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Abstract— Two main challenges of robot action planning in
real domains are uncertain action effects and dynamic environ-
ments. In this paper, an instance-based action model is learned
empirically by robots trying actions in the environment. Modeling
the action planning problem as a Markov decision process, the
action model is used to build the transition function. In static
environments, standard value iteration techniques are used for
computing the optimal policy. In dynamic environments, an
algorithm is proposed for fast replanning, which updates a subset
of state-action values computed for the static environment. As a
test-bed, the goal scoring task in the RoboCup 4-legged scenario
is used. The algorithms are validated in the problem of planning
kicks for scoring goals in the presence of opponent robots.
The experimental results both in simulation and on real robots
show that the instance-based action model boosts performance
over using parameterized models as done previously, and also
replanning significantly improves over original off-line planning.

I. INTRODUCTION

In many robotic applications, robots need to plan a series
of actions to achieve goals. Some of the challenges that robots
face in many real applications, are (1) noisy actions, (2)
dynamic environments, and (3) actions not being well-defined.
In this paper, the problem of action planning in dynamic
environments with uncertain action effects is considered; an
instance-based action model is introduced, and used for action
planning. An on-line transition model modification is used for
dealing with dynamic environments.

Learning action models has been studied in classical plan-
ning (e.g. see [1], [2]), and also in probabilistic planning (e.g.
see prioritized sweeping [3]). But those methods use many
trials to learn the model; instead we use domain heuristics to
learn the model with few experiments prior to planning.

A common shortcoming of prior methods for learning
probabilistic action models is the assumption that the noise
is normal, which in many cases is not true. To overcome
that shortcoming, we propose an instance-based approach
for learning the action model. The action model is built
empirically by trying actions in the environment. Each sample
effect is stored and is considered individually for planning
purposes.

The planning problem is modeled as an MDP. The transition
function of the MDP is built with the help of the learned
action model. Using value iteration [4] with state aggregation,

a plan which maximizes the received reward is generated.
When the environment is static, the value iteration algorithm
is run offline.

In dynamic environments, the planning should be performed
online. The online algorithm should be fast enough to be
within computational bounds of the robots.

Fast replanning algorithms for robotic applications has been
studied for classical planning problems (e.g. see [5], [6]).
However, the probabilistic replanning algorithms that we know
of (e.g. [7]), are computationally expensive.

Observation of each dynamic factor changes the transition
function of the MDP. But it only changes the value of a small
subset of state-action pairs. In the replanning algorithm, using
domain-dependent heuristics, the state-action pairs that are
affected by the dynamic factors are discovered, and only the
values of those state-action pairs are updated.

To evaluate our methods, we use a goal scoring task from
the 4-legged RoboCup competitions. Chernova and Veloso [8]
learn models of kicks for the 4-legged robots, however they
do not discuss how they use this model. Their model consists
of the speed and direction of the ball in the first second.
We extend their work by introducing an instance-based model
instead of their parameterized model, and show the advantages
of using such an instance-based model. Furthermore, we use
the kick model for action planning in the presence of opponent
robots.

In Section II the RoboCup test-bed is presented. In the
next three sections, we go back to the abstract MDP case. In
Section III the details of the instance-based action model, and
how to learn in it, is provided; Section IV is about the planning
algorithm; and Section V considers the planning problem in
dynamic environments. The implementation details for the
RoboCup domain are presented in Section VI. In Section VII,
experimental results are provided, and finally the paper is
concluded with Section VIII.

II. PROBLEM DESCRIPTION

One goal of a robot in the RoboCup four legged league is
goal scoring. In this work we explore single robot goal scoring
possibly against multiple opponents. We assume the opponents
only block the ball, and do not kick or grab it.



The robots in the RoboCup four legged league are Sony
ERS-7 four-legged AIBO robots (Figure 1). The robot’s vision
device is a camera mounted on the head of the robot. It can
capture 208 × 160 frames of pixels at roughly 30Hz.1 It has
20 degrees of freedom and a 576Mhz on-board processor.

