
Composing Nested Web Processes Using Hierarchical Semi-Markov 

Decision Processes  

Haibo Zhao, Prashant Doshi 

LSDIS Lab, Department Of Computer Science 

University of Georgia 

Athens, GA 30602 

{zhao, pdoshi}@cs.uga.edu 

Abstract 

Many methods proposed for automated composition of Web 
processes use classical AI planning approaches such as rule-
based planning, PDDL, and HTN planning. Web processes 
generated by classical planning methods suffer from the 
assumption of deterministic behavior of Web services and 
do not take into account fundamental QoS issues like 
service reliability and response time. In this paper, we 
propose a new model and method based on hierarchical 
semi-Markov decision processes (H-SMDPs) to address 
these concerns and handle the composition problem in a 
more natural and realistic way. We also demonstrate that H-
SMDP composition outperforms the HTN planning 
approach in terms of both the optimality of the plan and the 
robustness to dynamic nature of Web processes.   

1   Introduction

Service oriented architecture (SOA) is considered a 
promising paradigm of distributed computation. SOA aims 
to provide a rapid, flexible, and loosely-coupled way to 
seamlessly integrate intra-enterprise and inter-enterprise 
resources. As the fundamental building blocks of SOA, 
Web services are self-contained, self-describing, and 
platform-independent applications which can be published 
(WSDL), discovered (UDDI), and invoked (SOAP) over 
the Internet.  

Web services standards and protocols enable users to 
access applications based on the functionality only, without 
worrying about implementation and communication 
details. Two challenging issues have attracted many 
researchers' attention as Web service technology becomes 
more widely employed. One is Web service discovery. 
While the Web services description language (WSDL) 
only specifies the syntax of messages to communicate with 
Web services, recent progress on semantic annotation of 
Web services seems to provide a promising way for more 
robust discovery. It has been widely discussed in the 
semantic Web services community where functionality, 
preconditions, effects are explicitly described based on a 

Compilation copyright © 2006, American Association for Artificial 

Intelligence (www.aaai.org). All rights reserved.

certain pre-agreed ontology. Two distinguished efforts of 
adding semantic description into Web services are OWL-S 
[1] and WSDL-S [2]. Ideally, through semantic Web 
service matching, we should be able to understand the 
meaning of messages and find the desired Web services.  

The other issue is: once we find these Web services, how 
to automatically organize a process (workflow) to fulfill 
user-specified goals. In other words, given a set of possibly 
semantically annotated, candidate Web services and a goal, 
how to achieve this goal by compositing these Web 
services into a Web process. This is the so-called Web 
process composition problem.  

In this paper, we will focus on the second issue and 
present our approach to the composition problem. We 
propose a hierarchical semi-Markov decision process (H-
SMDP) approach to solve the Web process composition 
problem. Semi-Markov decision process SMDP [11] is a 
temporal generalization of the Markov decision process 
(MDP) model [11]; it provides a formalism to represent 
time expressively in the model. The motivation of utilizing 
SMDP to incorporate the time component comes from the 
observation that response time is a very important quality 
of service (QoS) criteria, but it is ignored in most planning 
approaches to Web process composition because it is 
normally not easy to handle temporal semantics in AI 
planning. We observe that, in the real world, there are 
many Web services whose reward/cost depends on the time 
of use. They charge based on how much time the service is 
utilized. 

Typically, the elements of a Web process may be both 
primitive (atomic) Web services, as well as a composition 
of primitive Web services, which itself is a Web process. 
Thus, realistic Web processes may be nested - a higher 
level Web process may be composed from primitive Web 
services and lower level Web processes. And the nesting 
could extend to an arbitrary length.  

Currently, composition of the Web process is mainly 
done by human system designers in a manual and static 
way. Manual approach may become cumbersome and 
impractical as the number of candidate Web services 
continues to increase. Additionally, the manual approach 
cannot adjust properly to the dynamic nature of the 
environment of SOA, and it is not suitable to handle large 
business Web processes. By providing functional and non-



functional descriptions, Web service description languages 
make it possible to do Web process composition in an 
automatic or semi-automatic fashion. A number of 
approaches have been proposed and many research efforts 
have been trying to address this problem via AI planning 
[3]. One typical and widely referred method is HTN 
planning [4]. This is not a surprise because we can 
intuitively consider Web process composition problem as a 
planning problem: given an initial state, a set of possible 
operations or state transitions and a goal representation, the 
planner will be able to find a plan to achieve this goal 
based on a certain planning algorithm.  

