar}@cs.iastate.edu

Abstract

Web services are software entities which provide a set of
functionalities that can be accessed over the Web. In gen-
eral, the valuations of variables appearing in various func-
tions provided by the service are not known before execu-
tion. Consequently, to analyze the behavior of a service, all
possible valuations need to be considered, making the whole
system infinite-state. Against this background, we propose a
framework for modeling and composing Web services where
desired (goal) and pre-existing (component) services exhibit
infinite-state behavior. Our approach finitely represents such
services using Symbolic Transition Systems (STSs) which
are transition systems augmented with guards over infinite-
domain variables. We develop a sound and complete logi-
cal approach for identifying the existence of composition of
available component-STSs, such that the resulting composi-
tion is “simulated” by the goal-STS. In the event that the goal
service cannot be realized from the existing components, our
technique can also identify the cause for the failure and guide
the user to achieve appropriate refinement of the goal specifi-
cation, thereby paving the way for incremental development
of composite services.

Introduction
Recent advances in networks, information and computation
grids, and WWW have resulted in the proliferation of a
multitude of physically distributed and autonomously devel-
oped software components. These developments allow us to
rapidly build new and value-added applications from exist-
ing ones in various domains such as e-Science, e-Business,
and e-Government. However, more often than not, applica-
tion integration is an engaging and time consuming process
because individual software entities are not developed using
standard frameworks or component models. Consequently,
this results into significant re-designing and re-coupling of
existing software leading to substantial loss in productiv-
ity. In this context, Service-Oriented Architecture (SOA)
(Erl 2004) based on Web services (Alonso et al. 2004) are
an attractive alternative to build software components and
seamless application integration as they offer standardized
interface description, discovery and communication mecha-
nisms. More specifically, SOAs provide the ability to con-

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

struct and deploy complex workflows of composite Web ser-
vices by leveraging independently developed components.

To explore such opportunities, automatic composition of
Web services has emerged as an active area of research in
both academia and industry. In a nutshell, automatic ser-
vice composition amounts to automatically determining a
strategy for integrating available component services which
would realize the desired/requested service functionality.
Generally, there are three ways by which these services can
be composed: serial, parallel, or a combination of both serial
and parallel. The focus of this paper is to develop an auto-
matic solution for serially composing available Web services
into composite services. Even though many approaches
(refer to (Dustdar & Schreiner 2005; Hull & Su 2005;
Oh, Lee, & Kumara 2005) for a survey) based on AI plan-
ning techniques, logic programming, automata-theory etc.
have been proposed for doing automatic service composi-
tion, they suffer from two major limitations:

• A Web service can provide multiple functionalities which
could be invoked over the Web. In general, the valuations
of variables appearing in the functions provided by the
service are not known before execution. Consequently, to
analyze the behavior of a service, all possible valuations
need to be considered, making the whole system infinite-
state. However, none of the existing approaches for ser-
vice composition take into consideration the infinite-state
behavior typically exhibited by Web services.

• The current techniques provide a “single-step request-
response” paradigm for automatic Web service composi-
tion. In other words, a user submits a goal specification
to a ‘composition analyzer’, which tries to find an appro-
priate strategy for realizing the composite service. In the
event, such a composition is unrealizable, the whole pro-
cess fails. As opposed to this, we claim that, there should
be provision for iteratively refining the goal specification
in an intuitive, yet efficient way, to build composite ser-
vices.

Against this background, to enhance automation and to
minimize the user effort required to develop complex ser-
vices, we propose MoSCoE—a framework for Modeling
Service Composition and Execution (Figure 1). At its core,
MoSCoE is based on the three steps of abstraction, compo-
sition and refinement. The users in our system provide an

Service 1

OWL−S & WSDL

Service 2

OWL−S & WSDL

Service 3

OWL−S & WSDL

Symbolic Transition

Abstract Composition
Analyzer

Component

Executable
Composition

Analyzer

O
W

L
−

S to State M
achine T

ranslator

UML State Machine
Specifications

Analyzer
Failure

No StrategyRefinement
Request

BPEL Code Generator

Executable BPEL code

STSs

A
vailab

le R
eso

u
rces

1

2

3

4

1

Specification
Goal

System Translator

Figure 1: MoSCoE Architectural Diagram. �: Service requesters and providers present state machine description of the desired/goal and
available/component services, respectively. �: These descriptions are translated into symbolic transition systems which are given as input to
the abstract composition analyzer. The analyzer tries to determine a composition strategy. �: In the event a strategy cannot be computed, the
failure analyzer sub-module is invoked which determines the failure-cause information. Appropriately, the user is notified to refine the goal
specification. �: Once a composition strategy is realized, it is translated into a BPEL process flow for execution.

abstract specification of the goal g. Abstraction, in this con-
text, implies that functional description of g is incomplete as
the user may not be aware of the details of the available ser-
vice functions a priori. MoSCoE uses this abstract descrip-
tion and identifies a set of available services, such that their
sequential composition realizes (parts-of) g. In the event that
such a composition is not realizable, MoSCoE analyzes the
cause of the failure and guides the user for appropriate re-
finement of the goal specification. This process could be
done iteratively until a feasible composition is identified or
the user decides to abort.