As baseline software,

Fig. 1. ERS-7 Sony AIBO robot

we use the UT Austin
Villa code base [9],
which provides robust
color-based vision,
fast locomotion, and
reasonable localization
within a 3.6m × 5.4m
area2 via a particle filtering approach. Even so, the robot is
not, in general, perfectly localized, as a result of both noisy
sensations and noisy actions. The robot also has limited
processing power, which limits the algorithms that can be
designed for it.

The baseline software provides different types of kicks. The
two that are considered in this work are called FALL-KICK

(see Figure 2) and HEAD-KICK (see Figure 3). The effects of
these kicks are probabilistic based on how accurately they are
executed and what exact part of the robot hits the ball.

Fig. 2. Representation of FALL-KICK from left to right

Fig. 3. Representation of HEAD-KICK from left to right

III. INSTANCE-BASED ACTION MODEL

The first step of planning any action is understanding its ef-
fects. We build the action model empirically by trying actions
in the domain. In most of the real robot applications, actions
have probabilistic effects. Thus the action model should be
able to represent the uncertainty in action effects.

Previous methods (e.g. [8]) use parameterized models of
actions. Most popular method for modeling the noise assume a

1Due to the computational intensity of image processing, our robots
typically make decisions at roughly 25Hz.

2The field is as specified in the 2005 rules of the RoboCup Four-Legged
Robot League: http://www.tzi.de/4legged

Gaussian distribution for each of the parameters of the action
model. Instead we take an instance-based approach, where
each action effect from experiments is called a sample action
effect, and is stored in the model. We claim and show in
the experiments, that our instance-based action model is more
efficient than a parameterized action model.

In addition to noisy action effects, robots are faced with
noise from other sources (e.g. uncertain localization). Previous
methods of building action models (e.g. [8]) try to minimize
the effects of such other noise on the action model. If the
action model is noise-free, the effects of the environment’s
noise should be considered in some other way for action
planning. Instead, we aim at having noise from all sources to
also be captured by the action model. In this way, if the action
model is used with any planning algorithm, all the sources
of noise are also considered. This requires the samples to be
collected in a situation similar to the one that the robot faces
in the real environment, not in some other controlled setting.

An example of an instance-based action model for the FALL-
KICK in the RoboCup domain is shown in Figure 4.

Fig. 4. Representation of the model of FALL-KICK. The position of the robot
and kick direction is marked by an arrow.

IV. PLANNING

In this section, we show how the instance-based action
model can be used for action planning. We model the problem
as a Markov decision process (MDP) and use a value iteration
method to solve it. In this section the environment is assumed
to be static, dynamic environments are considered in the next
section.

The planning problem is modeled as an MDP
(S, A, Pr(s

′

|s, a), R), where:

• S is a discrete set of states. If the state space is contin-
uous, it should be descritized. We show that descritizing
the state space does not have much effect in the RoboCup
goal shooting test-bed.

• A is the set of possible actions.
• Pr(s

′

|s, a) is the state transition probabilities. It gives
the probability of getting to state s

′

from taking action



a in state s. Because of noise in the environment, and
uncertainty of action effects, the transition function is
stochastic

• R(s, a) is the reward function.

The goal of the robot is to find a policy π : S �→ A that
maximizes the received reward. The policy determines which
action is chosen by the robot from each state.

Pr(s
′

|s, a) is not known to the robot, however the robot can
use the action model to approximate it. The approximation of
Pr(s

′

|s, a) is called P̃ r(s
′

|s, a). The approximation is based
on domain-dependent heuristics. R(s, a) is also computed
with the help of action model. The details of computing
P̃ r(s

′

|s, a) and R(s, a) for the RoboCup goal shooting test-
bed is presented in Section VI.

For state s, the expected value V π
t (s) is defined as the sum

of reward from s for t actions (stage t), while following policy
π. V ∗

T (s) is the optimal T -horizon policy if V ∗

T (s) ≥ V π
T (s) for

all policies π and all s ∈ S in T horizon. The bellman principle
of optimality [4] establishes the following relationship between
the optimal value function of stage t and the optimal value
function of the previous stage:

Vt(s) = max
a∈A

{R(s, a) +
∑
s
′
∈S

Pr(s
′

|a, s)V ∗

t−1
(s

′

)} (1)

The above equation forms the basis for value iteration al-
gorithm for finite-horizon algorithms[10]. Qπ

t (s, a) is defined
as the sum of the rewards received from state s, with t actions,
while following policy π (see Equation 2), if the first action
to execute is a. Q∗

t (s, a) is for the case where the policy
is optimal. Advantage of using Qπ

t (s, a) over V π
t (s, a), is

presented in the next section, where only a subset of Q values
needs to be updated.