In this paper, we propose the hierarchical semi-Markov 
decision process (H-SMDP), a temporal extension of the 
Markov decision process (MDP), to model the nested 
structure of Web processes and take QoS parameters like 
reliability and response time into account. H-SMDPs 
generalize MDPs by assuming that all actions do not 
consume the same amount of time, and thereby model the 
response time of Web services as the sojourn time of 
actions in the SMDP model. We also introduce a new 
hierarchical structure to address the scalability problem of 
MDP and SMDP. The hierarchical structure makes our 
approach suitable to model the nested nature of Web 
processes and theoretically it can be extended to arbitrary 
nesting levels.  

The rest of the paper is organized as follows. In Section 
2, we will first give a brief overview of existing AI 
planning approaches to do automatic Web process 
composition. We then describe a nested Web process 
scenario in Section 3. This scenario will be used as a 
running example to illustrate our approach throughout the 
paper, but our approach is not restricted to this particular 
example and designed to be a general solution. In Section 4 
and Section 5, we introduce the background knowledge of 
SMDP and H-SMDP. In Section 6, we use our proposed 
approach to solve a specific composition problem of nested 
Web process. In Section 7, we will explain our empirical 
experiment and analysis the results. And finally, we 
conclude our work with a discussion and present our future 
research directions in Section 8.  

2   Related Work 

McIlraith et. al. [5,6,7] adapts and extends the Golog 
language for automatic construction of Web services. 
Golog is a logic programming language built on top of the 
situation calculus and it is extended to be the formalism for 
representing and reasoning service composition tasks. In 
that paper, Web service composition problem is addressed 
through the provision of high-level generic procedures and 
customizing constraints. By incorporating constrains, it can 
use nondeterministic choice to select different actions in 
different situations, which provides a similar mechanism to 
adapt to the dynamic environment as our approach does.  

Medjahed [8] presents a technique to generate composite 
services from high level declarative description. The 
method uses composability rules, defining possible Web 

service attributes that could be used in service 
composition, to determine whether two services are 
composable. It provides a way to choose a plan in the 
selection phrase based on the quality of composition 
parameters (e.g. rank, cost, and etc.). But the final plan is 
not a non-conditional plan; it will not be able to adjust 
properly to the dynamic changes in the environment.   

 In [4], the SHOP2 planner is applied for automatic 
composition of Web services, which are provided with 
DAML-S descriptions. SHOP2 is a Hierarchical Task 
Network (HTN) planner. It is believed in that paper that 
the concept of task decomposition in HTN planning is very 
similar to the concept of composite process decomposition 
in DAML-S process ontology. It is also claimed that the 
HTN planner is more efficient than other planning 
languages such as Golog. It gives a very detail description 
on the process of translating DAML-S to SHOP2. In 
particular, most control constructs can be expressed by 
SHOP2 in an explicit way. As a classical AI planning 
technique, SHOP2 has some limitations: (1) SHOP2 
assumes deterministic actions and a static environment, 
which does no reflect the dynamic nature of Web 
processes. Uncertainty of Web services behaviors are not 
taken into account. (2) Moreover, the plan from HTN 
planning is a non-conditional plan, the system will execute 
the sequence of actions exactly as it planned [9] regardless 
of what happens in the environment during execution. (3) 
It is assumed that "world-altering" Web services cannot be 
information providers, at least in the sense that the outputs 
will not affect the subsequent courses of actions [4].  

In our previous work [10], we proposed a decision-
theoretic planning approach called Markov decision 
process (MDP) to model the problem of workflow 
composition, which takes both the stochastic nature of the 
service and the dynamic nature of the environment into 
consideration so that it produces workflows that is robust 
to non-deterministic behaviors of Web services and that 
adapts to a changing environment. But in that paper, we 
assumed we were dealing with a linear workflow and we 
did not take non-functional QoS requirements like 
response time into account.  

3   Nested Web Process Scenario 

This section describes a nested business process for 

handling orders - from the very beginning when the 

merchant receives an order to its termination when the 

merchant ships the goods to the customer. The business 

process was derived from a real-world order handling 

scenario and it involves the integration of numerous 

components such as a customer system, inventory, supplier 

selection system, and a shipping system. Notice that some 

components are hosted within the merchant's organization 

(internal Web services) while other components are hosted 

in other organizations (external Web services). Also, the 

business process is long lasting and typically will take days 

or weeks to complete. The complexity and richness of the 



process makes it a compelling case study to demonstrate 

the feasibility and performance of our approach..  