To realize the above functionality, MoSCoE uses UML
state machines (Crane & Dingel 2005; Harel 1987) for rep-
resenting the sequence of functions requested and provided
by the goal and component services1, respectively. How-
ever, as noted earlier, Web services typically exhibit infinite-
state behavior. To finitely represent the infinite-state sys-
tems such as Web services, we rely on using Symbolic
Transition Systems (STS) (Basu et al. 2001) in MoSCoE.
An STS can be viewed as a Labeled Transition System
(Hopcroft & Ullman 1979) augmented with state variables,
guards and functions on transitions. Thus, given a set of
available services and a goal service provided by the user,
MoSCoE first translates the state machines into their corre-
sponding STS-representation. Once this translation is done,
service composition in MoSCoE amounts to determining a
strategy for sequentially composing the corresponding STS-
representations of the components, such that the sequence
is “simulation equivalent” to the STS-representation of the

1We assume that the service providers in MoSCoE publish their
component services using OWL-S (Martin et al. 2004) descrip-
tions. Specifically, the OWL-S “process models” of the component
services are translated into corresponding state machines by build-
ing on techniques proposed in (Traverso & Pistore 2004).

goal service. In other words, the sequence of available ser-
vices mimics the functionality of the goal service. However,
if such a composition strategy cannot be identified, MoSCoE
determines the specific states and transitions in the state ma-
chine description of the goal service that needs to be modi-
fied, and provides such information to the user for refinement
purposes. In such a situation, the STS translator is invoked
again to generate an STS from the refined goal state machine
description.

The contributions of our work are:

• We propose a new paradigm for automatic Web service
composition based on abstraction, composition, and re-
finement. Our approach allows users to iteratively de-
velop composite services from their abstract descriptions.

• The proposed service composition framework takes into
consideration the infinite-state behavior typically exhib-
ited by Web services. Such infinite-state behavior is
finitely represented using Symbolic Transition Systems
(STS).

• In the event that a composition cannot be realized, the pro-
posed approach determines the cause of the failure. Such
failure-cause information is essential to realize appropri-
ate refinement of the goal specification and is a vital step
for incremental development of complex Web services.

The rest of the paper is organized as follows. We begin
by describing the problem of Web service composition, and
present a logical formalism for determining feasible com-
position strategies and failure-cause analysis in infinite-state
domain. In the following section, we evaluate our system
with a case study to demonstrate the feasibility of our pro-
posed ideas. Finally, we discuss related work in automatic
Web service composition, and conclude with future avenues
for research.

Service Composition in MoSCoE
Given a set of available component services s1, · · · , sn and
a user-specified goal service sg , service composition syn-
thesis amounts to determining a strategy S for integrating
si, · · · , sj , such that S “mimics” sg . To achieve this, ser-
vices in our framework are represented as state machines
(Crane & Dingel 2005; Harel 1987) which are translated to
Symbolic Transition Systems (STSs) (described later in the
paper). STSs allow us to finitely represent the infinite-state
behavior exhibited by Web services.

Notations
A set of variables, functions and predicates/relations will be
denoted by V , F and P respectively. The set B denotes
{true, false}. Elements of F and P have pre-defined ar-
ities; a function with zero-arity is called a constant. Expres-
sions are denoted by functions and variables, and constraints
or guards, denoted by γ, are predicates over other predicates
and expressions. Variables in a term t is represented by a
set vars(t). Substitutions, denoted by σ, maps variables to
expressions. A substitution of variable v to expression e will
be represented by [e/v]. A term t under the substitution σ is
denoted by tσ.

Service Functions as Transition Systems
A service is described by symbolic transition system where
states represent current configurations of the service and in-
terstate transitions correspond to update to these configu-
rations. Each state is represented by a term, while transi-
tions represent relations between states, and are annotated
by guards, actions and effects. Guards are constraints over
term-variables appearing in the source state, actions are
terms of the form fname(args)(ret); where fname is
the name of service-function being invoked, args is the list
of actual arguments and ret is the return valuation of the
function, if any. Finally, effect is a relation representing the
mapping of source state variables to destination state
variables. Formally,

Definition 1 (Symbolic Transition System(Basu et al. 2001))
A symbolic transition system is a tuple (S,−→, s0, SF)
where S is a set of states represented by terms, s0 ∈ S is
the start state, SF ⊆ S is the set of final states and −→ is

the set of transition relations where s
γ,α,ρ−→ t is such that

1. γ, vars(γ) ⊆ vars(s)

2. α is a term representing service-functions of the form
a(�x)(y) where �x represents the input parameters and y
denotes the return valuations.

