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Abstract

Modeling crowd behavior is an important chal-
lenge for cognitive modelers. Models of crowd be-
havior facilitate analysis and prediction of the be-
havior of groups of people, who are in close geo-
graphical or logical states, and that are affected by
each other’s presence and actions. Existing mod-
els of crowd behavior, in a variety of fields, leave
many open challenges. In particular, psychologi-
cal models often offer only qualitative description,
and do not easily permit algorithmic replication,
while computer science models are often simplis-
tic, treating agents as simple deterministic parti-
cles. We propose a novel model of crowd behav-
ior, based on Festinger’s Social Comparison The-
ory (SCT), a social psychology theory known and
expanded since the early 1950’s. We propose a
concrete algorithmic framework for SCT, and eval-
uate its implementations in several crowd behavior
scenarios. We show that our SCT model produces
improved results compared to base models from
the literature. We also discuss an implementation
of SCT in the Soar cognitive architecture, and the
question this implementation raises as to the role
of social reasoning in cognitive architectures.

Introduction
Modeling crowd behavior is an important chal-
lenge for cognitive modelers. Models of crowd be-
havior facilitate analysis and prediction of the be-
havior of groups of people, who are in close geo-
graphical or logical states, and that are affected by
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each other’s presence and actions. Accurate mod-
els of crowd behavior are sought in training simu-
lations (Thalmann 2001), safety decision-support
systems (Braun et al. 2003), traffic manage-
ment (Helbing & Molnar 1997; Rymill & Dodgson
2005), business and organizational science.

Existing models of crowd behavior, in a variety
of fields, leave many open challenges. In social
sciences and psychology, models often offer only
qualitative description, and do not easily permit al-
gorithmic replication. In computer science, mod-
els are often simplistic, and typically not tied to
specific cognitive science theories or data. More-
over, existing computer science models often fo-
cus only on a specific phenomenon (e.g., pedes-
trian movement on a sidewalk), and thus must be
switched depending on the goals of the simulation.

We propose a novel model of crowd behav-
ior, based on Social Comparison Theory (SCT)
(Festinger 1954), a popular social psychology the-
ory that has been continuously evolving since the
1950s. The key idea in this theory is that hu-
mans, lacking objective means to evaluate their
state, compare themselves to others that are simi-
lar. Similarity, in SCT, is very loosely defined—
indeed much of the literature on SCT addresses
with exploring different ways in which humans
judge similarity.

While inspired by SCT, we remain deeply
grounded in computer science; we propose a con-
crete algorithmic framework for SCT, and evalu-
ate its implementations in several crowd behavior
scenarios. We quantitatively compare the perfor-
mance of SCT crowd behavior models compared
to popular models in the literature, and show that



SCT generates behavior more in-tune with human
crowd behavior. In particular, the SCT models
generate improved pedestrian movements and ac-
counts for group formation in pedestrians that are
inter-related, a phenomenon unaccounted for by
previous models.

We describe the implementation of SCT in Soar,
as an impasse-resolution method. We argue that
SCT is a weak (read: general) problem-solving
method, which is social in nature. This view of
SCT raises questions as to the role of social rea-
soning in cognitive architectures and the mind. In
particular, it may lead to the conclusion that mod-
eling of other agents, which is a precursor to so-
cial comparison, occurs as a fundamental cognitive
process at an architectural level.

Background and Motivation
Social psychology literature provides several
views on the emergence of crowds and the mech-
anisms underlying its behaviors. These views
can inspire computational models, but are unfor-
tunately too abstract to be used algorithmically. In
contrast, computational models (described below)
tend to be simplistic, and ignore the psychological
studies.

Social psychology. A phenomenon observed
with crowds, and discovered early in crowd behav-
ior research, is that people in the crowd act sim-
ilar to one another, often acting in a coordinated
fashion, as if governed by a single mind (Le Bon
1968; Allport 1924). However, this coordination is
achieved with little or no verbal communications.

Le Bon (Le Bon 1968) emphasized a view of
crowd behaviors as ”Collective Mind”, and ob-
served that an individual who becomes a part of
the crowd is transformed into becoming identical
with the others in the crowd. Le Bon noted that in-
dividuals seem to lose their individuality (in terms
of personality and thought) when becoming part
of a crowd. Le Bon explains the homogeneous be-
havior of a crowd by two processes: (i) Imitation,
where people in crowds imitate each other; and (ii)
Contagion, where people in the crowd behave very
differently from how they usually behave, individ-
ually. Freud (Freud 1951) expanded on Le Bon
by theorizing that individuals in the crowd iden-
tify with the leader and with each other, and that
is they behave as one. The crowd behavior can be

controlled by the leader, as the individuals imitate
the leader.

