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Abstract

We present methods for optimally adapting Web processes to
exogenous events while preserving inter-service constraints
that necessitate coordination. For example, in a supply chain
process, orders placed by a manufacturer may get delayed in
arriving. In response to this event, the manufacturer has the
choice of either waiting out the delay or changing the sup-
plier. Additionally, there may be compatibility constraints
between the different orders, thereby introducing the problem
of coordination between them if the manufacturer chooses to
change the suppliers. We adopt the paradigm that an abstract
Web process flow is pre-specified, and service managers are
tasked with interacting with the actual Web services. We fo-
cus on the decision making models of the managers who must
adapt to external events while satisfying the coordination con-
straints. We use Markov decision processes as the underlying
models for the managers, and show how they can be formu-
lated offline resulting in policies that guide the managers’ ac-
tions. Our methods range from being centralized and globally
optimal in their adaptation but not scalable, to decentralized
that is suboptimal but scalable to multiple managers. We also
develop a hybrid approach that improves on the performance
of the decentralized approach with a minimal loss of scalabil-
ity.

Introduction
Recently, there is growing interest in using Web services
(WS) as the key building blocks for creating inter- and
intra-enterprise business processes. They use the services-
oriented architecture (Casati et al. 2000) as a point of de-
parture, and are called Web processes. Previous work on
Web processes has focused largely on configuring or formu-
lating the process flow (Agarwal et al. 2005; Aggarwal et
al. 2004; Doshi et al. 2005; Zeng et al. 2003) and de-
veloping the associated languages for representing the Web
processes (OASIS ). In addition to the problem of composi-
tion of Web processes, we must also address the challenges
of adaptation, optimality, and recoverability. Together these
properties contribute toward more agile and dynamic Web
processes. For example, consider a supply chain process
where a manufacturer is awaiting merchandise that was or-
dered previously. If the shipment is delayed, the manufac-
turer may wait out the delay or it’s process may adapt by
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possibly canceling the order and choosing a different sup-
plier.

In this paper, we address the problem of optimally
adapting Web processes to external events. Adaptation in
processes is further complicated in the presence of con-
straints between services. An example constraint is when the
merchandise ordered at different points in the process must
be compatible. For example, in a supply chain process that
involves ordering computer parts, RAM that is ordered from
a memory chip provider service must be compatible with the
motherboard that is ordered from another service. Hence,
changing the service that provides RAM (perhaps due to a
delay in satisfying the order) may need to be coordinated
with a change in the service that provides the motherboard.

We present three methods for adapting the process in the
face of external events and coordination constraints between
participating services. Our methods improve on the previ-
ous work by accounting for the uncertainty of events and
emphasizing cost-based optimality of decisions. We adopt
the paradigm that abstract process flows are pre-defined and
proxies, whom we call service managers (SMs), are used to
discover and interact with the required Web services (Ag-
garwal et al. 2004). We focus on the decision models for the
managers and for this purpose use stochastic optimization
frameworks called Markov decision processes (MDPs) (Put-
erman 1994). The input to our models is a stochastic state
transition machine which represents the possible transitions
for each SM, and the costs of the transitions. In our first
method, we adopt a global view of the process and formulate
a multi-agent MDP model for controlling the SMs. This cen-
tralized approach guarantees that the adaptation in response
to external events, while respecting the coordination depen-
dencies is globally optimal. However, this approach does not
scale well to a large number of SMs. To address the scala-
bility issue, we present a decentralized approach by formu-
lating a MDP model for each individual SM in the process
and a mechanism for coordinating between the SMs. How-
ever, this approach is no longer globally optimal, and we
provide a worst case bound for the loss in optimality. A nat-
ural extension is to develop a hybrid approach that follows
a middle path between the centralized and decentralized ap-
proaches. We briefly outline one such hybrid approach and
demonstrate that its performance is better than the decentral-
ized one. We experimentally evaluate our methods using an



example supply chain scenario, and analyze the different de-
cisions that are made by the managers for varying dynamism
in the environment.

Related Work
Much of the earlier work on adaptation concentrated on
manually changing traditional processes at both the logic
and instance levels. In (Kochut et al. 2003; Reichert &
Dadam 1998) graph based techniques were used to evalu-
ate the feasibility and correctness of changes in the control
flow of running instances. Ellis et al. (Ellis, Keddara, & Ro-
zonberg 1995) used petri-nets for formalizing the instance
level changes. In a somewhat similar vein, Aalst and Bas-
ten (van der Aalst & Basten 2002) proposed a petri-net based
theory for process inheritance which categorized the types of
changes that do not affect other interacting processes. More
recently, Muller et al. (Muller, Greiner, & Rahm 2004) used
event-condition-action rules to make changes in running in-
stances. None of these papers have considered the issue of
long term optimality of the adaptation, as we do with the
help of stochastic optimization frameworks. Our work also
addresses the added complexity of inter-service dependen-
cies in a process. Isolated attempts to address inter-task
dependencies in processes include (Attie et al. 1993) in
which dependencies at the transactional level were enforced
using scheduling. In this work, the focus was on gener-
ating feasible schedules without emphasis on being opti-
mal. This and other works (Krishnakumar & Sheth 1995;
Rusinkiewicz & Sheth 1995) used task skeletons to repre-
sent the transactional semantics of databases and Web ser-
vices. Our use of probabilistic finite state machines (Markov
chains) is a generalization of the task skeletons as used pre-
viously.