3. ρ relates vars(s) to vars(t)

Figure 2 shows example STSs. Transitions with no ex-
plicit guards are always enabled and function symbols (f, g
and h) with no arguments (inputs and outputs) represents
constants. Start states do not have any incoming transition
and final states are circled.

1
s

2
s (x)

4
s

5
s

6
s

c()(x)

x=0
d(x)(y)

s (x,y)
3

h(x)(y)
x!=0

x=y x!=y
f()()e()()

(a)

1
t

2
t (x)

3
t

c()(x)

x=0
d(x)(y)

t (y,z)
4

5
t

6
t

f()()
y=z

e()()
y!=z

(b) (c)

Figure 2: Example Symbolic Transition Systems. (a) STSg

(b) STS1 (c) STS2.

Semantics of STS. The semantics of STS is given with re-
spect to substitutions of variables present in the system. A
state represented by the term s is interpreted under substitu-

tion σ (sσ). A transition s
γ,α,ρ−→ t, under late semantics, is

said to be enabled from sσ if γσ = true and γ ⇒ ρ. The

transition under substitution σ is denoted by sσ
ασ−→ tσ.

Sequential Composition of STS. Sequential composition
of STSi and STSj , denoted by STSi ◦ STSj , is obtained by
merging the final states of STSi with the start state of STSj ,
i.e., every out-going transition of start state of STSj is also
the out-going transition of each final state of STSi.

In the context of Web services, we say that given a goal
service representation STSg and a set of component rep-
resentations STSi, the former is said to be realizable from
the latter if there exists a sequential composition of compo-
nents such that STSg simulates STS1 ◦ STS2 ◦ . . .STSn.
In essence, simulation relation ensures that the composition
can mimic or replicate (part-of) the goal service functional-
ity. We proceed with the definition of simulation in the con-
text of STSs required to identify a sequential composition as
described above.

Definition 2 (Late Simulation) Given an STS = (S,−→
, s0, SF), late simulation relation with respect to substitu-
tion θ, denoted by R θ, is a subset of S × S such that

s1 R θs2 ⇒ (∀s1θ
α1−→ t1θ.∃s2θ

α2−→ t2θ.
∀σ.α1θσ = α2θσ ∧ t1 R θσt2)

Two states are equivalent with respect to simulation rela-
tion if they are related by the largest similarity relation R.

An STSi is simulated by STSj , denoted by (STSi R θSTSj)

iff (s0
i R θs0

j).

Example. Consider the example STSs in Figure. 2(a) and
(b); STS1 is simulated by STSg according to the following
equivalences obtained from above definition.

t1 Rtrue s1

⇒ ∀x.(t2(x) Rx s2(x))
⇒ (t2(x) Rx=0 s2(x)) ∧ (t2(x) Rx!=0 s2(x))
⇒ (∀y.(t3 Rx=0,ys3(x, y))) ∧ true

(1)

In the above example, WLOG we assumed that the variable
names in the two STSs are identical (x, y) for simplicity.

Proceeding further, we define a termination relation based
on late simulation as follows:

Definition 3 (Termination Relation) Given an STS =
(S,−→, s0, SF), termination relation, denoted by T θ,δ is
a subset of S × S × S such that

s1T θ,δ
t s2 ⇐ s1 R θs2 ∧ ((∃s1θ

α1−→ t1θ. ∃s2θ
α2−→ t2θ.

∃σ.α1θσ = α2θσ ∧ t1T θσ,δ
t t2)

∨ (s1 ∈ SF ∧ t = s2 ∧ δ = θ))

The states s1 and s2 are terminally equivalent with respect to
t, if they are related by the least solution of terminal relation

T θ,δ . We say that (STSi T θ,δ
t STSj) iff (s0

i T θ,δ
t s0

j).