Another phenomenon that occupies the re-
searches is how a crowd is created from the first
place or to be more specific is what causes an in-
dividual to be part of a crowd. According to All-
port (Allport 1924) an individual becomes part of a
crowd when he has ”common stimulus” with peo-
ple inside the crowd. For example, a common
cause. Allport agrees with Le Bon (Le Bon 1968)
about homogeneous behaviors of a crowd, but his
explanation to this phenomena is that similar peo-
ple act in similar ways, otherwise they are not part
of the same group. Thus according to Allport, ”the
individual in the crowd behaves just as he would
behave alone, only more so.”

We base our work on the Social Comparison
Theory (Festinger 1954), which (to the best of our
knowledge) has never been applied to modelling
crowd behavior. Nevertheless, as we show in the
next section, key elements of the theory are at
the very least compatible with theories discussed
above.

Computational models. Work on modelling
crowd behavior has been carried out in other
branches of science, in particular for modelling
and simulation. Reynolds (Reynolds 1987) has
simulated bird flocking using simple, individual-
local rules, which interact to create coherent col-
lective movement. There are only three rules:
avoid collision with neighbors, match velocity
with neighbors and stay close to the center of grav-
ity of all neighbors. Each simulated bird is treated
as a particle, attracted and repelled by others. On
the one hand there is a desire to stay close to the
flock, but on the other hand, there is a desire to
avoid collisions.

Similar ideas have been applied in swarm ro-
botics. Mataric (Matarić 1995) sees collective
(complex) behaviors as a combination of basic be-
haviors. Each robot has spatial behaviors (con-
trollers) which are combined to create different
kinds of group behavior. For example, flocking
combined of safe-wandering (move around with-
out bumping), homing, dispersion (move away
from other agents), and aggregation (move to-
wards other agents). The combined outputs of the
basis behaviors provide a velocity vector which is
used to control the robot.



Much of the work we describe in this paper has
been implemented and evaluated in the context of
pedestrian movement. Several important previous
investigations have examined this task.

Blue and Adler (Blue & Adler 2000) use Cel-
lular Automata (CA) in order to simulate collec-
tive behaviors, in particular pedestrian movement.
The focus is again on local interactions: Each sim-
ulated pedestrian is controlled by an automaton,
which decides on its next action or behavior, based
on its local neighborhoods. These rules are respon-
sible for making a decision about lane changing
and forward movement: If the way forward is free,
then it is taken. If not, then the automaton seeks to
go left or right. If both lanes are available, one
is chosen arbitrarily. Blue and Adler show that
this simple rule results in the formation of lanes
in movement, similarly to those formed in human
pedestrian movement (Wolff 1973).

Helbing et al. (Helbing & Molnar 1997; Helbing
et al. 2001) also focuses on simulating pedestrian
movement. Each entity moves according to forces
of attraction and repulsion. Pedestrians react both
to obstacles and to other pedestrians. The study
shows that this also results in lane formation.

Our work differs from those that have been de-
scribed above in that we aim to develop a cogni-
tive model of crowd behavior, one based on psy-
chology, rather than particle physics. As a result,
the model we present in this work covers phenom-
enons uncovered by the simplistic CA and parti-
cle models, such as that the choice of lane chang-
ing in pedestrians depends on subgroups within the
crowd, and is not random.

A Model Based on Social Comparison
Theory

The research question we address in this paper
deals with the development of a computerized cog-
nitive model which, when executed individually by
many agents, will cause them to behave as humans
do in crowds.

We took Festinger’s Social Comparison Theory
(Festinger 1954) as inspiration for the social skills
necessary for our agent. According to the social
comparison theory, people tend to compare their
behavior with others that are most like them. To be
more specific, when lacking objective means for
appraisal of their opinions and capabilities, people
compare their opinions and capabilities to those of

others that are similar to them. They then attempt
to correct any differences found.