Example: Supply Chain
Processes must continuously adapt to stimuli from a dy-
namic environment to remain optimal. The adaptation is
further complicated when different parts of the process are
inter-dependent and must coordinate with each other. In or-
der to motivate this problem, consider Dell’s supply chain
process, as presented in (Kapuscinski et al. 2004). As
pointed out in (Kapuscinski et al. 2004), it is crucial for
Dell to manage optimal inventory levels of suppliers’ inven-
tory centers called revolvers. Dell incurs significant costs if
parts in the revolvers run out and its computer production is
delayed. On the other hand, a surplus of parts is detrimental
to the suppliers. Clearly, an adaptive supply chain process
is needed that accounts for delays and switches suppliers if
the risk of production delay outweighs the cost of changing
suppliers.

We focus on a small but interesting component of the sup-
ply chain to illustrate our methods and evaluate them. We
consider the supply chain process of a computer manufac-
turer which operates on minimal inventory, and therefore
incurs significant costs if its order is delayed. The com-
puter manufacturer typically orders in bulk different com-
puter parts from different suppliers. Since the parts must be
assembled into a single computer, they must be compatible
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Figure 1: An example supply chain process of a computer manu-
facturer.

with each other. For example, the RAM must inter-operate
with the motherboard (see Fig. 1). Therefore, if the deliv-
ery of the RAM is delayed and the manufacturer chooses
to change the RAM supplier, the supplier of the mother-
board must also be changed to preserve the compatibility
constraint. 1

As an example of the type of choice involved in this
process, in deciding to change the RAM supplier the man-
ufacturer must take into account the consequences in terms
of cost of ordering the motherboard from a new compatible
supplier too. Of course, the cost of switching suppliers will
vary with the state of the process. For example, if the deliv-
ery of the RAM is delayed and the motherboard has arrived,
then a decision to change the RAM supplier would entail
returning back the motherboard and changing the mother-
board supplier. Such a decision might prove more costly
than waiting out the delay in receiving the RAM. Addition-
ally, the new supplier may also suffer a delay. The problem
is to adapt optimally to the external events like delay while
respecting the constraints.

Web Process Architecture
We adopt METEOR-S (Aggarwal et al. 2004; Verma et
al. 2005b) as the services-oriented architecture, within
which we implement the Web process. In this section, we
briefly outline the relevant components of the architecture,
and refer the interested reader to (Aggarwal et al. 2004;
Verma et al. 2005b) for further details. METEOR-S creates
a virtual layer over a WS-BPEL (OASIS ) Web process en-
gine that allows dynamic configuration and run-time execu-
tion of abstract Web processes. This is done with the help of
an execution environment and a configuration module. The
execution environment consists of SMs that control the in-
teraction with a particular discovered WS(s). An optional
process manager (PM) is responsible for global oversight of
the process. From the implementation point of view, when
the process engine makes a call to a WS – described using
WSDL-S (Akkiraju et al. ) – it is routed to the SM. Based
on the semantic template associated with the call, the SM
utilizes the configuration module to discover services that
match the template, and identify the compatible sets.

While the SMs in METEOR-S exhibit the capabilities of

1It’s possible that the RAM from a new supplier might be com-
patible with the existing motherboard, or the same RAM supplier
can provide another compatible RAM in time. However, to focus
on the coordination constraint, we do not consider these alterna-
tives, but they can easily be accommodated.



dynamic discovery and binding of WSs to abstract processes
and possess some recovery capabilities from service failures,
they are unable to adapt to logical failures in their interac-
tions with WSs. Logical failures include domain specific ap-
plication level failures such as a delay in delivery of ordered
goods in a supply chain process. In this paper, we present
approaches that allow the METEOR-S framework to adapt
to logical failures.

Background: Markov Decision Processes
Markov decision processes (MDPs) (Puterman 1994) are
well known and intuitive frameworks for modeling sequen-
tial decision making under uncertainty. In addition to mod-
eling the uncertainty that pervades real world environments,
they also provide a way to capture costs and thereby guar-
antee cost-based optimality of the decisions. An MDP is
formally a tuple:

MDP = 〈S, PA, T,C,OC〉

where S is the set of states of the process. PA : S → P(A)
is a function that gives the set of actions permissible from a
state. Here, A is the set of possible actions and P(A) is its
power set. T : S × A × S → [0, 1] is the Markovian tran-
sition function which models the probability of the resulting
state on performing a permitted action from some local state
(Pr(s′|s, a)). C : S × A → R is the cost function which
gives the cost of performing an action in some state of the
process. The parameter, OC, is the optimality criterion. In
this paper, we minimize the expected cost over a finite num-
ber of steps, n ∈ N, also called the horizon. Additionally,
each unit of cost incurred one step in the future is equivalent
to γ units at present. γ ∈ [0, 1] is called the discount factor
with lower values of γ signifying less importance on future
costs.