Example. Going back to the example in Figure 2(a) and
2(b),

t1 T true,δ
t s1

⇐ t1 Rtrue s1 ∧ ∃x.(t2(x) T x,δ
t s2(x))

⇐ true ∧ ((t2(x) T x=0,δ
t s2(x)) ∨

(t2(x) T x!=0,δ
t s2(x)))

⇐ (t2(x) Rx=0 s2(x) ∧ ∃y.t3 T {x=0,y},δ
t s3(x, y))

∨ false
⇐ true ∧ t = s3(x, y) ∧ δ = {x = 0, y}

(2)

From the above definitions, it follows that

∀θ.(STS1 ◦ STS2 ◦ . . . ◦ STSn) Rθ STSg ≡
T1 = {t1θ1 | ∀θ.∃t1θ1.(STS1 T θ,θ1

t1 STSg)} ∧
∀t1θ1 ∈ T1.(STS2 ◦ STS3 ◦ . . . ◦ STSn) Rθ1 t1

(3)
That is, the composition is realizable via iterative compu-
tation of termination relation of the goal transition system
against a component. The iterative process terminates when

Tn = {tnθn | ∀tn−1θn−1 ∈ Tn−1.∃tnθn.

(STSn T θn−1,θn

tn
tn−1)}

∧ T = {tn | tnθn ∈ Tn} ⊆ SF
g

Example. In Figure 2, t1 T true,{x=0,y}
s3(x,y) s1 (from Equa-

tion 2). Proceeding further and selecting STS2,

∀x = 0.∀y.∃tδ. t4(x, y) T {x=0,y},δ
t s3(x, y)

⇐ t4(x, y) T {x=0,x=y},δ
t s3(x, y) or

t4(x, y) T {x=0,x!=y},δ
t s3(x, y)

⇐ t4(x, y) T {x=0,x=y},{x=0,x=y}
s5 s3(x, y) or

t4(x, y) T {x=0,x!=y},{x=0,x!=y}
s6 s3(x, y)

In the above, {s5, s6} obtained from T relation is a subset
of SF

g . Therefore, sequential composition, STS1 followed
by STS2, is identified which can realize the (part-of) goal
STSg .

Failure Analysis. If a composition is not realizable with a
specific selection of component-ordering, the above iterative
procedure fails. In such scenarios, it is required to identify
specific states of the components that cannot be simulated
by the corresponding goal states. The motivation is to pro-
vide users the cause of the failure in a precise and succinct
fashion such that the information can be effectively applied
to refine the goal. The failure to simulate a component by
single or multiple states in the goal is obtained by defining
the dual of greatest fixed point simulation relation R.

s1 R
θ

s2 ⇐ ∃s1θ
α1−→ t1θ.∀s2θ

α2−→ t2θ.∃σ.

(α1θσ = α2θσ) ⇒ t1 R
θσ

t2
(4)

Two states are said be not simulation equivalent if they
are related by the least solution of R. We say that

STSi Rθ
STSj iff s0

i Rθ
s0

j .
From Equation 4, the cause of the s1 not simulated by s2

can be due to

1. ∃σ.α1θσ = α2θσ, or

2. ∃σ.α1θσ = α2θσ and the subsequent states are related by

Rθσ
, or

3. ∃s1θ
α1−→ t1θ, but there is no transition enabled from s2

under the substitution θ.

The relation R is, therefore, extended to Rf , where f
records the exact state-pairs which are not simulation equiv-
alent.

s1 R
θ

f s2 ⇐ ∃s1θ
α1−→ t1θ.(∀s2θ

α2−→ t2θ.
∃σ.(α2θσ = α1θσ ∧ f = (s1, s2, σ))
∨ (α2θσ = α1θσ ∧ t1R

θσ

f t2))
∨ (∃s2θ −→ ∧ f = (s1, s2, θ))

(5)

Example. Consider the STSs in Figure 3. The component
STS is not simulated by the first STSg (rooted at s1) as there
exists a transition from t2(x) to t4 when the x is not equal
to zero, which is absent from the corresponding state s2(x)
in the goal.

t1Rtruef s1

⇐ ∃x.t2(x) Rx

f s2(x)
⇐ (t2(x) Rx!=0

f s2(x)) or (t2(x) Rx=0

f s2(x))
⇐ (t3 Rx!=0

f s3) or (t2(x) Rx=0

(t2(x),s2(x),x!=0) s2(x))
⇐ false or (t2(x) Rx=0

(t2(x),s2(x),x!=0) s2(x))

The state t1 is also not simulated by goal state s4 in Fig-
ure 3(b) as the state t2(x) is not simulated by s5(y); the
reason being x and y may not be unified as the former is
generated from the output of a transition while the latter is
generated at the state. In fact, a state which generates a vari-
able is not simulated by any state if there is a guard on the

1
t

2
t (x)

3
t 4

t

c()(x)

x=0
d()() e()()

x!=0

1
s

2
s (x)

3
s

c()(x)

x=0

d()()

4
s

5
s (y)

6
s 7

s

c()(x)

y=0
e()()

y!=0

d()()