We believe that the social comparison theory
may account for some characteristics of crowd be-
havior:

Common stimulus between crowd participants.
One of the social comparison theory impli-
cations is group formation. Festinger notes
(Festinger 1954): ”To the extent that self
evaluation can only be accomplished by means
of comparison with other persons, the drive
for self evaluation is a force acting on persons
to belong to groups, to associate with others.
People, then, tend to move into groups which,
in their judgment, hold opinions which agree
with their own and whose abilities are near their
own”.

Imitational behavior. By social comparison,
people may adopt others’ behaviors. Festinger
writes (Festinger 1954): ”The existence of
a discrepancy in a group with respect to
opinions or abilities will lead to action on the
part of members of that group to reduce the
discrepancy”.

To be usable by computerized models, the social
comparison theory must be transformed into a set
of algorithms that, when executed by an agent, will
proscribe social comparison behavior. A first step
towards this goal has been take by Newell, which
describes the social comparison theory as a set of
axioms (Newell 1990):

1. If the agent can’t evaluate its opinions and abil-
ities objectively, then it compares them against
the opinion and abilities of others.

2. Comparing against others decreases as the dif-
ference with others increases.

3. The more important a group for comparison of
an opinion or ability, the more pressure there is
toward uniformity on that opinion or ability.

We take another step towards the modelling of
social comparison theory. Each observed agent is
assumed to be modelled by a set of features and
their associated values. For each such agent, we
calculate a similarity value s(x), which measures
the similarity between the observed agent and the
agent carrying out the comparison process. The
agent with the highest such value is selected. If



its similarity is between given maximum and min-
imum values, then this triggers actions by the com-
paring agent to reduce the discrepancy.

The process is described in the following algo-
rithm, which is executed by the comparing agent.

1. For each known agent x calculate similarity
s(x)

2. c ← argmax s(x), such that Smin < s(c) <
Smax

3. D ← differences between me and agent c

4. Apply actions to minimize differences in D.

In line 1, the comparing agent (me, for short)
compares itself with other agents. We model each
agent as an ordered set of features, where simi-
larity can be calculated for each feature indepen-
dently. We use a weighted linear sum to aggregate
feature values into one similarity measure:

s(x) =
k∑

i=0

wifi

where k is the feature index, fi similarity in feature
i, 0 ≤ fi ≤ 1, and wi the weight of the feature in
overall similarity (non-negative).

For each calculated similarity value, we check in
line 2 if it is bounded by Smin and Smax, and pick
the agent that maximizes the similarity, but still
falls within the bounds. Smin denotes values that
are too dissimilar, and the associated agents are ig-
nored. Festinger writes (Festinger 1954): “When a
discrepancy exists with respect to opinions or abil-
ities there will be tendencies to cease comparing
oneself with those in the group who are very dif-
ferent from oneself”. Respectively, there is also
an upper bound on similarity Smax, which pre-
vents the agent from trying to minimize differences
where they are not meaningful or helpful. For in-
stance, without this upper bound, an agent that is
stuck in a location may compare itself to others,
and prefer those that are similarly stuck in place.

In line 3, we determine the list of features fi

that indicate a difference with the selected agent
c. We order these features in an increasing order
of weight wi, such that the first feature to trigger
corrective action is the one with the least weight.
The reason for this ordering is intuitive, and we
admittedly did not find evidence for it in the liter-
ature. However, no evidence was provided against

this ordering, and it empirically worked better in
the experiments (see below).

Finally, in step 4 of the algorithm, the compar-
ing agent takes corrective action on the selected
feature. Note that we assume here that every fea-
ture has associated corrective action that minimize
gaps in it, to a target agent, independently of other
features. Festinger writes (Festinger 1954): “The
stronger the attraction to the group the stronger
will be the pressure toward uniformity concerning
abilities and opinions within that group”. To model
this, we use a gain function g(o) for the action o,
which translates into the amount of effort or power
invested in the action. For instance, for movement,
the gain function would translate into velocity; the
greater the gain, the greater the velocity.

g(o) =
Smax − s(c)
Smax − Smin

Modeling Pedestrian Movement
To learn more about microscopic and macroscopic
pedestrians’ behavior, Daamen & Hoogendoorn
2003 performed empirical experiments on human
crowds, in particular in terms of movement as
pedestrians. In these experiments, participants
were asked to walk through a monitored area, in
both directions. Their movements were recorded.
One conclusion was that ”During capacity condi-
tions, two trails or lanes are formed: pedestrians
tend to walk diagonally behind each other, thereby
reducing the head ways and thus maximizing the
use of the infrastructure supply”.