We solve the MDP offline to obtain a policy. The policy
is a prescription of the action that is optimal given the state
of the process and the number of steps to go. Formally, a
policy is, π : S × N → A where S and A are as defined
previously, and N is the set of natural numbers. The advan-
tage of a policy-based approach is that no matter what the
state of the process is, the policy will always prescribe the
optimal action. In order to compute the policy, we associate
each state with a value that represents the long term expected
cost of performing the optimal policy from that state. Let
V : S × N → R be the function that associates this value to
each state. Then,

Vn(s) = min
a∈PA(s)

Qn(s, a)

Qn(s, a) = C(s, a) + γ
∑
s′

T (s′|s, a)Vn−1(s
′) (1)

Note that ∀s∈S , V0(s) = 0. Here, n ∈ N is the finite
number of steps to be performed. The optimal action from
each state is the one that optimizes the value function:

πn(s) = argmin
a∈PA(s)

Qn(s, a) (2)

Centralized Approach: M-MDP
Our first approach adopts a global view of the Web process;
we assume that a central process manager (PM) is tasked
with the responsibility of controlling the interactions of the
SMs with the WSs. The advantage of a centralized approach
to control is that we are able to guarantee global optimal-
ity of the service managers’ decisions while respecting the
coordination constraints. We illustrate the approach using
Fig. 2
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Figure 2: The PM does the global decision making for adaptation
using the M-MDP model.

Model
We model the PM’s decision problem as a multi-agent MDP
(M-MDP). M-MDPs generalize MDPs to multi-agent set-
tings by considering the joint actions of the multiple agents.

For the sake of simplicity, we consider two SMs, i and j.
Our model may be extended to more SMs in a straightfor-
ward manner. We formalize the PM as a M-MDP:

PM = 〈S, PA, T,C,OC〉

where: • S is the set of global states of the Web process.
Often it is possible to define the global state using a factored
representation where the factors are the SMs’ local states.

Definition 1 (Factored State) The global state space may
be represented in its factored form: S = Si × Sj . Here,
each global state s ∈ S is, s = 〈si, sj〉, where si ∈ Si is the
local state (or the partial view) of SM i, and sj ∈ Sj is the
local state of SM j.

Definition 2 (Locally Fully Observable) A process is lo-
cally fully observable if each SM fully observes its own state,
but not the state of the other manager.

Since the global state is factored with each manager’s lo-
cal state as its components, the PM may combine the local
observations so as to completely observe the global state.
• PA : S → P(A) where A = Ai × Aj is the set of

joint actions of all the SMs and P(A) is the power set of A.
The actions include invocations of WS operations. PA(s)
is as defined previously in Section . Using Definition 1, we
may decompose PA(s) as: PA(s) = PAi(si) × PAj(sj)
where PAi(si) and PAj(sj) are the sets of permitted ac-
tions of the SMs i and j from their individual states si and
sj , respectively.



• T : S ×A× S → [0, 1] is the transition function which
captures the global uncertain effect of joint actions of the
SMs. Often the actions of each SM affect only its own state
and the global state space being factored, we may decom-
pose the global transition function into its components.

Definition 3 (Transition Independence) The global tran-
sition function, T (s′|s, a), a ∈ PA(s), may be decomposed:

T (s′|s, a) = Pr(〈s′i, s
′
j〉|〈si, sj〉, 〈ai, aj〉)

= Pr(s′i|s
′
j , 〈si, sj〉, 〈ai, aj〉) · Pr(s′j |〈si, sj〉, 〈ai, aj〉)

= Ti(s
′
i|si, ai) · Tj(s

′
j |sj , aj)

(3)
where Ti, Tj are the individual SM’s transition functions,
ai ∈ PAi(si), aj ∈ PAj(sj), and s′i and s′j are the
next states of i and j, respectively. In other words, we as-
sume that, Pr(s′i | 〈si, sj〉, 〈ai, aj〉 ,s′j) = Pr(s′i|si, aj), and
Pr(s′j | 〈si, sj〉, 〈ai, aj〉) = Pr(s′j |sj , aj), because each
SM’s next state is influenced only by its own action and its
current state.

• C : S × A → R is the cost function. This function
captures the global cost of invoking the WSs by the SMs
based on the global state of the process. These costs may
be obtained from the service level agreements (Ludwig et
al. 2003) between the enterprise whose process is being
modeled and the service providers. In our example, the cost
function would capture not only the costs of invoking the
WSs, but also the cost of waiting for the delayed order and
changing the supplier. As we mentioned before, the possible
change of supplier by one SM must be coordinated with the
other SM, to preserve the product compatibility constraints.
Coordination is enforced by incurring a very high global cost
if only one SM changes its supplier. This high cost signifies
the penalty of violating the product compatibility constraint.
• OC is the optimality criterion as defined in Section .
Let us utilize the M-MDP formalism introduced previ-

ously, to model the supply chain example.