(a) (b)

Figure 3: (a) Component STS. (b) Goal STSs STSg

S0

S1

S2 S4 S6

S7S5S3

S8S9

S10 S11

S13

S12

S14 S15

storeInfo(SSN,Amt,APR,Time)

creditScore(SSN)
/Appr1

payment(APR,Time)
/Appr2

creditScore(SSN)

checkAppr(Appr)

checkAppr(Appr)
/Confirm

[Confirm=0] [Confirm!=0]

checkLoans(SSN)
/OverDue

/Appr

/Appr
isAppr(Appr1,Appr2)

/Confirm

[OverDue!=0][OverDue=0]

CC & Pay

LoanApproval

[Amt<$30,000] [Amt>$30,000]

Figure 4: State machine representation of LoanApproval

generated variable. The variables generated at states are lo-
cal to that transition system and cannot be mimicked by an-
other transition system. As such in the example, t2(x) is not
simulated by s5(y).

Implementation

In (Basu et al. 2001), we developed a local and symbolic
(bi)-simulation checker for STS using tabled-constraint
logic programming in XSB (Sagonas, Swift, & Warren
1993). We apply the same formalism to identify com-
position of services where services are represented using
STSs. In short, composition can be effectively encoded as a
tabled logic program, the least model solution of which iden-
tifies (negation of) simulation between component STSs.
Constraint-handling is essential in our context as STSs are
guarded transition systems where guards are defined over
constraints on infinite-domain variables. More details about
our implementation are available at http://www.cs.
iastate.edu/∼jpathak/moscoe.html.

Case Study: Bank Loan Approval
We present a simple example where a user is assigned to de-
velop a new Web service, LoanApproval, which allows
potential clients to determine whether an amount of loan re-
quested will be approved or not. The service takes as input
the loan amount and social security number (SSN) of the
client along with the annual percentage rate (APR) and pay-
ment duration (in months) of the loan. Additionally, to as-
sist in the decision-making process, the service also checks
payment overdues of the client for his/her existing loans (if
any). The user models the service using UML state-machine
(Figure 4), where events represent the functions along with
their arguments, and effects (pre-pended with “/”) represent
the outputs of the corresponding function. Guards on transi-
tions are enclosed in “[...]”. The user modularizes the design
of the desired service using composite states in the state ma-
chines; e.g. CC & Pay is present inside LoanApproval,
and there are “and-” states where each partition is separated
by dotted lines. A composite “and-state” is one where transi-
tions in different partitions can interleave in any order. Fur-
thermore, the system exits an “and-state” only when all the
partitions are in their respective final states. In Figure 4, the
final states are represented by solid circles. The correspond-
ing transition system2 of LoanApproval is presented in
Figure 5. Transitions with no function invocation makes a
call to a dummy function null and the dotted lines rep-
resent sequence of transitions (not shown) originating due
transitions from the and-partition (s12 in this case).

Two pre-existing/component services, Approver (Fig-
ure 6(a)) and Checker (Figure 6(b)), are also provided.
We assume that, the OWL-S descriptions of these compo-
nent services are available to our framework. We further as-
sume that the component service descriptions (in particular,
OWL-S Process Models) are translated to symbolic transi-
tion systems using techniques similar to those described in
(Traverso & Pistore 2004).

To determine whether LoanApproval can be realized
using Approver and Checker services, STSLA simu-
lates a sequential composition of STSApp and STSChck.
If the component Approver is selected first, STSApp is
late-simulated by STSLA. The paths starting from s0,12 in
LoanApproval simulates the paths in Approver such
that s10,12 is the terminal state corresponding to t9 and s11,12

is the terminal state corresponding to t10 (see Figures 5

and 6(a)). In other words, t0 T true,Confirm=0
s10,12

s0,12 and

t0 T true,Confirm!=0
s11,12

s0,12. Proceeding further, STSChck
is simulated by s10,12 under the substitution Confirm = 0
and by s11,12 under the substitution Confirm! = 0. Note
that, there is another solution to the above problem where
Checker service is followed by Approval service.

Next, consider a different loan checker service
NewChecker (Figure 7) which functions exactly like
the Checker service for determining client payment
overdues, but additionally checks the criminal record of
the client. The service first checks whether the client has

2Due to brevity, we show only a partial view of the complete
transition system.