We use following two equations for value iteration, which
are basically the same as Equation 1:

Qt(s, a) = R(s, a) +
∑
s
′
∈S

P̃ r(s
′

|a, s)V ∗

t−1
(s

′

) (2)

Vt(s, a) = max
a∈A

Q(s, a) (3)

Value iteration starts with Q∗

0
(s, a) = R(s, a) and with

above equations the Q and V values are updated. Using value
iteration algorithm with finite horizon, and approximating Pr

with P̃ r, the expected values for the states of the system are
computed offline, and the V ∗

T values are ready to be used for
the robot.

Up to this point in this section, we provided the MDP
formalism and the value iteration algorithm to solve it. None
is a contribution of this paper, but they are the basis of the
replanning algorithm presented in the next section.

When the system is in state s, a common practice for
action selection is to choose action a such that it maximizes
Q(s, a). This approach coupled with using a discrete state
representation results in a sub-optimal policy. In order to
alleviate this effect, for action selection, instead of the state,

the robot uses its true state estimate that maximizes the
following value:

R(TS, a) +
∑
s
′
∈S

P̃ r(s
′

|a, TS)V ∗

T (s
′

) (4)

where TS is the true state estimate of the robot.
This way, the effects of discretizing the state are deferred

to the next step, and it results in a better policy. In the
experiments section (Section VII), we empirically show that in
the RoboCup test-bed, discretizing the environment with the
true state for action selection is very close in performance to
using the true state in planning.

Note that using the true state to evaluate all possible actions
is a computational burden on the robot, but it can be done in
manageable time. In the experiments section the advantage
of this action selection method is showed empirically in
simulation.

V. REPLANNING

In the previous section, the environment was assumed to be
static, and the value function could be computed offline. In
this section, the possibility of the presence of dynamic factors
(e.g. the presence of opponent robots in the RoboCup test-
bed) is considered. The dynamic factors change the transition
function of the MDP, and the value function for the new MDP
needs to be computed online. The robot’s weak processing
power does not allow for full value iteration for consideration
of dynamic factors. In this section a fast replanning algorithm
is presented, which uses the Q-values that are computed for
the static environment.

If the dynamic factors are considered in computing
P̃ r(s

′

|a, s) in Equation 5, the value iteration and action se-
lection algorithms described in Section IV can also be applied
to the dynamic environment. As mentioned, the problem is
that we can no longer compute the V values offline, and that
algorithm is too slow to run online on robots.

As with Qπ
t (s, a), Qπ

t (s, a|F ) is defined as sum of the re-
ceived reward in the presence of dynamic factors F , from state
s, with t actions, while following policy π (see Equation 4),
if the first action to execute is a. Q∗

t (s, a|F ) is for the optimal
policy.

Difference between Q∗(s, a) and Q∗(s, a|F ) is only sub-
stantial when F has a direct effect on the Q-value of (s, a)
state-action pair. For the rest of the states, Q∗(s, a|F ) ≈
Q∗(s, a). This fact, which is typical of many dynamic systems,
where the dynamic factors have an effect on only a subset
of the Q-values, is the basis of the proposed replanning
algorithm.

Assuming Q(s, a) is the current Q-function, the algorithm
for updating the Q-values in the event of observing dynamic
factor f is as follows:

1) Flag the (s, a) pairs that are potentially affected by f .
2) For flagged pair (s, a), there is a good chance that

Q(s, a|f) is very different from Q(s, a). Thus, if (s, a)
is flagged, Q(s, a|f) is initialized to zero, and otherwise,
it is initialized to Q(s, a).



3) Only for flagged pairs (s, a), the Q(s, a|f) are updated
using Equation 2. Notice that only one round of updates
is performed. After all the Q-updates, the V values are
re-computed using Equation 3.