     We depict this business process in Figure 1 and discuss 

it in more detail below. An instance of the process is 

created when a customer sends in an order. This order will 

be forwarded to the Order Verifier Web service, which 

itself is a composite Web process composed by Customer 

Checker, Payment Verifier and Money Charger. If the 

customer is not a valid customer - the customer is not 

registered in the merchant's Customer Relationship 

Management System (CRM) or it has an overdue payment 

- then the order is not going to be processed further and an 

error message (notification of invalid customer) is sent 

back to the customer, and the Web process terminates. For 

valid customers, payment information in the order will be 

verified in Payment Verifier, and if it is valid, money will 

be charged through the invocation of Money Charger, 

which could be a third-party Web service provided by a 

bank.  

Once order is verified, the merchant will then select the 

overall best supplier form its own Inventory, Preferred 

Supplier, or Spot Market. Inventory is modeled as a 

supplier with a very low cost but it can only satisfy few 

orders; Preferred Supplier is modeled as a supplier with 

higher cost but it can satisfy most orders. Spot Market can 

always satisfy the order, but it has the highest cost.  

After the supplier is chosen and goods are received from 

the supplier, the merchant will choose the appropriate 

shipper from Preferred Shipper (Fast but with limited 

service coverage) and Reliable shipper (Relatively slow 

but with global service coverage) based on the 

requirements of the customer and shipping destination. 

Shipper Selector Web service is also a nested Web process. 

Finally, merchant will invoke Goods Shipping service 

provided by the chosen shipper to ship the goods to the 

customer and finally finish the order processing. 

Figure 1: A Nested Web process Scenario

4   Background: Semi-Markov Decision 

Processes

Semi-Markov decision process (SMDP) is a temporal 
generalization of the Markov decision process (MDP). 
Instead of assuming that durations of all actions are 
identical, a SMDP models the system evolution in 
continuous time and allow the time spent in a particular 
state while performing an action to follow an arbitrary 
probability distribution [11]. Solution to SMDP produces a 
policy or a "universal plan". A policy assigns to each state 
of the process an action that is expected to be optimal over 
the period of consideration. Thus, if an agent has a policy, 
then no matter what the outcome of the action is, the agent 
will know what action to perform next. We formally define 
an SMDP below. 

semi-Markov decision process can be defined as a tuple, 
SMDP = (S, A, T, K, F, C) where: 

S is the set of all possible states  

A is the set of all possible actions 

T is the transition function, T: S X A   Prob(S), 
which specifies the probability distribution over the 
next state given the current state and action 

K is the lump sum reward k(s, a), which depends only 
on s and a. Given the current state s and action a, the 
system will gain a lump sum reward K(s, a).  

F is the sojourn time for each pair of state and action. 
Given the current state s and action a, the system will 
remain in state s for a certain amount of time, which 
follows a certain distribution described by the 
probability density function f (t | s, a)

C is the reward accumulating rate, given the current 
state s and action a, the system will gain an 
accumulating reward with rate c(s, a)

     Lump sum reward and reward accumulating rate are not 
necessarily positive, negative values imply that lump sum 
cost and a cost accumulating rate. For the sake of 
simplicity, we consider costs as negative rewards and do 
not distinguish between rewards and costs explicitly. In 
some cases, K, F and C may only relate to some action a
depending on the specific domain we are dealing with.  

We can describe the evolution of a SMDP as follows: 
At time t0, the system occupies state s0, and the agent 
chooses action a0 based on a particular policy. As the 
consequence of this action choice, the system remains in s0 
for t1 time units at which point the system state changes to 
s1 and the next decision epoch occurs. The agent chooses 
actions a2, and the same sequences of events occur. (t0, s0, 
a0, t1, s1, a1, ...  , tn, sn) denotes the history of SMDP up 
to the nth decision epoch. {t0, t1, t2, ... , tn} are sojourn 
times between two consecutive decision epochs. In MDP, 
these times are predetermined discrete set of time points; in 
SMDP, t0, t1, t2, ... , tn follow a certain probability 
distribution depending on the current state and the action 
performed. 



One important difference between SMDP and classical 

planning methods is that the SMDP allows stochastic 

actions.  Instead of assuming a deterministic action effect, 

for each state action pair, SMDP specifies a probability 

distribution over next states to model uncertainty of 

actions. When performing an action, the system will gain a 

lump sum reward, and as long as the sojourn time is not 

over, the system will accumulate reward at a certain 

accumulating rate c. The total reward for a state action pair 

can be computed as: 

dtastfeascasKasR t

0
),|(),(),(),(

Utility Function V : represents the expected objective 
value obtained following policy  (mapping from each 
state to an action) from each state in S. It includes 
immediate reward and long-term expected reward. Given a 
policy, we can compute the utility of each sate: 

Ss
sVsssMssRsV

'

