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Abstract 

This work is about the relevance of Gibson’s concept of 
affordances [1] for visual perception in interactive and 
autonomous robotic systems. In extension to existing 
functional views on visual feature representations [9], we 
identify the importance of learning in perceptual cueing 
for the anticipation of opportunities for interaction of 
robotic agents. We investigate how the originally defined 
representational concept for the perception of 
affordances - in terms of using either optical flow or 
heuristically determined 3D features of perceptual 
entities - should be generalized to using arbitrary visual 
feature representations. In this context we demonstrate 
the learning of causal relationships between visual cues 
and predictable interactions, using both 3D and 2D 
information. In addition, we emphasize a new 
framework for cueing and recognition of affordance-like 
visual entities that could play an important role in future 
robot control architectures. We argue that affordance-
like perception should enable systems to react on 
environment stimuli both more efficient and 
autonomous, and provide a potential to plan on the basis 
of responses on more complex perceptual configurations. 
We verify the concept with a concrete implementation 
for affordance learning, applying state-of-the-art visual 
descriptors that were extracted from a simulated robot 
scenario and prove that these features were successfully 
selected for their relevance in predicting opportunities of 
robot interaction. 

I. Introduction 

The concept of affordances has been coined by J.J. 
Gibson [1] in his seminal work on the ecological approach 
to visual perception: “The affordances of the environment 
are what it offers the animal, what it provides or furnishes, 
either for good or ill … something that refers both to the 
environment and the animal in a way that no existing term 
does. It implies the complementarily of the animal and the 
environment.” In the context of ecological perception, 
visual perception would enable agents to experience in a 

direct way the opportunities for action. However, Gibson 
remained unclear how this concept could be used in a 
technical system. Neisser [2] replied to Gibson’s concept 
on direct perception with the notion of a perception-action 
cycle that shows the reciprocal relationship of the 
knowledge (i.e., a schema) about the environment directing 
exploration of the environment (i.e., action), which 
samples the information available for pick up in the 
environment, which then modifies the knowledge, and so 
on. This cycle describes how knowledge, perception, 
action, and the environment all interact in order to achieve 
goals.  

Our work on affordance-like perception is in the context 
of technical, i.e., robotic systems, based on a notion of 
affordances that ‘fulfill the purpose of efficient prediction 
of interaction opportunities’. We extend Gibson’s 
ecological approach under acknowledgment of Neisser’s 
understanding that visual feature representation on various 
hierarchies of abstraction are mandatory to appropriately 
respond to environmental stimuli. We provide a refined
concept on affordance perception by proposing (i) an 
interaction component (affordance recognition:
recognizing relevant events in interaction via perceptual 
entities) and (ii) a predictive aspect (affordance cueing:
predicting interaction via perceptual entities). This 
innovative conceptual step enables firstly to investigate the 
functional components of perception that make up 
affordance-based prediction, and secondly to lay a basis to 
identify the interrelation between predictive features and 
predicted event via machine learning technology.  
 The outline of this paper is as follows. Section II 
describes the relevance of affordance-like representations 
in robot perception and argues for the importance to learn 
the features of perceptual entities. Section III focuses on 
the issues of affordance recognition, in contrast to the 
predictive aspect of affordance-like representations in 
affordance cueing presented in Section IV. Section V
illustrates the experimental results that strongly 



Fig. 1. Concept of affordance perception, depicting the key components of affordance cueing and recognition embedded within an agent’s
perception-action cycle (most left). While affordance cueing (left) provides a prediction on future opportunities of interaction on the basis 
of feature interpretation, affordance recognition (right) identifies the convergence of perceptual patterns towards a final state of the overall 
affordance based process. Attention (bottom) might act (arrows) on several functional components. 

support the proposed hypothesis on the relevance of 
generalized features that must be learned for successful 
affordance-like perception in robot control systems. 
Section VI concludes with an outlook on future work. 

II. Affordance Perception and Learning 

 Affordance-like perception aims at supporting control 
schemata for perception-action processing in the context 
of rapid and simplified access to agent-environment 
interactions. In this Section we argue that previous 
research has not yet tackled the relevance of learning in 
cue selection, and present a framework on functional 
components that enables to identify relevant visual 
features. 