The action selection is the same as the one discussed in
the previous section. The two main benefits of our replanning
algorithm are that it is fast and the robot can distribute the
value iteration steps over different decision periods (updates
to Q can be done in several time cycles), so the robot processor
does not get stuck in this process.

Recall that the robot does another level of inference on the
effect of actions in the action selection step, so the effects of
adding f is effectively backed up two steps.

VI. IMPLEMENTATION DETAILS

In this section the implementation details of the instance-
based action model (Section III), planning (Section IV), and
replanning (Section V) algorithms for the goal scoring test-bed
(Section II) are presented.

A. Learning Kick Model

The main action for scoring goals is kicking (assuming the
robot walks to the new position of the ball after each kick
action). Kicks (as shown in Figures 2 and 3) have uncertain
(i.e. probabilistic) effects on the final position of the ball,
which is based on the exact point of contact between the robot
and the ball. In this section we present the implementation
details of learning the instance-based kick model.

Chernova and Veloso [8] use average and standard deviation
for the speed and angle of each kick to model the kick. They
measure the angle and distance one second after the kick, thus
measuring the speed. By just considering the kick in the first
second, and also setting the initial position of the ball by hand,
they try to minimize the noise in their kick model. They do
not provide details of how they use this model. But a popular
way of using average and standard deviation is modeling the
parameters with Gaussian distributions.

For creating the kick model, the robot goes to the ball, grabs
it, and kicks it to the center of the field. Right before kicking,
it records its position (kick position), which includes the usual
localization errors. Then, the robot follows the ball, and when
the ball stops moving, a human observer sends a signal to
the robot, and the robot records the new ball position (final
ball position). The gathered sample kick effects (kick position,
final ball position) are processed by an offline program, and
for each kick sample, the difference between the final ball
position and the kick position is computed. These changes in
x and y coordinates get discretized and are stored in a grid.

The learned action model is a three dimensional array KT ,
where for kick type k, KT [k][x][y] represents the number of
kicks that changed the position of the ball for x grid cells in
the x-axis and y grid cells in the y-axis. Figure 4 shows the
KT[FALL-KICK] where the position of the robot (kick position)
and kick direction is shown with the arrow, and each black dot
represents one sample action effect resulting in the ball to end

up in that grid cell. The main rectangular grid is in the size
of the legged soccer field.

Two fundamental difference between our model and that
of Chernova and Veloso’s [8] and other usual action models
are that ours is (1) instance-based, and (2) unlike usual action
models, where the designers make an effort to reduce the noise
(e.g. tracking for one second, and putting the ball in front of
the robot in [8]), we try to capture the full environmental noise
in the action model.

B. Planning

We begin by dividing the robot’s environment into the
disjoint grid G. Dotted lines in Figure 5 shows the actual grid
used in the experiments. KT is the set of different kick types
available to the robot, and D is a discrete set of possible kick
directions.

In Section VII, we empirically show that discretizing the
field does not have much effect on the efficiency of the
algorithm.

Fig. 5. Soccer field which is divided into a grid.

The MDP (S, A, Pr(s
′

|s, a), R) for the test-bed problem is
defined as:

• S = G is a set of states, representing the grid cell that
the ball is in. Whenever the grid cell is used as a position,
the center of the cell is assumed. In the rest of the paper,
the state is also used to point at the grid cell where the
ball is located in that state.

• A = KT × D is the set of possible actions, which is
kicking with a specific kick type (from KT ) at a direction
(from D).

• Pr(s
′

|s, a) is the state transition probabilities.
• R(s, a) is the reward function and is the probability of

scoring a goal from state s using action a.
To approximate P̃ r(s

′

|s, a), kick model is projected to the
starting point of the kick with the kick direction to get a



distribution over kick effects (i.e. the possible cells that the
ball can land in). P̃ r(s

′

|s, a) is computed by the following
equation:

P̃ r(s
′

|s, a) =
KT [k][s

′

xd − sxd][s
′

yd − syd]

N [k]
(5)

where sxd (syd) is the x-index (y-index)3 of the grid
cell containing the ball in s, after the transformation that
transforms the kick direction to the x-axis. For each state s,
the center of the cell is used for computing sxd and syd. k is
the type of action a, and N [k] is the number of kick samples
of type k.