))'(*)),(|'())(,()(

Where: 

e  discount factor 

0
))(,|',())(,|'( sssdtQesssM t

                        dte t

0
(s))s,|(tf*(s))s,|(s'P

Utility functions partially order the policies, but at least 

one optimal policy exists, and all optimal policies have the 

same value function [12]. The solution of a SMDP problem 

is an optimal policy which maximizes utilities of all states:  

)))'(*)'),(,())(,(()(*
' Ss

Aa sVsssMssRMaxsV

Standard MDP solution techniques for arriving at an 

optimal policy revolve around the use of stochastic 

dynamic programming [11] for calculation of the optimal 

policy. Bellman [12], via his Principle of Optimality, 

showed that the stochastic dynamic programming equation, 

called Bellman equation, is guaranteed to find the optimal 

policy for the SMDP and all optimal policies have the 

same value function. One standard SMDP solution 

technique, called Value Iteration, involves iterating over 

the Bellman equation -- calculating the expected value of 

each state -- until the value differential for each state 

reduces below a given threshold. 

In this paper, we use a linear programming method to 

solve SMDP problems. Linear programming problem is 

proved to be P-Complete and innovations in linear 

programming algorithms in the last decade make it a fast 

and appealing method to solve SMDP problems. 

Linear Programming Solution to SMDP:   

Sj
jVjMinimize )()(

AaSsasRjvasjMsVtoSubject
Sj

),()(),|()(

Where:    

Sj
j 1)(

5   Hierarchical Semi-Markov Decision 

Processes

Hierarchical structure is widely used in AI planning 
methods, for example, hierarchical task networks (HTN) 
[9] use the hierarchical structure to describe the 
decomposition of a task into sub-tasks. Meuleau, N. [15] 
and Singh, S. [16] utilize the hierarchy to merge multiple 
MDPs to solve a very large MDP problem. Hierarchies are 
also adopted by [17] to solve large partial observable 
Markov decision processes (POMDP) planning and 
execution problems. The idea in [17] is similar to our 
approach of H-SMDP, but we differ in our method of 
computing high-level model parameters, in addition to 
dealing with SMDPs. 
   The fundamental idea behind hierarchical semi-Markov 
decision process (H-SMDP) is abstract actions. Actions of 
a high level Web process can be classified into two classes: 
primitive and abstract actions. A high-level abstract action 
is composed of a set of low-level primitive actions or a 
combination of primitive and abstract actions. The 
transition caused by a primitive action is a regular SMDP 
transition, but a transition caused by an abstract action is 
much more complex and it can be viewed as a sub-SMDP 
problem. We can also view a sub-SMDP as a sub-process 
to achieve a sub-objective. By composing all sub-
objectives, we will be able to achieve the final objective. 

SMDP with only primitive actions are considered well-
defined and can be solved by SMDP solutions mentioned 
in the previous section, whereas subtasks containing 
abstract actions are so far ill-defined because the original 
SMDP does not provide meaningful parameters for these 
abstract actions. An example in the order handling scenario 
is action "Verify Order", since Order Verifier is not a 
primitive Web service; it is composed of three primitive 
Web services: Customer Checker, Payment Verifier, and 
Money Charger. Transitions associated with abstract action 
"Verify Order" are not directly defined.  

Our approach recursively solves the whole H-SMDP in 
a bottom-up fashion. Sub-SMDPs with only primitive 
actions are solved first, and then we model parameters for 
the higher level SMDP and solve it. This approach may be 
extended to an arbitrary nesting depth. 

Constructing SMDP model parameters for abstract 
actions: Specifically, we want to know lump sum reward 
K, sojourn time distribution F, accumulating rate C, and 
transition probability T for abstract actions. Our method 
derives from the relationship between high level abstract 
actions and low-level primitive actions. For each abstract 
action a , we find the corresponding applicable state set 
AP( a ) ie. states from which the action can be performed, 
and the corresponding effect state set EF( a ), possible 
states resulting from performing the action. The association 
relationship between each state in AP( a ) U EF( a ) and 



states in the local SMDP's state set can be identified based 
on domain knowledge. This association becomes more 
obvious and intuitive when we use a factored approach to 
represent the state space because a high-level variable can 
be directly described by low-level variables. The 
association (Assoc.) captures the fact that each value of a 
high-level state variable is derived from a logical (or 
mathematical) combination of the values of the primitive 
variables. We will give more details below and a specific 
example in Section 6 when we describe how to compose a 
concrete Web process using H-SMDP.  