Since then, lane formations have been a hall-
mark of pedestrian movement models. Quicker
lane formations typically lead to improved flow
through the area, and the more agents organized
into lanes, the less they need to spend efforts coor-
dinating with others (change lanes). It is thus gen-
erally assumed that when measuring lane changes
over time, improved models lead to a reduction in
the number of lane changes.

Our goal is to explore the use of our social
comparison model in accounting pedestrian move-
ment phenomena like lane formations in bidirec-
tional movement and movement in groups, with
and without obstacles.

To implement the model for pedestrian move-
ment experiments, we used NetLogo (netlogo ).
We simulated a sidewalk where agents can move
in a circular fashion from east to west, or in the



Figure 1: Initial NetLogo sidewalk.

Figure 2: Lane formations.

opposite direction. Each agent has limited vision
distance (beyond this distance it cannot see). It
also has a cone-shaped field-of-view of 120 de-
grees. Each agent initially moves with a default
walking velocity (in our case, 0.1). Agents are not
allowed to move through other agents, and thus no
two agents can occupy the same space.

Figure 1 shows the NetLogo sidewalk environ-
ment, in an initial state where simulated pedestri-
ans are randomly placed about. Each small triangle
is a simulated pedestrian, able to move left-to-right
or right-to-left. Pedestrians exiting the sidewalk on
any side appear on the other side, heading in the
same direction. Figure 2 shows an end-result from
one of the experiments (described below), where
lanes have been formed.

Each agent has a set of features and its corre-
sponding weight. For simulating pedestrian move-
ment, we used the following features and weights:

Walking direction (weight: 2). Agents can move
in two opposite directions, east and west.

Color (weight: 3). Each agent has a color (blue,
pink, red, green, etc.)

Position (weight 1). Each agent has a position,
given in terms of distance and angle. Distance
- Represents the vicinity in position between me
and the other agent.

The similarities in different features (fi) are cal-
culated as follows. fcolor = 1 if color is the same,
0 otherwise. fdirection = 1 if direction is the same,
0 otherwise. and finally, fdistance = 1

dist , where
dist is the Euclidean distance between the posi-
tions of the agents.

The rationale for feature priorities, as repre-
sented in their weights, follows from our intuition
and common experience as to how pedestrians act.

Distance is the easiest difference to correct, and
the least indicative of a similarity between pedes-
trians. Direction is more indicative of a similar-
ity between agents, and color even more so. If an
agent sees two agents, one in the same direction as
it (and far away), and the other very close to it (but
in the opposite direction), it will calculate greater
similarity to the first agent, and try to minimize the
distance to it (this may cause a lane change).

Each agent calculates c(x) according to the
model. If the chosen feature for closing the gap
is distance, then the velocity for movement will be
multiplied by the calculated gain g(o). For other
features (which are binary), the gain is ignored.

Experiments in Pedestrian Movement

This section explores the use of the social compar-
ison model and its implementation in modelling
pedestrian movement. The basic movement pat-
tern that our simulated pedestrians follow, stem-
ming from the social comparison model, is as
follows. The agents follow initially set direc-
tions. They choose moving in this direction, unless
blocked. If forward movement is indeed blocked,
the agents can choose between changing lanes to
the left or right. It will choose the lane where there
is an agent similar to it (if available). If there is no
similar agent, it will arbitrarily choose any lane.

Individual Pedestrians Our first experiment
contrasted the social comparison model with pre-
vious models. We began by examining individ-
ual pedestrian movements, where each synthetic
pedestrian is independent of others. We contrasted
the social comparison model with that of random
choice, which was shown to produce lane for-
mations (Helbing & Molnar 1997; Helbing et al.
2001) and is considered to be a base model for
pedestrian models.

As is commonly done in pedestrian movement
experiments, we controlled for crowd density, cal-
culated as the number of agents divided by the
area. To do this, we fixed the number of agents at
100, and changed the width of the sidewalk. Each
agent had a unique color. Each agent’s direction
(east or west) and initial position was chosen ran-
domly. We follow the literature in measuring two
principal characteristics of pedestrian movement:
the total number of lane changes, and the flow (av-
erage speed divided by the space-per-agent).