A. Related Work 

 Previous research on affordance-like perception 
focused on heuristic definition of simple feature-function 
relations to facilitate sensor-motor associations in robotic 
agents. Human cognition embodies visual stimuli and 
motor interactions in common neural circuitry (Faillenot 
et al.[3]). Accordingly, the affordance-based context in 
spatio-temporal observations and sensor-motor behaviours 
has been outlined in a model of cortical involvement in 
grasping by Faag and Arbib [4], highlighting the 
relevance of vision for motor interaction. Reaching and 
grasping involves visuomotor coordination that benefits 
from an affordance-like mapping from visual to haptic 
perceptual categories (Wheeler et al.[5]). Within this 
context, the MIT humanoid robot Cog was involved in 
object poking and proding experiments that investigate 
the emergence of affordance categories to choose actions 

with the aim to make objects roll in a specific way 
(Fitzpatrick et al.[6]).  
 The research of Stoytchev [7] analysed affordances on 
an object level, investigating new concepts of object-hood 
in a sense of how perceptions of objects are connected 
with visual events that arise from action consequences 
related to the object itself. Although this work 
innovatively demonstrated the relation between 
affordance triggers and meaningful robot behaviours, 
these experiments involve computer vision still on a low 
level, and do not consider complex sensor-motor 
representation of an agent interaction in less constrained, 
even natural environments. In addition, they are restricted 
to using vision rather than exploiting the multi-modal 
sensing that robots may perform. 
 Affordance based visual object representations are per 
se function based representations. In contrast to classical 
object representations, functional object representations 
(Stark and Bowyer [8], Rivlin et al.[9]) use a set of 
primitives (relative orientation, stability, proximity, etc.) 
that define specific functional properties, essentially 
containing face and vertex information. These primitives 
are subsumed to define surfaces and from the functional 
properties, such as 'is sittable' or 'provides stable support'. 
Bogoni and Bajcsy [10] has extended this representation 
from an active perception perspective, relating 
observability to interaction with the object, understanding 
functionality as the applicability of an object for the 
fulfillment of some purpose.  
 However, so far function based representations were 
basically defined by the engineer, while it is particularly 
important for affordance based representations to learn
the structure and the features themselves from experience
(Section IV). 



B. Predictive Features in Affordance based Perception 

 Fig. 1 depicts the innovative concept on feature based 
affordance perception presented in this paper. We identify 
first the functional component of affordance recognition, 
i.e., the recognition of the affordance related visual event 
that characterizes a relevant interaction, e.g., the 
capability of lifting (liftability) an object using an 
appropriate robotic actuator. The recognition of this event 
should be performed in identifying a process of evaluating 
spatio-temporal information that leads to a final state. 
This final state should be unique in perceptual 
feature/state space, i.e., it should be characterized by the 
observation of specific feature attributes that are 
abstracted from the stream of sensory information. 
 The second functional component of affordance cueing 
encompasses the key idea on affordance based perception, 
i.e., the prediction aspect on estimating the opportunity 
for interaction from the incoming sensory processing 
stream. In particular, this component is embedded in the 
perception-action cycle of the robotic agent. The agent is 
receiving sensory information in order to build upon 
arbitrary levels of feature abstractions, for the purpose of 
recognition of perceptual entities. In contrast to classical 
feature and object recognition, this kind of recognition is 
purposive [15] in the sense of selecting exactly those 
features that efficiently support the evaluation of 
identifying an affordance, i.e., the perceptual entities that 
possess the capability to predict an event of affordance 
recognition in the feature time series that is immediately 
following the cueing stage of affordance based perception. 
The outcome of affordance cueing is in general a 
probability distribution PA on all possible affordances 
(Section IV.A), providing evidence for a most confident 
affordance cue by delivering a hypothesis that favors the 
future occurrence of a particular affordance recognition 
event. This cue is functional in the sense of associating to 
the related feature representation a specific utility with 
respect to the capabilities of the agent and the 
opportunities provided by the environment, thus 
representing predictive features in the affordance based 
perception system. 
 The relevance of attention in affordance based 
perception has first been mentioned by developmental 
psychologist E.J. Gibson [11] who recognized that 
attention strategies are learned by the early infant to 
purposively select relevant stimuli and processes in 
interaction with the environment. In this context we 
propose to understand affordance cues and affordance 
hypotheses as fundamental part in human attentive 
perception, claiming that – in analogy – purposive, 
affordance based attention could play a similar role in 
machine perception as well.  
 There are affordances that are explicitly innate to the 
agent through evolutionary development and there are 
affordances that have to be learned [1]. Learning chains of 
affordance driven actions can lead to learning new, more 
complex affordances. This can be done, e.g., by imitation, 