For a low-level SMDP, given an initial state, goal state 

and the local policy, we will be able to generate a sequence 

of action which guides us to reach the goal state starting 

with an initial state. Let a  denote an abstract action, and 

assume a  can be decomposed into a sequence of primitive 

actions in local SMDP: (a1, a2, a3, a4). Let the 

corresponding applicable state set, effect state set, and 

association relationship be: 

},,{)( 321 sssaAP                    },{)( 54 ssaEF

},{)( 12111 sssAssoc                  },{)( 22212 sssAssoc
},,,{)( 343332313 sssssAssoc },{)( 42414 sssAssoc

},,{)( 5352515 ssssAssoc

1s , 2s  , 3s , 4s  and 5s  are high level abstract states; S11,

S12, S21, S22, S31, S32, S33, S34, S41, S42, S51, S52 and S53 are 

low-level SMDP states. Based on this association, we can 

compute high-level SMDP parameters in the following 

way: 

Lump sum reward K: Since the abstract action can be 

translated to a sequence of lower-level primitive actions. 

Lump sum reward of the abstraction is the summation of 

lump sum rewards of low-level primitive actions 

      )()()()()( 4321 aKaKaKaKaK
Sojourn time distribution F: We assume sojourn times 

of all actions follow Gaussian distributions with different 

means and standard deviations. Say the sojourn time of a1 

follows ),( 11N , a2 follows ),( 22N , and so on. Since 

the linear combination of Gaussian distributions is still a 

Gaussian distribution, we get the sojourn time of abstract 

action a  that follows ),(N , as: 

4321

     2

4

2

3

2

2

2

1
      

Accumulating Rate C: Accumulated reward of an 

abstract action should be the same as the total accumulated 

reward of all corresponding low-level primitive actions. 

Based on the sojourn time distribution of the action, we 

compute the expected sojourn time for each action. 

)(

)(*)(

)(

4

1

aExpSoj

aExpSojaC
aC i

ii

where: 

dttaExpSoj i
0

i )as,|(tf*)(

    Transition Probability T: The following figure is 

showing a part of the transitions in an example low-level 

SMDP. Each node represents a local primitive state, and 

each link represents the transition from a primitive state to 

the next primitive state with a certain probability, which is 

defined in the transition function of the local SMDP. Let's 

take the transition from 
1s  to 

4s  as an example to show 

how to compute transition probabilities for high-level 

transitions. 

Figure 2: Transitions in local SMDP from S11 to S41 and 
S42. A transition probability is associated with each link 
which is not shown here to avoid clutter. 

)(),(

),(),(),(),|(

41

14

,

14

sAssocssAssocs

aAPsaEFsssPsasT

ji

ji
ji

where: 

       

),|()...,|(),|(),( )1(10100 krrkjrrrrirji assTassTassTssP
Sro, Sr1, Sr2… are nodes in the path from Si and Sj. For 
example, suppose that the transition in local SMDP from 
S11 to S41 and S42 is as shown in Figure 2, Then we have:  

),|(),|(),|(),( 3314122131111214111 assTassTassTssP
),|(),|(),|(),( 3314222131111214211 assTassTassTssP

After defining all the model parameters for the high 
level SMDP, it becomes well-defined so that we can solve 
it using standard SMDP solving methods, just like solving 
a SMDP with primitive actions only. 

6   Nested Web Process Composition using

H-SMDP

In order to demonstrate how to compose nested Web 
processes using H-SMDP, we will take the order handling 
scenario as an example and explain how we compose this 



Web process in detail below. We will begin with the high-
level SMDP. 

State Set: The state of this example is captured by a set 
of random variables- Order Received (OR), Order Verified 
(OV), Inventory Availability (IA), Preferred Supplier 
Availability (PSA), Spot Market Availability (SMA), 
Goods Received (GR), Shipper Selected (SS), and Goods 
Shipped (GS). A sate is a conjunction of assignment of 
either Yes, No, or Unknown to each random variable. 

One problem with the factored approach is that the size 

of the state space is exponential to the number of variables.  

Solving a SMDP problem using linear programming 

method mentioned in section 4 is P-complete problem and 

the complexity is proportional to the number of states and 

actions. With the scalability in mind, we designed a state 

space pruning algorithm to get rid of "irrelevant states" 

based on the preconditions and effects of each Web 

service. Since we use states to represent the status of the 

environment in our approach, the precondition and effects 

are described by corresponding states. States that are not in 

either the set of preconditions or effects will be removed 

from the state space of H-SMDP. This simple pruning 

algorithm can greatly reduce the state space because most 

states in the initial factored representation of state space 

are "irrelevant states". For the high-level SMDP of nested 

web process scenario (Figure 1), we reduce the number of 

states from   38 to 25.  