R(s, a) is also computed with the help of action model, that
is, R(s, a) is equal to the percentage of the sample kick effects
from kick model that result in a goal from state s by taking
action a.

The value iteration and action selection algorithms described
in Section IV are used for computing Q-values and action
selection.

C. Replanning

The presence of opponent robots in the goal scoring test-bed
are considered as dynamic factors. We assume that opponent
robots only block the ball and do not grab or kick it. The
robot models the blocking as ball reflection from the opponent
robots. That is, if the kick trajectory of a kick sample of the
kick model hits any of the opponent robots, the reflection from
the opponent robot is assumed by the robot as the final position
of the ball.

The replanning algorithm presented in Section V is used to
update the Q values. In the first step of the algorithm, a pair
(s, a) in the presence of the opponent robot f is flagged if f

is reachable by an average a kick from s (i.e. instead of the
kick model of a, it uses the average distance and angle of kick
a). 4

One special case to consider is when the opponent robot
o intersects with a grid cell g, and based on a sample action
effect, the ball also ends up in grid cell g. The value of a point
in cell g is highly dependent on which side of opponent o the
point is located. If the final ball point is on the same side of
o as the center of cell g, V ∗(g) is used, and if not, average V

values of the cells adjacent to g and on the same side of o as
the ball are used.

VII. EXPERIMENTAL RESULTS

The algorithms are evaluated both on a custom-built AIBO
simulator [9] and on real AIBO robots. The simulator, though
abstract with respect to locomotion, provides a reasonable
representation of the AIBO’s visual and localization capabil-
ities, and allows for a more thorough experimentation with
significant results. The kick model used in the simulator is

3x-index (y-index) of grid cell g is the floor value of x-coordinate (y-
coordinate) of the center of cell g divided by length of a cell in x-axis (y-
axis).

4More elaborate techniques that consider all kick samples proved to need
heavy computation, which is not available on the robots.

the same as the one used on the robot. Thus, the simulation
results are based on the assumption of a correct kick model.
There are methods of active localization (e.g. [11]) to reduce
the localization errors, which are not considered here and can
be used orthogonally with this work. Thus, robots should
deal with large localization errors (in the simulation, this
is reflected in the learned kick model), and that lowers the
scoring percentages.

Five different algorithms are compared in this section. The
considered algorithms include:

• ATGOAL: In this algorithm, the robot directly shoots at
the goal using FALL-KICK which is a more accurate kick.
It is used as a baseline algorithm.

• REPLAN: This is the planning algorithm presented in
Section V, where the robot observes the position of the
opponent robots online.

• FULLPLAN: This algorithm is used for comparison with
REPLAN. In FULLPLAN, it is assumed that the position
of the opponent robots is known as a priori, and an offline
algorithm performs the full value iteration, and passes the
Q-values to the robot.

• PLAN: This is the planning algorithm (Section IV) for
the clear field, where no opponent robot is present. In
clear fields, this is the algorithm of choice, but it is also
used to compare to REPLAN in the presence of opponent
robots.

• NORMALPLAN (NORMALFULLPLAN): This is similar to
PLAN (FULLPLAN for the case of NORMALFULLPLAN)
algorithm, but instead of full kick model, a normalized
kick model is used. Average and standard deviation
(similar to [8]) for distance and angle of each kick sample
is computed. Two different Gaussians are assumed, one
for the angle, and the other for the distance of the kick
samples. Each time that the robot considers a kick, it
draws n random samples from each of the Gaussians,
where n is equal to the number of different kick samples
that it would have considered for the instance-based kick
model. For each of the n pairs of (angle, distance), it
evaluates the kick. The final evaluation is based on the
average of the n evaluations. This experminet is used to
show the power of the instance-based kick model com-
pared to the parameterized kick model with a normalized
noise.

The grid used in the experiments is 7× 10 and is shown in
Figure 5. The horizon for PLAN and FULLPLAN algorithms
is set at 20, that is number of the value iteration rounds is 20.

A. Simulation Results

In the first experiment, the environment is assumed to
be static. In later experiments, the algorithms are evaluated
in dynamic environments. At the end of this section, the
effects of considering the true position for action selection (see
Section IV) is investigated. While doing so, we also argue that,
the effects of assuming a grid for representing the position are
minor.