whereby it is reasonable to imitate goals and sub goals 
instead of actions [12]. In the context of the proposed 
framework on affordance based perception (Fig. 1), 
learning should play a crucial role in determining 
predictive features in affordance based perception. In 
contrast to previous work on functional feature and object 
representations [8, 9], we stress the fact that functional 
representations must necessarily contain purposive 
features, i.e., represent perceptual entities that refer to 
interaction patterns and thus must be selected from an 
existing pool of generic feature representations.  
 Feature selection (and, in a more general sense, feature 
extraction) must be performed in a machine learning 
process and therefore avoid heuristic engineering which is 
always rooted in a human kind understanding of the 
underlying process, a methodology which is necessarily 
both, firstly, error prone due to failing insight into 
statistical dependencies and, secondly, highly impractical 
for autonomous mobile systems. Our work highlights the 
process of learning visual predictive cues which to our 
understanding represents one of the key innovative issues 
in autonomous learning for affordance based perception.  

III Affordance Recognition 

By affordance recognition we particularly refer to the 
process of identifying the relevant interaction events from 
perception that actually ‘motivate’ an agent to 
develop/learn perceptual cues for early prediction. In early 
infant development, the monitoring of affordances such as 
‘graspability’ of objects or ‘passability’ of terrain [1] must 
be crucial to obtain an early as possible classification of 
the environment so that interaction behaviors can be 
initiated as fast and as robust as possible. In analogy, 
autonomous robotic systems should possess a high degree 
of flexibility and therefore be capable of perceiving 
affordances and therefore select appropriate functional 
modules as early as possible with respect to the goals of 
the robotic system. In this sense, goals and affordances 
are intimately related and make up a fully purposive 
perception system. 
 Fig. 2 illustrates the various stages within the 
affordance based perception process, in particular 
affordance recognition, for the example of the affordance 
“fillable” in the context of the opportunities for interaction 
with a coffee cup. Fig. 2(a) schematically illustrates the 
detection of perceptual entities that would provide 
affordance cues in terms of verifying the occurrence of a 
cup that is related to the prediction of being fillable in 
general. Fig. 2(b) shows in analogy entities that would 
underlie the process of interaction of an agent with the 
cup by actually filling it up. Finally, Fig. 2(c) represents 
the entities corresponding to the final state of the 
interaction with the outcome of a successfully filled 
coffee cup. These figures illustrate that affordance cueing 



         
(a)                               (b)                              (c) 

Fig. 2. Affordance recognition (Section III) in affordance based 
perception for the example of the affordance “fillable” with 
respect to the impact of selecting appropriate features. The 
seemingly simple interaction of filling up a coffee cup can be 
partitioned into various stages in affordance based perception, 
such as, (a) affordance cueing by predictive features that refer to 
a fillable object, (b) identifying perceptual entities that represent 
the process of the affordance related interaction (filling in the 
coffee), and (c) recognizing the final state by detecting 
perceptual entities that represent the goal of interaction (i.e., the 
filled coffee cup) . 

and affordance recognition must be conceptually 
separated and would involve different perceptual entities 
in general. While affordance recognition actually involves 
the recognition of the interaction process and its 
associated final state, affordance cueing will be solely 
determined by the capability to reliably predict this future 
event in a statistical sense. 