For the purpose of this experiment, we fixed the
gain component at 1 (see below for experiments
examining gain). Smax was set at 6, which means
any dissimilarity other than color triggers action.
Smin was set at 2, which means that agents that
differed only in distance were not considered sim-
ilar. Each trial was executed for 5000 cycles.

Figure 3 shows lane changes for the random-
choice and social comparison models. The X-axis
measures density. The Y-axis measures the number
of lane changes during the course of 5000 cycles.
Each configuration was repeated multiple times.
Figure 4 measures flow for the two models. The
X-axis again measures density. The Y-axis mea-
sures the flow.
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Figure 3: Individual Pedestrians’ lane changes.

The figures shows that the number of lane
changes is significantly lower than that of the
random-choice model, implying that lanes form
faster and are maintained longer with the social-
comparison models. However, as the flow results
show, there are no significant differences in flow.
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Figure 4: Individual Pedestrians’ flow.

In other words, the social comparison model per-
forms better, but with no cost to the flow.

Individual Pedestrians, with Variable Gain
The next set of experiments explored the perfor-
mance of the model when the gain component
was allowed to vary, per its definition in the so-
cial comparison model. We repeated the individ-
ual pedestrian experiments, though ignoring color:
All agents moving east were colored red, and all
agents moving west were colored blue. Because
of this, agents really see only two kinds of agents:
Those who have similarity of 1 (or less), and those
with similarity of 5 (or more). Thus the only way
to vary the gain, is to vary the Smin and Smax val-
ues, as they set the denominator in gain calcula-
tion.

To evaluate the effect of the gain, we contrasted
three variants of the social comparison model in-
troduced earlier:

• Smax = 5.5, Smin = 5, i.e., g(o) = 1 (ignoring
the distance).

• Smax = 5.5, Smin = 5, i.e., g(o) = 3
• Smax = 5.5, Smin = 2, i.e., g(o) = 7

Figure 5 shows the initial positions of the agents
in one of the trials (5(a)), and the typical results
after 5000 cycles, with a gain of 1 (5(b)), gain of 3
(5(c)), and gain of 7 (5(d)). The figures show how
the increased gain causes the agents to group more
closely together.

Figures 6 and 7 show the lane-changes and flow
in these experiments. The figures show that while
again, there is no reduction in flow, there is signif-
icant improvement to the number of lane changes,
with an increased gain.

Grouped Pedestrian Movements We now
move away from considering scenarios that have
previously appeared in the literature, and start
exploring new types of movements. In particular,
we experiment with pedestrian movement where
the pedestrians belong to different groups inter-
nally. This type of situation arises, for instance, in
pedestrians that are composed of families and/or
friends. The random-choice model does not cover
such phenomena, because it does not treat internal
groups in any way. In contrast, we expect our
social comparison model to treat groups (agents
that belong to the same group would be more
similar).



(a) Initial positions.

(b) g(o) = 1.

(c) g(o) = 3.

(d) g(o) = 7.

Figure 5: Individual Pedestrians: Varied Gains.
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Figure 6: lane changes
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Figure 7: flow

(a) Initial random positions.

(b) After 5000 cycles, random-choice model.

(c) After 5000 cycles, social comparison model.

Figure 8: Screen shots, Grouped Pedestrian
Movement.

To examine this hypothesis, we carried out ex-
periments in which color is meaningful: Agents
belonging to the same group have the same color.
In these experiments, all agents move in the same
direction, again, for 5000 cycles. Gain was al-
lowed to vary per the model, as described above.
The population contains 150 agents with a differ-
ent number of colors (we experimented with 5, 10,
and 20 and color). Agents use comparison at all
times, and not just when stuck. Walking direction
of all agents was West. Smax was set at 6.5, and
Smin was set at 2.

To account for the intuition that friends (and
family) walk side-by-side, rather than in columns,
we added another feature: The similarity in po-
sition along the x-axis. The revised features and
weights are as follows:

Direction with weight 2.

Distance with weight 0.5.

Color with weight 3.

X-Coordinate with weight 1.

The rationale behind these weights is that the agent
will first close the distance gap with the agent se-
lected as most similar, and only then try to locate
itself on the same X-Coordinate.

Figure 8 shows the initial random positions of



# Colors Random-Choice Social Comparison
5 173.2 87.4
10 143.3 85.8
20 101.5 60.1

Table 1: Grouping measurements of random-
choice and social comparison models. Lower
values indicate improved grouping.

the agents (8(a)), their positions after moving for
5000 cycles using the random-choice model (8(b),
and their positions after moving 5000 cycles us-
ing the social comparison model (8(c)). The fig-
ures show that the social comparison model causes
similar-colored agents to group together. This
group forming does not occur in the random-
choice model.