Each episode starts with the ball stationed in a starting
point, and is finished when a goal is scored or the ball goes
out of bounds. Each trial consists of 100 episodes (except
for Section VII-A.5). The percentage of the episodes which
resulted in goals and the average number of kicks per episode
are computed for each trial. Except for Section VII-A.5, the
reported data is averaged over 28 trials.

1) Clear Field Experiment: We start the experiments with
no opponents (Figure 6). Two starting points for the ball are
considered. The experiments for the center point (Figure 6(a))
and the up-left point (Figure 6(b)) are presented.

Recall that the ATGOAL algorithm only uses FALL-KICK.
For a fair comparison between ATGOAL and PLAN, the result
for the PLAN(FALL-KICK) algorithm, which is similar to
PLAN, but only uses FALL-KICK, is presented. As the results in
Table I suggest, using the HEAD-KICK does not make much
of a difference for the PLAN algorithm. For that reason, in
the next experiments PLAN(FALL-KICK) is not considered.
However, one of the benefits of the algorithms presented in
this paper is enabling the addition of newly designed kicks.

The scoring percentage and average number of kicks per
episode for ATGOAL, PLAN and NORMALPLAN are presented
in Table I. As it is shown in the table, when the starting
ball point is at the center of the field, planning significantly
increases performance over the ATGOAL algorithm by 30%,
and increases the performance by 76% when the starting ball
position is the up-left point. For the planning algorithm, the
average number of kicks is also higher, which is a compromise
for achieving better scoring percentage.

The effectiveness of the instance-based kick model is shown
by the significant advantage of the PLAN algorithm compared
to NORMALPLAN in Table I. Using the instance-based kick
model for the center and up-left starting point increases the
performance by 43% and 42% compared to NORMALPLAN,
respectively.

(a) (b)
Fig. 6. Clear field. (a) The center of the field is the starting point of the
ball. (b) The up-left point is the starting point for the ball.

2) One Opponent Experiment: In this experiment, a sta-
tionary opponent robot is placed in the field. The field with
the opponent robot is shown in Figure 7(a). The ball’s starting
point is at the center of the field. The algorithms ATGOAL,

Start. point Algorithm Scoring % # Kicks/episode
Center ATGOAL 46.28 ± 4.85 3.41 ± 0.12
Center PLAN 60.53 ± 4.87 9.71 ± 0.91
Center PLAN(FALL-KICK) 58.78 ± 5.03 9.61 ± 0.92
Center NORMALPLAN 42.11 ± 5.75 10.12 ± 0.78

Up-Left ATGOAL 29.11 ± 5.03 1.74 ± 0.11
Up-Left PLAN 51.39 ± 5.40 6.35 ± 0.65
Up-Left PLAN(FALL-KICK) 53.14 ± 5.31 6.11 ± 0.80
Up-Left NORMALPLAN 39.00 ± 5.21 7.12 ± 0.77

TABLE I

COMPARING DIFFERENT ALGORITHMS FOR THE TWO STARTING BALL

POINTS IN THE CLEAR FIELD EXPERIMENT (SEE FIGURE 6).

REPLAN, FULLPLAN, PLAN, and NORMALFULLPLAN are
compared. Success percentage and average number of kicks is
presented for the above-mentioned algorithms in Table II.

REPLAN algorithm significantly improves scoring percent-
age compared to ATGOAL, PLAN and NORMALFULLPLAN

by 104%, 13%, and 45% respectively. It is also very close in
performance to FULLPLAN, where the transition function is
assumed to be known as a priori and the Q-values are com-
puted offline without computational limitations. The difference
is 1.5%, which is not significant. The average number of kicks
per episode is the most for the REPLAN algorithm, which is
considered not important compared to scoring efficiency.

(a) (b)
Fig. 7. (a) The field with one stationary opponent robot. (b) The field with
two stationary opponent robots.