0,12
s

10,12
s

11,12
s

10,14
s

10,15
s

11,14
s

11,15
s

0,14
s

0,15
s

1,12
s

2,12
s

4.6.12
s

s (Confirm)
9,12

1,15
s

2,15
s

4.6.15
s

s (Confirm)
9,15

10,15
s 11,15

s

s (OverDue)
10,13

s (OverDue)
11,13

s (OverDue)
0,13

storeInfo(SSN,Amt,APR,Time)

checkLoan(SSN)

[OverDue!=0]

5,7,12
s (Appr1,Appr2)

s (Appr)
3,12 5,6,12 4,7,12

s (Appr1) s (Appr2)

8,12
s (Appr)

(Confirm)

Confirm!=0 null

isAppr(Appr1,Appr2)

Amt<$30,000 null

5,7,15
s (Appr1,Appr2)checkAppr(Appr)

(Confirm)

s (Appr)
3,15 5,6,15 4,7,15

s (Appr1) s (Appr2)

8,15
s (Appr)

isAppr(Appr1,Appr2)

storeInfo(SSN,Amt,APR,Time)

Confirm!=0 null
[OverDue=0]

[OverDue=0] [OverDue!=0]

(OverDue)checkLoan(SSN)

creditScore(SSN)
(Appr)

creditScore(SSN)
(Appr1)

(Appr2)
payment(APR,Time) creditScore(SSN)

(Appr1)

payment(APR,Time)
(Appr2)

checkAppr(Appr)

(OverDue)
checkLoan(SSN)

(OverDue)

[OverDue=0] Confirm=0 null

checkAppr(Appr)

creditScore(SSN)
(Appr) (Appr1)

creditScore(SSN) payment(APR,Time)
(Appr2)

payment(APR,Time)
(Appr2)

creditScore(SSN)
(Appr1)

Amt>$30,000 null

Amt<$30,000 null Amt>$30,000 null

checkAppr(Appr)

(Confirm)

Confirm=0 null

[OverDue!=0]

(Confirm)

Figure 5: Partial view of LoanApproval transition system

payment overdues for the existing loans (if any) and then
determines if the client has been previously charged for
a criminal act. Since, the ‘additional’ criminal verifica-
tion transition is not present in STSLA,, the component
start state t11 is not simulated by states s10,12, s11,12

or s0,12, and the transition and substitution causing the

simulation-failure can be obtained using Rθ

f relation (see
Equation 5). For example, t11 is related to s10,12 via

ROverDue

{t12(OverDue),s10,13(OverDue)}.

Related Work
A number of approaches have been proposed which adopt an
transition-system based framework to service composition.
Bultan et al. (Bultan et al. 2003) model Web services as
Mealy machines (finite state machines with inputs and out-
puts) which are extended with a queue, and communicate
by exchanging sequence of asynchronous messages of cer-
tain types (called conversations) according to a predefined
set of channels. They show how to determine a synthesis
of Mealy machines whose conversations, for a given set of
channels, satisfy a given specification. This approach is ex-
tended in (Fu, Bultan, & Su 2004) where services specified
in BPEL (Andrews, Curbera, & et al. 2003) are translated
into guarded automata with local XML variables to han-
dle rich data manipulation. The Colombo framework (Be-
rardi et al. 2005) is a further extension of the approach
proposed in (Bultan et al. 2003; Fu, Bultan, & Su 2004),
which deals with infinite data values and atomic processes.
Colombo models services as labeled transition systems and
define composition semantics via message passing, where
the problem of determining a feasible composition is re-
duced to satisfiability of a deterministic propositional dy-
namic logic formula. Pistore et al. (Pistore et al. 2005;

Traverso & Pistore 2004) represent Web services using non-
deterministic state transition systems, which also communi-
cate through messaging. Their approach however, relies on
symbolic model checking techniques to determine a com-
position strategy. In contrast, services in our framework
are represented using Symbolic Transition Systems (STSs)
(Basu et al. 2001) which are transition systems augmented
with guards over infinite-domain variables. STSs allow us to
represent infinite-state behavior, which is normally exhibited
by Web services. Furthermore, we apply late-operational se-
mantics of STS to identify feasible composition strategies.

A few approaches have also been developed which rely
on logic programming techniques for doing (semi-) auto-
matic service composition. Rao et al. (Rao, Kungas, &
Matskin 2004) translated semantic Web service descriptions
in DAML-S (predecessor of OWL-S (Martin et al. 2004))
to extralogical axioms and proofs in linear logic, and used
π-calculus for representing and determining composite ser-
vices by theorem proving. Waldinger (Waldinger 2001) also
illustrated an approach for service composition using the
SNARK theorem prover. This approach is based on au-
tomated deduction and program synthesis, where available
services and user requirements are described in a first-order
language, from which constructive proofs are generated for
extracting service composition descriptions. Lämmermann
(Lämmermann 2002) proposed using Structural Synthesis
of Program (SSP) for automated service composition. SSP
uses propositional variables as identifiers for input/output
parameters of service functions and applies intuitionistic
propositional logic for solving the composition problem.
McIlraith and Son (McIlraith & Son 2002) adapt and extend
Golog logic programming language, which is built on top
of situation calculus, for automatic construction of compos-
ite Web services. The approach allows requesters to spec-