There exists a significant challenge in being able
to quantitatively measure the grouping results of
the experiments. Normally, a simple clustering
measure would do, as all agents of same color
would group together. However, due to the initial
random positions and the limited visual range of
agents, agents of the same color may never group
together, instead forming several groups that are
far from each other.

Balch (Balch 1998) has offered a clustering
measure, hierarchical social entropy, that can ad-
dress such cases. While (Balch 1998) provides the
details, the key intuition behind this measure is to
iteratively sum entropy over increasing areas. The
measure equals 0 when all agents are positioned in
the exact same spot, and grows with their spread-
ing around. Thus lower values indicate improved
grouping.

Table 1 shows the hierarchical social entropy re-
sults for the random-choice and social-comparison
models. Each row corresponds to an experiment
with a different number of colors. The table shows
(final column) that the social comparison model
provides for significantly improved grouping com-
pared to the random-choice model.

Groups and Obstacles Our final set of pedes-
trian movement experiments addresses the re-
sponse of groups within moving pedestrian crowds
to obstacles. Intuitively, we recognize that such
groups will choose to stick together when face
an obstacle (moving together to one side of it),
while independent pedestrians choose arbitrarily.

(a) Initial random positions.

(b) Final positions, with random-choice model.

(c) Final positions, with social-comparison model.

Figure 9: Initial and final positions of agents in
grouped pedestrian experiments.

We sought to examine whether the social compar-
ison models would account for this behavior.

We created a sidewalk environment as described
earlier, but this time with an elongated rectangu-
lar obstacle in the middle of it. When agents ap-
proached the obstacle, they had to move to one
of its sides. In the experiments, we allowed 100
agents of two colors (red and blue) to move west
from their initial positions. Each agent had the
following features: Direction, distance and color
(weights: same as in the individual pedestrian ex-
periments). Agents used comparison at all times,
and not just when stuck. Smax was set at 6.5, Smin

at 3.
Figure 9 shows the initial random positions of

the agents (9(a)), their positions after moving for
a while using the random-choice model (9(b), and
their positions when moving using the social com-
parison model (9(c)). The figures show clearly
that the social comparison model causes similar-
colored agents to group together on one side of
the obstacle, passing it together. In contrast, the
random-choice model has no such effect on the be-
havior of the agents.

Quantitative analysis again proved challenging,
as here no clusters form. We needed, instead, to
measure to what degree agents of the same color
stay on one side of the obstacle. To do this, we
defined virtual “gates” on either side of the obsta-
cle, and monitored agents that move through them.
Each trial allowed 100 agents to pass through the
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Figure 10: Entropy of Grouped Pedestrian
Movement around Obstacle.

gates 10 times (i.e., 10 waves). At the end of
each wave, we calculated (separately) the entropy
of each color as its agents are divided between the
two gates. A score of 0 indicates perfect grouping
(all agents of same color pass through same gate).
A score of 1 indicates perfect lack of grouping (the
agents are evenly split between the two groups).
The final result of each wave is the average entropy
value across the two colors.

Figure 10 shows the average entropy value for
each wave, for the ten waves. The results are av-
eraged over multiple trials. The X-axis shows the
wave number (1–10). The Y-axis measures the en-
tropy. The figure shows that the entropy value of
the social-comparison model quickly goes down
from 1 and approaches 0, while it remains around
1 for the random-choice model. Indeed, after 10
waves, the average entropy value for the social
comparison model is 0.131, while it is 0.992 for
the random-choice model.

An Initial Implementation in Soar
We have developed an initial implementation of
the social comparison theory model, as described
above, in the Soar cognitive architecture (Newell
1990). Soar uses globally-accessible working
memory, and production rules that test and mod-
ify this memory. Efficient algorithms maintain the
working memory in face of changes to specific
propositions. Soar operates in several phases, one
of which is a decision phase in which all relevant
knowledge is brought to bear to make a selection of
an operator, that will then carry out deliberate men-
tal (and sometimes physical) actions. A key nov-
elty in Soar is that it automatically recognizes sit-
uations in which this decision-phases is stumped,
either because no operator is available for selec-
tion (state no-change impasse), or because con-

flicting alternatives are proposed (operator tie im-
passe). When impasses are detected, a subgoal is
automatically created to resolve it. Results of this
decision process can be chunked for future refer-
ence, through Soar’s integrated learning capabili-
ties. Over the years, the impasse-mechanism has
shown to be very general, in that general problem-
solving strategies could be brought to bear for re-
solving impasses.