Algorithm Scoring % # Kicks/episode
ATGOAL 32.00 ± 5.83 1.77 ± 0.11
REPLAN 65.92 ± 4.20 11.74 ± 1.00

FULLPLAN 67.10 ± 3.92 8.22 ± 0.67
PLAN 57.42 ± 3.76 8.42 ± 0.63

NORMALFULLPLAN 45.17 ± 4.59 9.59 ± 0.69

TABLE II

SCORING PERCENTAGE AND AVERAGE NUMBER OF KICKS FOR DIFFERENT

ALGORITHMS, IN THE ONE OPPONENT ROBOT SCENARIO (SEE

FIGURE 7(A)).

3) Two Opponent Experiment: In this experiment, an ad-
ditional robot is positioned in the field. The field is shown in



Figure 7(b). The scoring rate and average number of kicks for
different algorithms is presented in Table III. The trend in the
result is consistent with the observation in the one opponent
robot scenario in the previous experiment (Section VII-A.2).

Algorithm Scoring % # Kicks/episode
ATGOAL 21.85 ± 4.64 5.09 ± 0.32
REPLAN 54.25 ± 5.58 19.45 ± 1.97

FULLPLAN 54.64 ± 5.59 11.43 ± 0.90
PLAN 46.46 ± 5.10 13.04 ± 1.14

NORMALFULLPLAN 38.07 ± 4.39 11.84 ± 0.96

TABLE III

COMPARING DIFFERENT ALGORITHMS FOR PLAYING AGAINST THE TWO

OPPONENT CASE (SEE FIGURE 6(A)).

4) Moving Opponents Experiment: In this experiment two
moving opponent robots are present in the field. In each
episode, the opponent robots start from the position of the
opponent robots in the previous experiment (Figure 7(b)), and
after each kick, they move 150cm5 randomly in one of the four
main directions (i.e. left, right, up or down). In an effort to
reduce the noise in the result, the seed of the pseudo-random
generator, which determines what direction opponent robots
move, is fixed for all trials (not episodes).

The scoring percentage and average number of kicks for
ATGOAL, REPLAN, and PLAN algorithms is provided in
Table IV. The performance of the REPLAN is 178% better
than ATGOAL and 6% better than the PLAN algorithm. Since
the robot movement is random, the position of the opponent
robots can not be known as a priori, and no offline algorithm
like FULLPLAN can be developed.

Algorithm Scoring % # Kicks/episode
ATGOAL 20.60 ± 5.14 4.52 ± 0.37
REPLAN 57.32 ± 4.82 9.51 ± 0.65

PLAN 54.14 ± 3.98 9.51 ± 0.67

TABLE IV

COMPARING ATGOAL, PLAN AND REPLAN ALGORITHMS IN THE

PRESENCE OF TWO MOVING OPPONENT ROBOTS.

5) Investigating the Use of the True Position in Action
Selection and the Effects of Using a Grid: As mentioned in
Section IV, for action selection, the robot uses its true position
instead of the state it is in. In this section the advantage of
using the true position is shown. We also investigate how much
of the advantage is due to the precision needed for scoring a
goal with a single kick. It is also argued that the use of the
grid does not significantly affect the performance.

The scenario of Section VII-A.1, where the starting point
of the ball is the up-left point (Figure 6(b)) is assumed, and
for added precision in the results, each trial consists of 1000
episodes, and the presented data is averaged over 13 trials.
The effects of using three different action selection methods

5Recall that the size of the field is 5400cm × 3600cm.

for PLAN algorithm is compared with the one presented in
Section IV (which is called ALWAYSFROMPOS here). Note
that the Q-values are the same for all algorithms, and only
the action selection method is different. The three considered
action selection algorithms are as follows:

• ALWAYSFROMSTATE: Robot chooses the action that
maximizes Q(s, a). That is, the robot effectively uses the
center of the cell that it is in instead of its true position.
As discussed in Section IV, this is the common practice
in solving MDPs.

• FROMPOSIFGOAL: If from the true robot position or
center of the cell that the robot is in, one of the sample
kick effects results in a goal, the robot uses the true
position for that particular sample kick effect, otherwise
it uses the center of the cell.

• FROMSTATEIFGOAL: It is the opposite of the
FROMPOSIFGOAL algorithm, that is, if from the
true position or center of the cell, one of the sample
kick effects results in a goal, the robot uses the center of
the cell for that particular sample kick effect, otherwise
it uses the true position.