We consider all states which will never appear in the set 

of precondition states and effect states as "Irrelevant 

states". For example, the precondition of Verify Order is 

that Order Received (OR) should be "Yes". One 

corresponding irrelevant state example in nested web 

process scenario (Figure 1) is (RO=No & VO=Yes & 

IA=Unknown & PSA=Unknown & SMA=Unknown & 

GR=Unknown & SS=Unknown & GS=Unknown). On the 

contrary, all states in the set of precondition states and 

effects states are "relevant states"; (RO=Yes & VO=Yes & 

IA= Unknown & PSA=Unknown & SMA=Unknown & 

GR=Unknown & SS=Unknown & GS=Unknown) is a 

"relevant state".  

Action Set: Actions are Web service invocations 

A={Receive Order, Verify Order, Check Inventory, Check 

Preferred Supplier, Check Spot Market, Get Goods, Select 

Shipper, Ship Goods}. Verify Order and Select Shipper are 

abstract actions and defined as low-level SMDPs.   

Transition Function: Transition function T models the 

stochastic effect of each Web service invocation on some 

random variable(s). For example, invoking the Web 

service Check Inventory will cause Inventory 

Availability=Yes to be assigned with a probability of T(IA 

= Yes | IA=Unknown, Check Inventory), and assigned No
or Unknown with a probability of  (1- T(IA = Yes
|IA=Unknown, Check Inventory)   

Lump Sum Cost: Lump sum cost K is used to describe 

an immediate cost of each Web service invocation and this 

value is obtained from the service-level agreements 

between the service provider and service users. 

Sojourn Time Distribution F:  F is used to specify the 

distribution of response times of Web services. In our 

scenario, we assume that the response times of all Web 

services follow Gaussian distributions with different means 

and standard deviations.  

Cost Accumulating Rate C: We use accumulating rate 

C to model a certain kind of service, whose cost can be 

divided into two parts, one is the immediate invocation 

cost - lump sum cost; the other part depends on how long 

the service takes perform its task (response time). This 

models the increasing cost incurred by the merchant as its 

Web process awaits the responses. We use C as the cost 

per time unit during the sojourn time of actions.  

Up to now, the problem is well modeled except that the 

parameters of the two abstract actions are not specified. 

We use the method proposed in Section 4 to compute these 

parameters. Let's take Verify Order as the example: 

 Action Verify Order is composed of three primitive 

actions in its local SMDP - (Check Customer, Verify 

Payment, Charge money). Let Customer Valid (CV), 

Payment Valid (PV) and Money Charged (MC) be three 

local variables in the local SMDP, we can identify the 

association between high level variable Order Verified 

(OV) and these local variables: 

Initial "Unknown" state of the high level variable:  

Assoc(OV=Unknown) = (CV=Unknown & PV=Unknown 
& MC=Unknown)

"Yes" state: 

Assoc(OV=Unknown) = (CV=Yes & PV=Yes & MC=Yes)

"No" state: 

Assoc(OV=No) = (CV=No || PV=No || MC=No)

Resulting "Unknown" ((due to service failure) state:  

Assoc(OV=Unknown) = (CV=Unknown || PV=Unknown ||
MC=Unknown)

Notice that system states are represented by variables; 

we can get the association between high level states and 

low level states based on the variable association 

relationship above, and compute corresponding parameters 

using the method in Section 4. After defining parameters of 

these abstract actions, the H-SMDP can be solved just as a 

regular SMDP. 

7   Experimental Results 

As a case study, we implemented and solved the scenario  
in Section 3 using the H-SMDP approach proposed in this 
paper. In this section, we will present experiment results of 
our H-SMDP approach and illustrate the conversion of a 
H-SMDP policy into an executable BPEL Web process. 
We also compare the performance of our approach with the 
HTN planning approach in the end.  



As expected, our optimal policy changes as, for 
example, the Inventory is less likely to satisfy orders. 
Table 1 shows different optimal actions when different 
probabilities of Inventory satisfaction at state S = 
(OR=Yes, OV=Yes, IA=Unknown, PSA=Unknown,
SMA=Unknown, GR=Unknown, SS=Unknown,
GS=Unknown)  are used in the SMDP model. 

Transition Probability

T(IA=Yes | IA=Unknown, 

Check Inventory) 

Optimal Action 

0.98 Check Inventory 

0.90 Check Inventory 

0.82 Check Inventory 

0.74 Check Inventory 

0.66 Check Inventory 

0.58 Check Preferred Supplier 

0.50 Check Preferred Supplier 

0.42 Check Preferred Supplier 

Table 1: Optimal policy changes when the probability of 
inventory satisfaction changes

Figure 3: Optimal policy responses to a Web Service 
failure (a) and an unexpected Web Service invocation 
result (b). 