IV. Visual Cueing of Affordances 

A. Feature based Cueing for the Prediction of 

Affordances 

 Early awareness of opportunities for interaction is 
highly relevant for autonomous robotic systems. Visual 
features are among the ones among multiple modalities 
from sensory processing that operate perception via 
optical rays and therefore support early awareness from 
rather remote locations. Although the necessity of 
affordance perception from 3D information recovery, 
such as optical flow, has been stressed in previous work 
[1], we do not restrict ourselves to any specific cue 
modality and intend to generalize towards the use of 
arbitrary features that can be derived from visual 
information, restricting only on the constraint that they 
enable reliable prediction of the opportunity for 
interaction processes from an early point in time. 
 The outcome of the affordance cueing system is in 
general expected to be – given a perceptual entity in the 
form of a multimodal feature vector - a probability 
distribution over affordance hypotheses,  

),|( tA FAPP
(Eq. 1) 

with affordance hypothesis set A, and feature vector Ft at 
time t. It is then appropriate to select an affordance 

hypothesis Amax(PA(·)=PAmax(·)), with Maximum A 
Posteriori (MAP) confidence support for further 
processing.  
 From the viewpoint of a technical system using 
computer vision for digital image interpretation, we 
particularly think that complex features, e.g., local 
descriptors, such as the Scale Invariant Feature Transform 
(SIFT [13]), could support well the construction of higher 
levels of abstraction in visual feature representations. 
SIFT features are derived from local gradient patterns, 
and provide rotation, translation and – to some degree – 
viewpoint and illumination tolerant recognition of local 
visual information, and are therefore well suited for 
application in real world scenarios for autonomous robotic 
systems. Among other cues, such as color, shape, and 3D 
information, we are therefore interested to investigate the 
benefit of using visual 2D patterns for their use in 
affordance cueing. 

(a)

(b)

Fig. 3. Categories of local descriptor classes supporting 
affordance cueing. Classes of SIFT descriptors [13] occurring on 
(a) rectangular (favored by descriptors represented by green 
symbols) and (b) circular (favored by descriptors represented by 
blue symbols) region boundaries, respectively. It should be 
noted that the descriptor classes support the classification of 
segmented regions. These classes are mandatory to discern 
affordance cues from 2D features. 

 Fig. 3 shows the application of local (SIFT) descriptors 
for the characterization of regions of interest in the field 
of view. For this purpose, we first segment the color based 
visual information within the image, and then associate 
integrated descriptor responses sampled within the regions 
to the region feature vector. The integration is performed 



via a histogram on SIFT descriptors that are labeled with 
‘rectangular’ (a) and ‘circular’ (b) attributes, respectively. 
The labeling is derived from a k-means based 
unsupervised clustering over all descriptors sampled in 
the experiments, then by selecting cluster prototypes 
(centers) that are relevant for the characterization of 
corresponding rectangular/circular shaped regions, and 
finally by determining histograms of relevant cluster 
prototypes that are typical in a supervised learning step 
(using a C4.5 decision tree [14]). 

 Fig. 4 shows a sample cue-feature value matrix (in the 
context of the experiments, see Section V) that visualizes 
dependencies between feature attributes of the region 
information and a potential association to results of the 
affordance recognition process. We can easily see that the 
SIFT category information (rectangular=R and circular=C 
region characterization) together with a geometric feature 
(top=T region, i.e., representing a region that is located on 
top of another region) provides the discriminative feature 
that would allow to predict the future outcome (e.g., 
liftable/non liftable) of the affordance recognizer. The 
latter therefore represents the identification of the 
affordance and thereby the nature of the interaction 
process (and its final state) itself. 

Fig. 4. Cue-feature value matrix depicting attribute values of 2D 
features and interaction results (left column) in dependence on 
visual region information (top). From this we conclude a suitable 
feature value configuration (i.e., SIFT categories to discriminate 
liftable/non liftable predictions) to support the hypothesis on 
liftable object information.  

B. Learning of Relevant Feature Cues from Decision 

Trees

 The importance of machine learning methodologies for 
the selection of affordance relevant features has already 
been argued in Section II.B. The key idea about our idea 
of applying learning for feature selection is based on the 
characterization of extracted perceptual entities, i.e., 
segmented regions in the image, via a feature vector 
representation. Each region that would be part of the final 
state within the affordance recognition process can be 
labeled with the corresponding affordance classifications. 
The regions can be back-tracked using standard visual 
tracking functionality to earlier stages in the affordance 

perception process. The classification label together with 
the feature attributed vectors of the region 
characterization build up a training set that can be input to 
a supervised machine learning methodology (using a C4.5 
DT [14]). 