Social comparison theory, as described by Fes-
tinger, seems to naturally fit Soar’s impasse-driven
operation. In particular, Festinger describes the
trigger to using comparison as a situation in which
people are unable to evaluate their opinions and ca-
pabilities, which seems to match an impasse situa-
tion.

We thus chose to treat social comparison the-
ory as a new kind of impasse-resolution method.
Unlike previous impasse-resolution (problem-
solving) techniques, in which the agent focus on
using its own resources, here the agent uses knowl-
edge of others as a keystone to resolving the im-
passe. Our goal is therefore to determine a gen-
eral way to describe social comparison processes
in Soar, in such a way that they can be used for
solving a wide variety of problems.

A snapshot from a log showing Soar using our
current implementation (here, to decide on move-
ment) is shown below. Soar’s decision cycles are
denoted by numbers before colons. In the first
and second decision cycles, operators called init
and explore-decision, respectively, are selected by
Soar. But then, more than 20 different instanti-
ations of an operator called elaborate-target are
proposed by the system; Soar is faced with the
task of choosing one among them for execution.
Since it cannot decide, an operator-tie impasse is
declared; see the line marked

3: ==> S: S3 (operator tie)

This triggers our social comparison process, which
is carried out, in sequence, by the following oper-
ators: (i) sct-init, which sets up the new state, and
copies relevant information. (ii) sct-add-entities,
which copies information about other agents for
use in ranking operators. rank-item then cal-
culates a rank for all proposed operators, based
on associated agents and their own choices. Fi-
nally select-item selects the highest-ranking oper-
ator and makes the decision. Indeed the last deci-
sion cycle (#8 in the log) shows a specific instance



of the elaborate-target is chosen.

1: O: O2 (init)
root is active
->proposed child : explore-decision
->by : root

2: O: O4 (explore-decision)
->proposed child : elaborate-target
->by : explore-decision

->proposed child : elaborate-target
->by : explore-decision

[ . 19 additional proposals for elaborate-target . ]

->proposed child : elaborate-target
->by : explore-decision

3: ==>S: S3 (operator tie)
4: O: O27 (sct-init)
5: O: O28 (sct-add-entities)
6: O: O51 (rank-item)

7: O: O68 (select-item)
SCT Done.Chose O21: elaborate-target

8: O: O21 (elaborate-target)
elaborate-target is active

[ . . . . . . . . . . . . . . . Soar continues . . . . . . . . . . . . . . . ]
We believe our treatment of social comparison

processes as generic impasse-resolution methods
raise novel questions as to the role of social rea-
soning in cognitive architectures. Most cognitive
architectures do not commit to social processes be-
ing a part of the architecture. Instead, most so-
cial reasoning is done by manipulating knowledge
and beliefs, not as a problem-solving method. This
view is quite common in robotics and agent liter-
ature, which often treats reasoning about multiple
agents as a process that is carried out at a higher,
task-dependent, level of reasoning.

If our view of social comparison is correct,
then this implies that cognitive architectures must
somehow specialize to cover rudimentary social
reasoning at an architectural level. In particular,
for social comparison processes to be possible, the
architecture itself must distinguish between inputs
that describe other agents from those that describe
objects or features in the environment. Without
such a distinction, any reasoning will necessarily
be limited to where prior knowledge distinguishes
the agents from other knowledge.

Summary and Future Work
This paper presented a preliminary algorithmic
model proscribing crowd behavior, inspired by
Festinger’s social comparison theory (Festinger
1954). The model intuitively matches many of the
characteristic observations made of human crowd
behavior, and was shown to cover phenomena re-
ported on in the literature. Though there is lack
of objective data against which the model can be
tested, the results are promising and seem to match
intuitions as to observed behavior. We also pre-
sented an initial implementation of the model in
Soar, and show how it can be integrated very well
with the impasse-resolution mode of this architec-
ture. This view of social-comparison processes, as
a social impasse-resolution method, is novel and
raises important questions as to the role of agent
modeling (from observations) in cognitive archi-
tectures.
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