Example 1 An example global state of the process is
〈OD̄C̄SR̄︸ ︷︷ ︸

i

, ODC̄SR̄︸ ︷︷ ︸
j

〉. This global state denotes that i has

placed an order (O) that has not yet been delayed (D̄), the
supplier has not been changed (C̄S), and i has not yet re-
ceived the order (R̄). SM j has placed an order that has
been delayed but not changed its supplier. Possible actions
for each SM are the same: Ai = Aj = { Order (O), Wait
(W), ChangeSupplier (CS) }. The action Order denotes
the invocation of the relevant WS(s) of the chosen supplier
to place an order, Wait is similar to a no operation (NOP),
and ChangeSupplier signifies the invocation of the relevant
WSs to cancel the order or return it (if received), and select
a new compatible supplier. A partial cost function is shown
in Fig. 3(b), and the transition function for an individual SM
is discussed next.

Exogenous Events
In our example supply chain scenario, the manufacturer
must act in response to several events such as a notification
of delay from the supplier and a notification of receipt of
the order. In order to ensure that the SM responds to these

events optimally, they must be a part of our model. Since
the events are external to the Web process, we label them as
exogenous.

In order to model the exogenous events, we perform two
steps: (1) We specify expanded transition functions for the
SMs i and j. In other words, TE

i : Si×Ai×Ei×Si → [0, 1],
where Ei is the set of mutually exclusive events, and rest of
the symbols were defined previously. For our example, Ei =
{Delayed, Received, None}. The expanded transition func-
tion models the uncertain effect of not only the SM’s actions
but also the exogenous events on the state space. We show
the expanded transition function for the SM i in Fig. 3(a).
(2) We define a’priori a probability distribution over the oc-
currence of the exogenous events conditioned on the state of
the SM. For example, let Pr(Delayed|OD̄C̄SR̄ ) = 0.45 be
the probability that SM i’s order for RAM is delayed.

We obtain the transition function, Ti, that is a part of the
model defined in Section (see Eq. 3), by marginalizing or
absorbing the events. Formally,

Ti(s
′
i|si, ai) =

∑
e∈Ei

TE
i (s′i|si, ai, e)Pr(e|si)

Here, TE
i is obtained from step (1) and Pr(e|si) is specified

as part of the step (2) above. The marginalized transition
function for the SM i is shown in Fig. 4.
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Figure 4: A (probabilistic) state transition diagram illustrating the
transition function, Ti, for the SM i. Some of the transitions due
to the actions are now non-deterministic. The numbers denote the
probabilities with which the associated transitions occur.

Global Policy Computation
Solution of the process manager’s model described in Sec-
tion results in a global policy, π∗ : S ×N → A. The global
policy prescribes the optimal action that must be performed
by each SM given the global state of the Web process and
the number of steps to go. Computation of the global pol-
icy is analogous to the Eqs. 1 and 2, with s being the global
state of the Web process, a the joint action of the SMs, and
T (s′|s, a) may be decomposed using Eq. 3. During process
execution, each SM sends its local state to the PM, who uses
the joint state to index into the global policy. The prescribed
actions are then distributed to the corresponding SMs for ex-
ecution.
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State 〈W, W 〉 〈W, CS〉 〈CS, W 〉 〈CS, CS〉

〈OD̄C̄SR̄, OD̄C̄SR̄〉 0 550 550 350

〈OD̄C̄SR̄, ODC̄SR̄〉 200 450 750 250

〈OD̄C̄SR̄, OD̄C̄SR〉 0 550 550 350

〈OD̄C̄SR̄, ODC̄SR〉 0 460 550 260

〈ODC̄SR̄, OD̄C̄SR̄〉 200 750 450 250

〈ODC̄SR̄, ODC̄SR̄〉 400 650 650 150

〈ODC̄SR̄, OD̄C̄SR〉 200 750 450 250

〈ODC̄SR̄, ODC̄SR〉 200 710 450 160

〈OD̄C̄SR, OD̄C̄SR̄〉 0 550 550 350

〈OD̄C̄SR, ODC̄SR̄〉 200 450 750 250

〈OD̄C̄SR, OD̄C̄SR〉 -50 550 550 350

〈OD̄C̄SR, ODC̄SR〉 -50 460 550 260

〈ODC̄SR, OD̄C̄SR̄〉 0 550 460 260

〈ODC̄SR, ODC̄SR̄〉 200 450 460 160

〈ODC̄SR, OD̄C̄SR〉 -50 550 460 260

〈ODC̄SR, ODC̄SR〉 -50 460 460 170

(b)

Figure 3: (a) A (probabilistic) state transition diagram illustrating the expanded transition function, T
E

i , for the SM i. Transitions due to
actions are depicted using solid lines, and these are deterministic. Exogenous events are shown dashed. For clarity, the occurrence of no
event is not shown. The numbers denote example probabilities of occurrence of the events conditioned on the states. (b) The partial cost
function for the PM. We show the costs for the more interesting actions of waiting and changing the supplier, for a subset of the states. The
cost function penalizes those action combinations where only one SM changes the supplier thus violating the compatibility constraint.