0
t

9
t

10
t

creditScore(SSN)
(Appr)

4
t (SSN)
2

t (SSN,APR,Time)

t (Appr1,APR,Time)
5

t (Appr1,Appr2)
6

creditScore(SSN)
(Appr1)

payment(APR,Time)
(Appr2)

t (Appr)
3

t (Appr)
7

t (Confirm)
8

Confirm=0 null Confirm!=0 null

t (SSN,Amt,APR,Time)
1

Amt<$30,000 null Amt>$30,000 null

storeInfo(SSN,Amt,APR,Time)

11
t

14
t

13
t

t (OverDue)
12

OverDue=0 null OverDue!=0 null

checkLoan(SSN)(OverDue)

(a) (b)

Figure 6: (a) STS representation of Approver. (b) STS representation of Checker.

ify goal using high-level generic procedures and customiz-
able constraints, and adopts Golog as a reasoning formal-
ism to satisfy the goal. Our approach, on the other hand,
uses XSB tabled-logic programming environment (Sagonas,
Swift, & Warren 1993) for encoding of the composition al-
gorithm. Tabling in XSB ensures that our composition algo-
rithm will terminate in finite steps as well as avoid repeated
sub-computations.

Furthermore, all the efforts mentioned above suffer from
one major limitation in that they adopt a “single-step
request-response” paradigm for service composition. In
other words, if the goal specification provided by the user to
the composition analyzer cannot be realized using the avail-
able components, the whole process fails. In contrast, our
framework allows the users to iteratively refine the goal in
an intuitive, yet efficient way, to build composite services. In
addition, the existing approaches requires expert knowledge
of various description languages, such as OWL-S, BPEL or
even more complicated labeled transition systems, to de-
scribe and develop composite Web services correctly. In-
stead, we want to reduce the user burden for learning these
technologies, and adopt an abstract model-driven approach
for specification of composite services using graphical mod-
els such as UML state machines which are easy to under-
stand. Although there have been a few efforts in this di-
rection (Pfadenhauer, Dustdar, & Kittl 2005), they focus
mostly on dynamically selecting and binding components as
opposed to automatically generating a service composition
strategy.

Summary and Discussion
We introduce a novel approach for doing automatic compo-
sition of Web services. The framework adopts a symbolic

11
t

14
t

13
t

t (OverDue)
12

checkLoan(SSN)(OverDue)

t (OverDue,Charged)
13

(OverDue=0 & Charged=0)
null

(OverDue!=0 || Charged!=0)
null

checkRecord(SSN)(Charged)

Figure 7: STS representation of NewChecker

transition system-based approach for computing feasible
composition strategies. This formalism allows us to repre-
sent finitely the infinite-state behavior of Web services. Our
technique provides a goal-directed approach for Web service
composition, i.e., we explore only those states/transitions of
the goal and component services which could potentially
be part of a composition strategy. Furthermore, instead
of following the traditional “single-step request-response”
approach for service composition, our framework provides
users with failure-cause notification for refining the goal
specification such that it can be realized by the components.
This paves the way to incremental development of complex
Web services.

An important future avenue of research is to investigate
situations where components can be composed in parallel
(instead of sequential composition as described in this pa-
per). It should be noted the if components need to be com-
posed in a parallel fashion, our solution can be formulated in
exactly the same way. Furthermore, we will not be required
to generate any strategy as all the component services can
be invoked simultaneously. However, the problem is much
more involved and requires further study if the components

need to be composed both in parallel and sequential fash-
ion. In terms of implementation, we plan to work on au-
tomatic translation of the composition strategy into BPEL
process flow code, which could be executed to realize the
composite service. We also intend to develop heuristics for
hierarchically arranging failure-causes to reduce the num-
ber of refinement steps typically performed by the user to
realize a feasible composition. Finally, we would like to
explore ontology-based matchmaking approaches (Pathak
et al. 2005) to select component services for composition
based on their non-functional aspects.

Acknowledgment. This research has been supported in
parts by the Iowa State University Center for Compu-
tational Intelligence Learning and Discovery (http://
www.cild.iastate.edu), NSF-ITR grant 0219699 to
Vasant Honavar, and NSF grant 0509340 to Samik Basu.
The authors would like to thank Robyn Lutz for valuable
discussions in early phases of this work and also for her help
in preparing this manuscript.

References
Alonso, G.; Casati, F.; Kuna, H.; and Machiraju, V. 2004.
Web Services: Concepts, Architectures and Applications.
Springer-Verlag.