V. Experimental Results 

 The experiments were performed in a simulator 
environment with the purpose of providing a proof of 
concept of successful learning of predictive 2D affordance 
cues, and characterizing affordance recognition processes.  
 The scenario for the experiments (Fig. 5) encompassed 
a mobile robotic system (Kurt2, Fraunhofer AIS, 
Germany), equipped with a camera stereo pair and a 
magnetizing effector, and some can-like objects with 
various top surfaces, colors and shapes. The purpose of 
the magnetizing effector was to prove the nature of the 
individual objects by lowering its rope-end effector down 
to the top surface of the object, trying to magnetize the 
object (only the body, not the top surface of the can are 
magnetizable) and then to lift the object. Test objects with 
well magnetizable geometry (with slab like top surfaces, 
in contrast to those with spherical top surface) are subject 
to a lifting interaction, while the others were not able to be 
lifted from the ground. This interaction process was 
visualized for several test objects and sampled in a 
sequence of 250 image frames. These image frames were 
referenced with multimodal sensor information (e.g., size 
of magnetizing and motor current of the robot, 
respectively).

Fig. 5. Scenario of affordance based robot simulation 
experiments (Section III). Birds view illustrating robot Kurt2 
within a scene of objects of colored cans, using a magnetic 
effector at the end of a rope for interaction with the scene, 
described in more detail in Section V. The lower left/right corner 
shows the field of view of the left and right camera, respectively. 



Fig. 6. Example of an affordance recognition process (here referring to “liftable”): The upper image shows the right camera views of the
robot while trying to lift a test object by means of a magnetizing effector at the lower end of a rope. The diagrams visualize the observation 
of robot relevant sensor information (e.g., status of gripper, magnet [on/off] and various features of test objects within the focus of 
attention. Using this sensor/feature information, the relevant channels to discriminate regions of interest that are associated to ‘liftable’ and 
‘non-liftable’ objects are identified (highlighted by red ellipsoids). 

A. Simulation 

 The scenario is split up into two phases (a) a cueing 
phase i.e. the robot is moving to the object, and (b) a 
recognition phase i.e. the robot tries to lift an object like 
shown in Fig. 5. In both phases parts of the objects are 
described by their regions and any region has different 
features like color, center of mass, top/bottom location 
and the shape description (rectangular, circular) already 
described in Section IV. Those features are extracted from 
the camera images. Additional information e.g. effector 
position are provided by the robot. Regions are the entities 
used in the experiment, no explicit object model is 
generated for the can-like objects. 

B. Affordance Recognition 

 The recognition of an affordance is crucial for verifying 
a hypothesis about an affordance A associated with a 
entity E. These entities are extracted out of the images as 
follows. A watershed algorithm is used to segment 
regions of similar color together. After merging of smaller 
parts, every entity is represented by the average color 
value, the position in the image and the relation to 
adjacent regions (top/bottom). This information is also 
used for tracking entities over time. To verify whether or 
not an entity becomes ‘liftable’,the magnetizable effector 
of the robot is lowered until the top region of the object 
under investigation is reached, the magnet is switched on 
and the effector is lifted up. Fig. 6 shows the features of 
the effector (position and magnet status) over time (blue). 

If the entity is liftable (Fig. 6 right column), a common 
motion between effector and region can be recognized. 
Additionally the magnet has to be switched on and the 
effector has to be placed in the center of the top region. 
These rules build up the affordance recognizer looking for 
liftable entities in the recognition phase of the experiment. 

C. Affordance Cueing 

 Cueing and recognition can require different kinds of 
features. Section IV already emphasize the need for some 
structural description of the top region, to separate the 
unequal shape of the top regions. In order to get structural 
information about an entity a histogram over prototypical 
SIFT’s is used to distinguish between circular and 
rectangular regions. 