Figure 3 is realized in the event of a Web service failure 
and an unexpected Web service response is obtained. 
When an unexpected service failure happens as in Figure 
3(a), the policy suggests to invoke the Inventory Checker 
Web service again, if it gives a Yes, then we can move on 
to Get Goods ; otherwise, if it says  No , the optimal policy 

will suggest the manufacturer to Check Preferred Supplier
instead, as in Figure 3(b). 

One advantage of H-SMDP is that it can handle service 
failures such as abnormal Web service results. Plans using 
classical planning algorithms do not provide the support 
for service failures, or they need to monitor for unexpected 
interaction between the plan executor and the environment. 
Once a service failure happens, these classical planning 
based approaches need to halt or must incur extra effort to 
recover from this failure. Our approach models abnormal 
responses and failures as a part of the framework so that 
we can handle service failures in a natural way. As we can 
see in Figure 3, our policy is able to properly react when 
the Web service Inventory fails by returning an Unknown
and when the Web service Inventory returns a result no.

To realize the H-SMDP approach in a service oriented 
architecture, a policy-to-BPEL4WS converter is designed 
to convert the optimal policy into an executable BPEL4WS 
[13] workflow. BPEL4WS is a language used for the 
definition and execution of business processes using Web 
services. BPEL enables the top-down realization of SOA 
through composition, orchestration, and coordination of 
Web services. Our converter generates a BPEL4WS 
workflow using the BPWS4J API [14] and the resulting 
web process is deployed in the BPWS4J engine by IBM.  

The policy is simply a mapping from states to optimal 
actions, and states are represented by variables. In the 
resulting BPEL file, we continually sense the state of the 
environment and choose the optimal action based on the 
policy until the goal state is reached. So, the converter will 
read the policy and get all states and optimal actions, and 
then generate the corresponding BPEL code. This policy-
BPEL transforming relationship is showed in Figure 4: 

Figure 4: A snippet from the resulting BPEL4WS flow 

deployed in IBM BPWS4J Workflow Engine. The flow 



queries variables to get the current state of the environment 

and invokes a particular Web service based on the optimal 

policy. 
To study the performance and robustness of our method 

to environmental changes, we also compared the policy 
from H-SMDP and the plan generated by HTN using 
SHOP2 [9,4]. We assign identical invocation costs and 
rewards to both H-SMDP and HTN models. Average 
reward and standard deviation are collected and shown in 
Figure 5. 

Figure 5: Average reward and standard deviation of our 
H-SMDP approach and the HTN approach. Each data point 
is the average reward of 1000 runs. As we increase the 
probability of Inventory availability -- the uncertainty of 
the environment is decreased -- the performance of the 
HTN approaches that of H-SMDP. 

In Figure 5, P(PA = Yes | PA= Unknown, Check 
Preferred Supplier) is fixed to be 0.9 and  P(SMA = Yes | 
SMA= Unknown, Check Spot Market Availability) is fixed 
to be 0.98. P(Inventory Availability = Yes | IA=Unknown, 
Check Inventory) changes from 0.3 to 0.98. When P(IA= 
Yes | IA=Unknown, Check Inventory) falls in the range 
(0.3, 0.66), the optimal action is Check Preferred Supplier;
so even when the probability of Inventory availability 
changes within this range, the average reward does not 
change much for both the H-SMDP and HTN, as we see in 
the plot. When P(IA= Yes | IA=Unknown, Check 
Inventory) is in the range (0.66, 0.98), the optimal action 
turns into Check Inventory because of its low cost of 
invocation.  

In our experiment, the average reward of H-SMDP is 
better than that of HTN. The reason is that the HTN plan is 
an unconditional plan, whose execution is, therefore, very 
sensitive to the responses of the Web services. Whenever 
unexpected results like service failure or abnormal 
responses occur, its flow must halt. Since H-SMDP models 
service failures and unexpected results as an integral part 

of the framework, it can react or recover easily from 
failures. 

Perhaps the most interesting observation in our 
experimental results is the subsequent catch-up of the HTN 
approach with our H-SMDP approach. This demonstrates 
the applicability of classical planning approaches like 
HTNs: they perform well only when the environment is 
deterministic.   

Finally, since Web services’ uncertainty and a QoS 
issue like response time are taken into account in our H-
SMDP model, the Web process generated by H-SMDP is 
more robust to environmental changes. We can also tell 
this by examining the standard deviation of both H-SMDP 
and HTN; the standard deviation of H-SMDP is smaller 
than that of the HTN based method. 