While the centralized approach requires the specification
of a global model of the process, the advantage is that we can
guarantee the optimality of the global policy. In other words,
no other policy for controlling the SMs exists that will incur
an expected cost less than that of the global policy. Conse-
quently, the global policy resolves the coordination problem
between the SMs in an optimal manner. Theorem 1 formally
states this result. Due to the lack of space, the proof of this
theorem is given in (Verma et al. 2005a).

Theorem 1 (Global Optimality) The global policy of the
PM, π∗, is optimal for the finite horizon discounted opti-
mality criterion.
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Figure 5: Example coordination graphs. (a) The worst case coor-
dination graph where all the SMs must coordinate with each other.
(b) More realistic case, where only subsets of SMs must coordi-
nate.

Let us consider a Web process where there are, N > 2,
SMs. In the worst case, all the SMs may have to coor-
dinate with each other due to, say, the product compat-
ibility constraints (Fig. 5(a)). For this case, Eq. 1 be-
comes, Vn(s) = min

a∈PA(s)
Qn(s, a), where a ∈ A, and

A = Ai × Aj × Ak × . . . × An. Here, Ai, Aj , Ak,
. . . , An are the action sets of the SMs i, j, k, . . . , n,

respectively. More realistically, only subsets of the SMs
may have to coordinate with each other, as shown in
Fig. 5(b). In this case, Vn(s) = min

a
Q1

n(s, 〈ai, aj , ak, al〉)

+ Q2
n(s, 〈am, an〉) = min

〈ai,aj ,ak,al〉
Q1

n(s, 〈ai, aj , ak, al〉) +

min
〈am,an〉

Q2
n(s, 〈am, an〉).

Decentralized Approach: MDP-CoM

While adopting a global view of the process guarantees a
globally optimal adaptation and coordination between the
SMs, the approach does not scale well to many services in
the process. This is because the decision making by the
process manager must take into account the possible actions
of all the coordinating SMs. Of course, this is exponential
in the number of SMs. As we mentioned previously, in the
worst case this might involve all the SMs. In this section, we
present a decentralized approach that scales reasonably well
to multiple managers, but in doing so we lose the global op-
timality of the adaptation. This approach is made possible
due to the properties of transition independence and local
full observability exhibited by the process.

Our approach is based on formulating a MDP model for
each individual SM, thereby allowing each SM to make its
own decision. We assume that all the SMs act at the same
time step, and actions of the other SMs are not observable.
Since coordination between the SMs that reflects the inter-
service dependency is of essence, we define a mechanism for
ensuring the coordination. Each SM, in addition to fully ob-
serving its local state, also observes the coordination mech-
anism (CoM) perfectly (Fig. 6).
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Model

We model each SM’s decision making process as a MDP.
The MDP model for a SM, say i, is:

SMi = 〈Si, PAi, Ti, Ci, OCi〉

where: • Si is the set of local states of the SM i. • PAi :
Si → P(Ai), gives the permissible actions of the SM for
each of its local states. An action may be the invocation and
use of a WS. • Ti : Si × Ai × Si → [0, 1], is the local
transition function. • Ci : Si × Ai → R, is the SM i’s
cost function. This function gives the cost of performing
an action from some state of the SM. • OCi is the SM i’s
optimality criterion. In this paper, we assume that each of
the SMs optimizes w.r.t. a discounted finite horizon, though
in general they could have different optimality criteria. For
our supply chain example, the MDP for the SM i is given
below.

Example 2 An example local state of the SM is ODC̄SR̄

which denotes that i has placed an order that has been de-
layed, but it has not changed its supplier. Possible actions
for the SM i are: Ai = { Order (O), Wait (W), Change-
Supplier (CS) }. The semantics of these actions are as de-
fined previously in Example 1. The transition function was
shown previously in Fig. 4, and the partial cost function is
shown in Table. 1.

State W CS

OD̄C̄SR̄ 0 200

ODC̄SR̄ 250 150

OD̄C̄SR -50 250

ODC̄SR -50 175

Table 1: A partial cost function for the SM i.

The exogenous events that include a delay in receiving the
order and a notification of receipt of the order, are handled
in a similar manner as described in Section . In other words,
we expand the SM’s local transition function to include the
events. As we mentioned before, the events may alter the
local state of the SM.

Coordination Mechanism
In our decentralized approach, each SM arrives at its own
decision on how to best respond to the exogenous events.
Since the decision making is local, we must define a mech-
anism to ensure coordination between the SMs in order to
preserve the coordination constraint. As an example, if the
SM that is ordering RAM decides to change its supplier, then
the SM ordering the motherboard must follow suit, no mat-
ter whether it’s an optimal decision for the other SM. This is
precisely the source of the loss in optimality for our decen-
tralized approach.