Classification of Relevant Descriptors 

 All local SIFT descriptors extracted in the region of the 
entities are clustered using the k-means (k = 100) method. 
For each specific entity, we generate a histogram over 
cluster prototypes, using a NN-approach to get the cluster 
label for each SIFT descriptor in that region. In a 
supervised learning step, every histogram is labeled 
whether it or not it is associated with a rectangular or 
circular entity. A C4.5 decision tree of size 27 is then able 
to distinguish between these two classes. The error rate on 
a test set with 353 samples is ~ 1.4%. Table I shows the 
resulting confusion matrix for the test set. 

relevant Features per Region

Time

Gripper

relevant Features per Region

Time

Gripper



TABLE I 

CONFUSION MATRIX FOR C4.5 BASED STRUCTURE

CLASSIFICATION

Classified as  
Rect. Circ. 
256 1 Rect.

4 92 Circ. Class

Decision tree used for Affordance Cueing 

 The objects tested for the affordance ‘liftable’ in the 
recognition phase are members of the training set. The 
outcome of the recognition provides the class label 
(‘liftable’ or ‘non-liftable’). The bottom region of the 
object is marked ‘unknown’ because this entity is not 
tested directly. As mentioned earlier, there exists no 
object model yet, therefore only entities exist in the 
system. Backtracking the object’s entities over time 
allows additional training samples to be used with little 
more memory effort to remember the data. In our 
experiment 30 frames are used from the beginning of the 
affordance recognition back, that means a recall of ~2.5 
seconds from the past (12 fps are captured by the robot 
during simulation). The entity representation for the 
cueing phase contains the following features: (a) average 
color value of the region in the image, (b) top/bottom 
information, (c) the result of the structure classification, 
(d) the size of the segmented region. Fig. 7 depicts the 
structure of the decision tree. It is important to note that as 
a result from learning, the relevant attributes in the cueing  

tb = bottom: unknown (1086.0)  
tb = top:
 |   structure = circ: nonliftable (552.0)  
 |   structure = rect:  
 |   |   size > 1426 : liftable (402.0)  
 |   |   size <= 1426 :  
 |   |   |   size <= 1410 : liftable (72.0)  
 |   |   |   size > 1410 : nonliftable (6.0)  

Fig. 7. Structure of the C4.5 decision tree that maps attributes of 
the affordance feature vector f(A,t) to affordance capabilities 
(liftable, non liftable unknown). The number of samples that 
support the corresponding hypothesis are in brackets. 

TABLE II 

Confusion Matrix for C4.5 based Descriptor Classification

Classified as 

liftable non liftable unknown 
95 11 0 liftable
3 319 0 non liftable 
0 0 471 unknown 

class

process are on top of the tree, these are ‘top’/’bottom’ and 
‘circ’/’rect’ here. The size attribute is located on the 
lowest level and only useful to separate 6 non liftable 
samples from 474 liftable ones. The error rate on the test 
set, containing the remaining entities which where not 
used for training, is 1.6%. Table II shows the confusion 
matrix for these data. 

V. Conclusions 

A. Summary 

 This work presented the importance of perceptual 
cueing to opportunities for interaction of robotic agents in 
a more general sense, in extension to the classical, 
functional view on feature representations. The new 
framework for cueing and recognition of affordance-like 
visual entities is verified with a concrete implementation 
using state-of-the-art visual descriptors on a simulated 
robot scenario and proved that features are successfully 
selected that are relevant for prediction towards 
affordance-like control in interaction. The simulation was 
chosen in a realistic way so that major elements of a real 
world scenario, such as shadow events, noise in the 
segmentation, etc., characterized the results and thus 
enable a fundamental verification of the theoretical 
assumptions.   

B. Future work 

  Future work will focus on extending the feature 
based representations towards object based prediction of 
affordance-based interaction, routing in the work on the 
visual descriptor information presented here, and 
demonstrating the generality of the concept. Furthermore, 
we think that the presented machine learning component 
implemented by a decision tree can be enhanced by using 
reinforcement learning methodology to learn relevant 
events in state space for cueing to the opportunities for 
interaction. 
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