Andrews, T.; Curbera, F.; and et al. 2003. Business Pro-
cess Execution Language for Web Services, Version 1.1. In
http://www.ibm.com/developerworks/library/ws-bpel/.

Basu, S.; Mukund, M.; Ramakrishnan, C. R.; Ramakr-
ishnan, I. V.; and Verma, R. M. 2001. Local and Sym-
bolic Bisimulation Using Tabled Constraint Logic Pro-
gramming. In Intl. Conference on Logic Programming,
volume 2237, 166–180. Springer-Verlag.

Berardi, D.; Calvanese, D.; Giuseppe, D. G.; Hull, R.; and
Mecella, M. 2005. Automatic Composition of Transition-
based Semantic Web Services with Messaging. In 31st Intl.
Conference on Very Large Databases, 613–624.

Bultan, T.; Fu, X.; Hull, R.; and Su, J. 2003. Conversation
Specification: A New Approach to Design and Analysis of
e-Service Composition. In 12th Intl. Conference on World
Wide Web, 403–410. ACM Press.

Crane, M., and Dingel, J. 2005. On the Semantics of
UML State Machines: Categorization and Comparision. In
Technical Report 2005-501, School of Computing, Queen’s
University, Canada.

Dustdar, S., and Schreiner, W. 2005. A Survey on Web
Services Composition. International Journal on Web and
Grid Services 1(1):1–30.

Erl, T. 2004. Service-Oriented Architecture: A Field Guide
to Integrating XML and Web Services. Prentice Hall, New
Jersey.

Fu, X.; Bultan, T.; and Su, J. 2004. Analysis of Interacting
BPEL Web Services. In 13th Intl. conference on World
Wide Web, 621–630. ACM Press.

Harel, D. 1987. Statecharts: A Visual Formalism for

Complex Systems. Science of Computer Programming
8(3):231–274.

Hopcroft, J. E., and Ullman, J. D. 1979. Introduction to
Automata Theory, Languages and Computation. Addison-
Welsey.

Hull, R., and Su, J. 2005. Tools for Composite Web Ser-
vices: A Short Overview. SIGMOD Record 34(2):86–95.

Lämmermann, S. 2002. Runtime Service Composition via
Logic-Based Program Synthesis. Ph.D. Dissertation, De-
partment of Microelectronics and Information Technology,
Royal Institute of Technology, Stockholm, Sweden.

Martin, D.; Burstein, M.; Hobbs, J.; and et al. 2004. OWL-
S: Semantic Markup for Web Services, Version 1.1. In
http://www.daml.org/services/owl-s.

McIlraith, S., and Son, T. 2002. Adapting Golog for Com-
position of Semantic Web Services. In 8th Intl. Conference
on Principles of Knowledge Representation and Reason-
ing, 482–493.

Oh, S.-C.; Lee, D.; and Kumara, S. 2005. A Comparative
Illustration of AI Planning-based Web Services Composi-
tion. ACM SIGecom Exchanges 5(5):1–10.

Pathak, J.; Koul, N.; Caragea, D.; and Honavar, V. 2005. A
Framework for Semantic Web Services Discovery. In 7th
ACM Intl. Workshop on Web Information and Data Man-
agement, 45–50. ACM press.

Pfadenhauer, K.; Dustdar, S.; and Kittl, B. 2005. Chal-
lenges and Solutions for Model Driven Web Service Com-
position. In 14th IEEE Intl. Workshop on Enabling Tech-
nologies: Infrastructures for Collaborative Enterprises,
126–131. IEEE Press.

Pistore, M.; Traverso, P.; Bertoli, P.; and Marconi, A. 2005.
Automated Synthesis of Composite BPEL4WS Web Ser-
vices. In 3rd Intl. Conference on Web Services, 293–301.
IEEE Press.

Rao, J.; Kungas, P.; and Matskin, M. 2004. Logic-based
Web Services Composition: From Service Description to
Process Model. In 2nd Intl. Conference on Web Services,
446–453.

Sagonas, K. F.; Swift, T.; and Warren, D. S. 1993. The
XSB Programming System. In Workshop on Programming
with Logic Databases, http://xsb.sourceforge.net.

Traverso, P., and Pistore, M. 2004. Automated Composi-
tion of Semantic Web Services into Executable Processes.
In 3rd Intl. Semantic Web Conference, 380–394. Springer-
Verlag.

Waldinger, R. J. 2001. Web Agents Cooperating Deduc-
tively. In 1st Intl. Workshop on Formal Approaches to
Agent-Based Systems, 250–262. Springer-Verlag.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 2
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