Action Selection Alg. Scoring %
ALWAYSFROMPOS 54.73 ± 1.00

ALWAYSFROMSTATE 46.47 ± 1.58
FROMPOSIFGOAL 51.50 ± 0.95

FROMSTATEIFGOAL 48.86 ± 1.38

TABLE V

COMPARING ACTION SELECTION ALGORITHMS, FOR THE SCENARIO OF

FIGURE 6(B).

As evident from the results in Figure V, using the true posi-
tion significantly increases the performance by 18% compared
to using the states.

Notice that FROMPOSIFGOAL is 11% better
than ALWAYSFROMSTATE, and just 6% worse than
ALWAYSFROMPOS. Also FROMSTATEIFGOAL is just
5% better than ALWAYSFROMPOS which is not significant.
This suggests that most of the added efficiency because of
using the true position corresponds to the added precision
needed for the last step of scoring goals.

We now claim that the advantage gained from using the
true position for planning (though computationally almost
impossible), as opposed to using a grid, is not significant.

Since the PLAN algorithm uses the true position for the
current location of the ball, further use of the true position does
not have any effect on the precision needed for the last step of
scoring goals. Thus the effects of further use of true position
is just in changing the position of the ball before goal scoring.
Using the true position of the current location of the ball (as
PLAN does) is far more important than the true position of the
location of the ball after a kick, because the action model is
probabilistic and approximate, and there is a distribution of the
locations that the ball can land in after a kick. However, the
difference of performance even for the first step is not signifi-



cant (difference of performance between FROMSTATEIFGOAL

and ALWAYSFROMSTATE). This suggests that the effects of
further consideration of the true position is not significant.

B. Real Robots

In this section, experiments on a real robot are reported.
Robot experiments are time consuming and it is not possible
to do as much trials as in simulation. First, experiments in the
clear case (Figure 6(b)) and then against two opponent robots
(Figure 7(b)) is provided.

1) Real Robot in Clear Field: The configuration is the
same as the one shown in Figure 6. Each trial consists of 50
episodes, and the result for one trial is reported in Table VI.
The trend is similar to the simulation experiment of the same
configuration, and PLAN increases performance over ATGOAL

and NORMALPLAN by 80% and 20% respectively.

Algorithm Scoring %
ATGOAL 20

PLAN 36
NORMALPLAN 30

TABLE VI

COMPARING DIFFERENT ALGORITHMS FOR UP-LEFT STARTING BALL

POINTS FOR THE CLEAR FIELD EXPERIMENT (SEE FIGURE 6(B)) WITH A

REAL ROBOT.

2) Real Robot Against Two Opponent Robots: In this
experiment the configuration of the field in Figure 7(b) is used
for a real robot. Each trial consists of 25 episodes, and the
result is reported in Table VII.6 The result shows the same
trend as the simulation in this field, and REPLAN is better
than PLAN and ATGOAL.

Algorithm Scoring %
ATGOAL 4

PLAN 16
REPLAN 24

TABLE VII

COMPARING DIFFERENT ALGORITHMS FOR REAL ROBOT IN THE

EXPERIMENT AGAINST TWO OPPONENT ROBOTS (SEE FIGURE 7(B)).

VIII. CONCLUSION

Action planning problem in noisy environments, is consid-
ered and modeled as an MDP. An instance-based action model
is introduced to model noisy actions. The action model is then
used to build the transition function of the MDP. Furthermore
a fast algorithm for action planning in dynamic environments,
where dynamic factors have effect on only a subset of state-
action pairs is introduced. To test these approaches, goal
scoring in RoboCup 4-legged league is used as a test-bed. The

6Since in the used base code, the robots do not walk around opponent
robots, in this experiment whenever the robot wanted to move across the
opponent, the human removed the opponent momentarily.

experimental results show the advantage of using the instance-
based approach compared to parameterized action models.
Also it shows that the fast replanning algorithm outperforms
the original off-line planning and approaches the best possible
performance assuming the full transition model is known as a
priori.

Instead of using heuristics to model the effects of dynamic
factors on the transition model, one can learn the effects with
experiment and build a more robust system. Also the extension
of this approach to multi-robot systems is among the future
works.
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