While mechanisms for coordinating between the SMs
manifest in various forms, one such mechanism is a finite
state machine (FSM), whose state is perfectly observable
to all the SMs. We may define the FSM to have two gen-
eral states: an uncoordinated (U) state and a coordinated
(C) state. The state of the FSM signifies whether the SMs
must coordinate. Formally, the FSM is a tuple 〈Y,A, τ〉,
where Y is the set of states of the FSM, Y = {U, C}. A is
the set of joint actions of the SMs defined previously. Here,
τ : Y × A × Y → [0, 1] is the transition function of the
FSM. Initially the actions of the SMs are uncoordinated –
each SM is free to follow the optimal action conditioned on
its local state. We assume that if a SM decides to change the
supplier, it must signal its intent first. 2 When any SM sig-
nals its intent to change the supplier, the FSM transitions to
the coordinated state. When the FSM is in this state, all SMs
are required to change their suppliers immediately. Their ac-
tions will also reset the FSM back to the uncoordinated state.
We show the FSM in Fig. 7.

U C

 < intent,* >  < *,intent >

< *,* > < CS , CS >

< ?,? >

Figure 7: FSM for coordinating between the SMs. Transitions
(solid arrows) are caused by the joint actions of the SMs. ’*’ indi-
cates any action of a SM, while ’?’ indicates the remaining actions.
The dashed arrow gives the action rule for each SM when the FSM
is in that state.

Expanded Model
To ensure coordination, the CoM must be included in the
SM’s decision making process. We do this by combining the
MDP model that was defined previously in Section , with the
CoM and call the new model, MDP-CoM. Within the MDP-
CoM, the state space is expanded to include the states of the
CoM as well: Ŝi = Si × Y . The action choices available
to the SM are, A′

i= Ai ∪ {Intent}. To ensure that the SM
changes the supplier iff the FSM is in the coordinated (C)
state, we define the function, P̂Ai(〈∗, C〉) = CS, and re-
move the choice of changing the supplier when the FSM is
in the uncoordinated state, P̂Ai(〈si, U〉) = PAi(si)/CS.
Here, ’*’ stands for any local state of the SM i.

2This behavior would require an additional action denoting the
intent, which we address later.



The transition function is the joint defined as: T̂i : Ŝi ×

Ai × Ŝi → [0, 1]. Here,

T̂i(〈s
′
i, y

′〉|ai, 〈si, y〉) = Pr(s′i|y
′, ai, 〈si, y〉)Pr(y′|ai, 〈si, y〉)

= Ti(s
′
i|ai, si)Pr(y′|ai, y)

(4)
Since the next state of the CoM depends on actions
of both the SMs, and the SM i does not observe the
other SM’s actions, we must average over the other’s ac-
tions: Pr(y′|ai, y) =

∑
aj

Pr(y′|ai, aj , y)Pr(aj |ai, y) =∑
aj

τ(y′|ai, aj , y)Pr(aj |y)

When the state of the CoM is C, the SM i knows that
everyone must change their respective suppliers, and there-
fore Pr(aj = CS|y = C) = 1. On the other hand, when
the state is U , we assume that i has no knowledge of the
other’s decision making model and therefore assumes that
each of SM j’s actions are equally probable. The cost func-
tion, Ĉi : Ŝi × Ai → R, gives the cost of acting from the
combined local state and the state of the CoM. However, for
our purposes, the state of the CoM does not matter in decid-
ing the cost.

Local Policy Computation

We associate with each local state of the SM and the state
of the CoM, a value function that gives the expected cost
of following an optimal policy from that state. Equation 1
forms the basis for computing the value function, while
Eq. 2 computes the optimal policy for the MDP-CoM model,
πi : Ŝi × N → Ai. Note that in these equations, we use the
expanded model described in Section .

While the decentralized approach scales well for mul-
tiple SMs since each SM does its own decision making,
the trade off is our inability to guarantee global optimal-
ity. This is because, a SM’s decision does not take into
account the state, actions, and costs of the other SM. For
the supply chain example, SM i’s intent to change the sup-
plier would necessitate a change of supplier for j as well
irrespective of the fact that the action may not be optimal
for j. We calculate a bound for the error that would be
introduced in this case. Let εn be the error bound, then,
εn = ||V i

n − V̂ i
n||∞, where || · ||∞ is the max norm, V i

n

is the value function for the MDP model, and V̂ i
n is the

value function for the MDP-CoM model. The difference
can be bounded as, εn =

(Ci,max−Ci,min)(1−γn)
1−γ

, where
Ci,min and Ci,max are the least and maximum costs, respec-
tively. Note that a SM may suffers the maximum loss in op-
timality when trying to respect the coordination constraint.
Due to lack of space, we give the proof of this error bound
in (Verma et al. 2005a). In order to calculate the loss with
respect to the globally optimal policy, for the simple case
where C(s, a) = Ci(si, ai)+Cj(sj , aj), the error bound εn

also represents the worst case loss from global optimality.
We note that this error bound does not scale well to many
SMs. In general, for N SMs, the worst case error bound is
(N − 1)εn.