8   Discussion 

In this paper, we have presented a decision-theoretic 

planning approach to solve the nested Web process 

composition problem. The major contribution of this paper 

include:  (1) Instead of giving a non-conditional plan like 

many classical approaches do, our approach produces a 

conditional policy, which is able to handle different 

possible outcomes during the execution of the Web 

process; service failures and uncertainties are taken care of 

in a natural way (2) SMDP allows us to associate a 

measure of quality with each Web process, thereby 

facilitating selection of the optimal one. (3) Fundamental 

QoS criteria like service reliability and response time are 

taken into account in our model. (4) A hierarchical 

structure is proposed in this paper to capture the inherent 

nested structure of Web processes. It also helps to partly 

address the scalability problem of processes. (5) Through 

experiments with a supply chain scenario, we have shown 

that our approach produces a better plan than the HTN 

based approach in terms of performance and robustness to 

changes in the environment.  

As part of our ongoing work, we will extend our model 

to support concurrent actions in Web processes. 

Concurrent invocation of Web services is common in real-

world Web processes, but to the best of our knowledge, 

most AI planning methods do not support concurrent 

actions. We are planning to extend our hierarchical SMDP 

model to allow for such actions.  

References 

[1] Martin, D., Paolucci, M., and McIlraith S. etc. July 6-9, 
2004. Bringing Semantics to Web Services: The OWL-S 
Approach. Proceedings of the First International Workshop 
on Semantic Web Services and Web Process Composition 
(SWSWPC 2004), San Diego, California, USA. 

[2] Sheth, A., Verma, K., Miller, J. and Rajasekaran P. 
2005. Enhancing Web Service Descriptions using WSDL-



S,Research-Industry Technology Exchange at EclipseCon 
2005, Burlingame, CA. 

[3] Rao, J., Su, X. 2004. A Survey of Automated Web 
Service Composition Methods. Semantic Web Services and 
Web Process Composition 2004. 

[4] Wu, D., Parsia, B., Sirin, E., Hendler, J., and Nau, D. 
October 2003. Automating DAML-S web services 
composition using SHOP2. In Proceedings of 2nd 
International Semantic Web Conference (ISWC2003), 
Sanibel Island, Florida,. 

[5] McIlraith, S. and Son, T. C. April 2002. Adapting 
Golog for composition of Semantic Web services. In 
Proceedings of the 8th International Conference on 
Knowledge Representation and Reasoning (KR2002), 
Toulouse, France 

[6] McIlraith, S., Son, C. T., and Zeng, H. March/April 
2001. Semantic Web services. IEEE Intelligent Systems,
16(2):46–53. 

[7] Narayanan, S. and McIlraith, S. May 2002.  Simulation, 
verification and automated composition of Web service. In 
Proceedings of the 11th International World Wide Web 
Conference, Honolulu, Hawaii, USA ACM  

[8] Medjahed, B., Bouguettaya, A. and Elmagarmid, A. K. 
November 2003. Composing Web services on the Semantic 
Web. The VLDB Journal, 12(4)  

[9] Nau, D., Au, T.C., Ilghami, O., Kuter, U., Murdock, 
J.W., Wu, D. Yaman, F. 2003. SHOP2: An HTN planning 
system. Journal of Artificial Intelligence Research 

[10] Doshi, P., Goodwin, R., Akkiraju, R., and Verma, K. 
2005. Dynamic Workflow Composition using Markov 
Decision Processes, in JWSR Vol. 2(1):1-17, 2005 

[11] Puterman, M. L. 1994. Markov Decision Processes: 
Discrete Stochastic Dynamic Programming. Wiley series 
in probability and mathematical statistics: Wiley-
Interscience.

[12] Bellman, R. 1957 Dynamic Programming: Dover 

Publications 

[13] IBM, BEA Systems, Microsoft, SAP AG, Siebel 

Systems. 2002. Business Process Execution Language for 
Web Services version 1.1. http://www-

128.ibm.com/developerworks/library/specification/ws-

bpel/ 

[14] IBM, 2004 . Business Process Execution Language for 

Web Services Java Run Time (BPWS4J) 

http://www.alphaworks.ibm.com/tech/bpws4j 

[15] Meuleau, N. , Hauskrecht, M., Kim, K., Peshkin, L., 

Kaelbling, L., Dean, T., et al. 1998, Solving very large 
weakly coupled Markov decision processes, Proceedings of 

the fifteenth national/tenth conference on Artificial 

intelligence/Innovative applications of artificial 

intelligence, P. 165 - 172  

[16] Singh, S., Cohn, D, 1998, How to Dynamically Merge 
Markov Decision Processes, Advances in Neural 

Information Processing Systems 

[17]  J. Pineau, N. Roy, and S. Thrun. 2001, A hierarchical 
approach to POMDP planning and execution, Workshop 

on Hierarchy and Memory in Reinforcement Learning 

(ICML) 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 2
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