Hybrid Approach: H-MDP-CoM
Our hybrid approach uses the MDP-CoM model as a point
of departure, but improves on its error bounds by allowing
the PM to step in during runtime and exercise some control
over the SMs’ actions when coordination is required. For
example, when any SM intends to change the supplier, the
PM decides whether or not to allow the action based on its
global optimality for all the SMs.

Model
In order to enable the PM’s decision, each SM sends to the
PM, its action-value function for the optimal action as well
as the other action alternatives. For the supply chain ex-
ample, when an SM, say i, declares its intent to change
its supplier, it must send to the PM, Qi

n(〈si, y〉, CS) and
Qi

n(〈si, y〉,W ), where si and y are the current states of the
SM i and the CoM, respectively, and Qi

n is the action-value
function. We denote this action as sendQ, and is added to
the previously defined space of actions of each SM. 3 This
sequence of behavior is enforced by the CoM, as shown in
Fig. 8. Since the decision making is shared with the PM, the
transitions of the CoM are also dependent on the PM’s ac-
tions. Specifically, at state M of the CoM, if the PM decides
that all the SMs should change their suppliers, the mecha-
nism will transition to state C2. On the other hand, the PM
may ask the SM that declared its intent to wait out the delay
represented by state C1 of the CoM.

U < intent,*,* >
< *,intent,* >

< sendQ , sendQ >

< ?,? >

M

C1

C2

< sendQ,sendQ,W >

< sendQ,sendQ,CS >

< *,*,*>

< *,*,* >

< W >

< CS , CS >

Figure 8: The CoM for our hybrid approach.

Hybrid Policy Computation
Computing the local policy for each SM is analogous to the
corresponding computation in the MDP-CoM model. The
primary difference is in the generation of the local transition
function, T̂i, shown in Eq. 4 that encompasses the transi-
tions of the CoM. In addition to averaging over the actions
of the other SM, i must also average over the PM’s possible
actions. However, the averaging is considerably simplified
when we observe that the PM’s action matters only when
the CoM is in the M state. The net result is a local policy
which defers the deliberation over the coordinating action to
the PM.

The issue remaining to be resolved is the runtime deci-
sion process of the PM, when any of the SM declares its
intent to do a coordinating action. For our example, if i

3We assume that the SMs are able to communicate with the PM
without any loss of information, though there may be a communi-
cation cost.



does so, then the PM opts for a CS, if Qi
n(〈si,M〉, CS) +

Qj
n(〈sj ,M〉, CS) > Qi

n(〈si,M〉,W ) + Qj
n(〈sj ,M〉, a∗

j ),
where a∗

j is the SM j’s optimal action at 〈sj ,M〉. For this
case, the CoM transitions from state M to C2. Otherwise,
the PM instructs i to simply wait out the delay (W), because
this is less expensive globally (in the long term) than all the
SMs changing their suppliers. The CoM then transitions
from state M to C1.

Empirical Evaluation
We empirically evaluate our methods using the supply chain
introduced in Section . We implemented all of the models
within the METEOR-S framework described previously in
Section . A method to represent inter-service coordination
constraints such as ours, in WS-BPEL is given in (Verma et
al. 2004). As part of our evaluation, we first show that the
value function of the M-MDP model (Section ) is monotonic
and converges over an increasing number of horizons. Nat-
urally, this implies that the policy, π∗, of the PM also con-
verges. The convergence is reflected by the gradual flatten-
ing of the curves in the plot shown in Fig. 9. Though we
show the values for a subset of the states, this behavior is
true for all the states. Additionally, similar convergences are
demonstrated by the value functions of the MDP-CoM and
the hybrid models as well.
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Figure 9: Convergence of the value function of the M-MDP
model.

The second part of our evaluation focuses on studying the
adaptive behaviors of our models in environments of varying
volatility. These environments are characterized by increas-
ing probabilities of occurrence of an external event such as a
delay, and increasing penalties to the manufacturer for wait-
ing out the delay. Our benchmark (null hypothesis) is a ran-
dom policy in which each SM randomly selects between its
actions, and if it elects to change the supplier, all SMs fol-
low suit to ensure product compatibility. Our methodology
consisted of plotting the average costs incurred by execut-
ing the policies generated by solving each of the models for
different probabilities of receiving a delay event and across
varying costs of waiting out a delay. The costs were aver-
aged over a trial of 1000 runs and each trial was performed
10 times.

We show the plots for the different costs of waiting
in case of a delay in Fig. 10. We computed all of our
policies for 25 steps to go. When the cost of wait-
ing for each SM in response to a delay is low, as in

Fig, 10(a), all of our models choose to wait out the delay.
For example, π∗

n (〈ODC̄SR̄, ODC̄SR̄〉) = 〈W,W 〉, and
πi

n(〈ODC̄SR̄, U〉) = πj
n(〈ODC̄SR̄, U〉) = W . Of course,

the random policy incurs a larger average cost since it ran-
domizes between waiting and changing the suppliers. When
the penalty for waiting out the delay is 300 which is greater
than the cost of changing the supplier (Fig. 10(b)), the be-
haviors of the models start to differ. Specifically, due to
its global view of the process, the M-MDP model does the
best – always incurring the lowest average cost. For low
probabilities of the order being delayed, the M-MDP policy
chooses to change the supplier in response to a delay, since
it’s less expensive in the long term. However, as the chance
of the order being delayed increases, the M-MDP policy re-
alizes that even if the SMs change the suppliers, the prob-
ability of the new suppliers getting delayed is also high. 4

Therefore it is optimal for the SMs to wait out the delay
for high delay probabilities. The performance of the MDP-
CoM reflects its sub-optimal decision-making. In particular,
it performs slightly worse than the random policy for low
delay probabilities. This is due to the SM i always choosing
to change the supplier in response to the delay and the CoM
ensuring that the SM j changes its supplier too. For states
where j has already received the order, this action is costly.
Note that the random policy chooses to change the supplier
only some fraction of the times. For larger delay probabil-
ities, the MDP-CoM policy adapts to waiting in case of a
delay, and hence starts performing better than the random
policy. The performance of the hybrid approach is in be-
tween that of the M-MDP and the MDP-CoM models, as we
may expect. By selecting to change the suppliers only when
it is optimal globally, the hybrid approach avoids some of
the pitfalls of the decentralized approach. For an even larger
cost of waiting out the delay, as in Fig. 10(c), the MDP-CoM
policy chooses to change the supplier up to a delay proba-
bility of 0.5, after which the policy chooses to wait when
delayed. As we mentioned previously, a large delay proba-
bility means that the expected cost of changing the supplier
is large since the new supplier may also be delayed with a
high probability. Hence, the policy chooses to wait out the
delay, rather than change the supplier and risk being delayed
again.

In summary, the centralized M-MDP model for the
process manager performs the best since it has complete
knowledge of the states, actions, and costs of all the SMs.
This supports our Thm. 1. The MDP-CoM does slightly
worse than the random policy for low delay probabilities,
but improves its performance thereafter. The maximum dif-
ference between its average behavior and that of the globally
optimal M-MDP model is 234.8 which is much less than the
difference calculated using our theoretical error bound, εn

= 2784.6. This is because of the worst case nature of our
error bound analysis. The hybrid approach does better than
the MDP-CoM and the random policy, but worse than the

4We assume for simplicity that the new supplier also has the
same probability for being delayed. In general, different suppliers
would have different probabilities of being delayed in meeting the
order.
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Figure 10: Line plots showing the average costs incurred for increasing probabilities of the order being delayed and increasing costs of
waiting for the order in response to the delay. The vertical lines in each plot show the standard deviations.

M-MDP. We also point out that the maximum percentage
improvement of our M-MDP model in comparison to the
random policy was 31.3%.
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Figure 11: Run times for solving the models and generating the
policies. The times were computed on a PIV 3GHz, 1 GB RAM,
and Win XP.

Finally, we address the scalability of our models to larger
number of SMs. We show the time taken to solve the differ-
ent models in a histogram plot, Fig. 11, for increasing num-
ber of SMs. As we mentioned previously, the complexity of
the M-MDP model is exponential with respect to the number
of SMs. This is demonstrated by the exponential increases in
time taken for computing the M-MDP policy as the number
of SMs increases from 2 to 5. In comparison, the time taken
to solve the MDP-CoM and the hybrid models increases lin-
early. For the latter models, we report the total time taken
to compute the policies for all the SMs. More realistically,
for the decentralized and the hybrid approaches, the models
for the SMs may be solved in parallel, and hence there is no
increase in the net run times. Note that the CoM also scales
well to multiple SMs. Specifically, no increase in the num-
ber of states of the FSM is required for more SMs, though
the communication overhead increases.

Conclusion
As businesses face more dynamism and processes become
more complex, methods that address adaptation while pre-
serving the complex inter-service constraints have gained
importance. Past approaches to this problem have tackled
either adaptation to exogenous events or enforcing inter-
service constraints, but not both. Additionally, these ap-
proaches have ignored optimality considerations. In this pa-

per, we presented a suite of stochastic optimization based
methods for adapting a process to exogenous events while
preserving simple coordination constraints. These methods
were presented within the METEOR-S framework of Web
processes. In our first method, we adopted a global view of
the process and formulated the M-MDP model that guar-
anteed global optimality in adapting while preserving the
constraints. To address the scalability issue, we presented
a decentralized approach, MDP-CoM, and bounded its loss
of optimality. Our third approach synergistically combines
the two approaches so as to promote scalability as well as
curtail the worst case loss of optimality. We experimentally
evaluated their performances in environments of varying dy-
namism.
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