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Abstract

We present a method for monocular kinematic pose es-
timation and activity recognition from video for move-
ment imitation. Learned vocabularies of kinematic mo-
tion primitives are used emulate the function of hypoth-
esized neuroscientific models for spinal fields and mir-
ror neurons in the process of imitation. For imitation,
we assume the movement of a demonstrator is produced
through a “virtual trajectory” specifying desired body
poses over time. Each pose represents a decomposi-
tion into mirror neuron firing coefficients that specify
the attractive dynamics to this configuration through a
linear combination of primitives. Each primitive is a
nonlinear dynamical system that predicts expected mo-
tion with respect to an underlying activity. Our aim is
to invert this process by estimating a demonstrator’s vir-
tual trajectory from monocular image observations in a
bottom-up fashion. At our lowest level, pose estimates
are inferred in a modular fashion through the use of a
particle filter with each primitive. We hypothesize the
likelihood of these pose estimates over time emulate
the firing of mirror neurons from the formation of the
virtual trajectory. We present preliminary results our
method applied to video composed of multiple activi-
ties performed at various speeds and viewpoints.

Introduction

Human movement is a rich and untapped source of infor-
mation for the autonomous control of robots. Many per-
ception and control tasks necessary for autonomous robots
could be performed or enhanced by greater understanding
of human movement. Efforts in several robotics domains,
including humanoid robotics and human-robot interaction,
use human motion to drive (teleoperation), bootstrap (learn-
ing from demonstration), or guide (human-robot interac-
tion) robot control processes towards greater functionality.
Each of these require accurate measurements of the human’s
state, as kinematic state (joint angle or endeffector configu-
rations) and/or behavioral state (activities being performed).
Kinematic state measurements are typically used to drive a
robot’s actuators directly or generalized into a control pol-
icy. Behavioral state estimates are applicable towards con-
trol policies that are instructive (learning the decision pro-
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cess of the human) and collaborative (learning controllers
for reacting to a human).

The analysis of human motion and its underlying mechan-
ics is fraught with uncertainty, potentially due to the interac-
tions of latent biomechanical structures. While many factors
contribute to this uncertainty, much of this difficulty can be
attributed to problems in state estimation and activity dis-
covery. Kinematic state (or pose) estimation is a vastly un-
derdetermined problem due to the large number of degrees-
of-freedom (DOFs) in human kinematics and the limitations
of current sensing technologies. Robot vision and sensing
typically yields very limited information about the motion
process for distinguishing pose. Additionally, such partial
observations can introduce large degrees of uncertainty, such
as variations in lighting and occlusions for cameras. Behav-
ioral state estimation inherits many similar problems in ad-
dition to uncertainty about what comprises behavioral state.
Unlike its kinematic equivalent, it is currently unclear what
activities model human behavior. Consequently, the defi-
nition of a comprehensive state space for behavior has re-
mained a moving target.

Motion modeling, the generation of parsimonious models
of human movement, is central to defining the state space
for behavior. Motion modeling is centered about two pri-
mary issues: 1) what activities should be modeled and 2)
how do such models express the intrinsic structure of mo-
tion related to a specific activity? While many approaches
to motion modeling exist, we are particularly inspired by
neuroscientific hypotheses about how biological motion is
produced and perceived(Mussa-Ivaldi & Bizzi 2000; Rizzo-
latti et al. 1996). We attempt to create motion models with
similar functionality such that these models are suitable for
robot perception and control.

In this paper, we describe our greater approach to learn-
ing of human motion vocabularies and their application
to monocular kinematic tracking and activity recognition.
From our previous work, we are able to learn a reper-
toire (or vocabulary) of predictive primitives, each express-
ing the expected nonlinear state dynamics an latent activ-
ity. We now use these primitives to perform movement im-
itation from monocular video. This process proceeds in a
bottom-up fashion. Particle filters (Isard & Blake 1998;
Thrun, Burgard, & Fox 2005), one for each primitive, are
executed in parallel to infer kinematic state and emulate the
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Figure 1: A snapshot of our tracking and recognition system
processing a “punch” activity. Primitives and the dynamics
of their associated activities are modeled as manifold-like
gradient fields in kinematic joint angle space (right). The
particle filter for each primitive yields a pose estimate (mid-
dle) of the sensor features (silhouette on left) for each ac-
tivity. The estimate of the currently performed activity is
extracted from the pose estimate likelihoods across activi-
ties. The height of the lefthand bars represent relative ac-
tivity likelihood, while blue bars indicate attractor progress
across the gradient field of the primitive.

firing of mirror neurons. Based on this “firing”, we infer the
activity performed at each time instant and form an estimate
of the demonstrator’s “virtual trajectory” and execute this
estimate for movement imitation.

Background and Related Work
Motor Primitives and Imitation Learning

The work is inspired by the hypotheses from neuroscience
pertaining to models of motor control and sensory-motor in-
tegration. We ground basic concepts for imitation learning,
as described by Matari¢ (Matari¢ 2002), in specific compu-
tational mechanisms for humanoids. Matari¢’s model of im-
itation consists of: 1) a selective attention mechanism for
extraction of observable features from a sensory stream, 2)
mirror neurons that map sensory observations into a mo-
tor repertoire, 3) a repertoire of motor primitives as a ba-
sis for expressing a broad span of movement, and 4) a
classification-based learning system that constructs new mo-
tor skills.

The core of this imitation model is the existence and de-
velopment of computational mechanisms for mirror neurons
and motor primitives. As proposed by Mussa-Ivaldi and
Bizzi (Mussa-Ivaldi & Bizzi 2000), motor primitives are
used by the central nervous system to solve the inverse dy-
namics problem in biological motor control. This theory is
based on an equilibrium point hypothesis. The dynamics of
the plant D(z, &, &) is a linear combination of forces from a

set of primitives, as configuration-dependent force fields (or
attractors) ¢(x, &, Z):

K
D(w,&,i) = ¢; Y dilw, &, i) (1)
i=1

where x is the kinematic configuration of the plant, c is
a vector of scalar superposition coefficients, and K is the
number of primitives. A specific set of values for ¢ produces
stable movement to a particular equilibrium configuration.
A sequence of equilibrium points specifies a virtual trajec-
tory (Hogan 1985) of motion desireds for internal motor ac-
tuation or observed from an external performer. Mataric’s
imitation model assumes the firing of mirror neurons speci-
fies the coefficients for formation of virtual trajectories. Mir-
ror neurons in primates (Rizzolatti et al. 1996) have been
demonstrated to fire when a particular activity is executed,
observed, or imagined. Assuming 1-1 correspondence be-
tween primitives and mirror neurons, the scalar firing rate of
a given mirror neuron is the superposition coefficient for its
associated primitive during equilibrium point control.

While this model has desirable properties, there remain
several challenges in its computational realization for au-
tonomous robots. Namely, what are the set of primitives?
How is each primitive and its parameterization expressed in
computation? How does a mirror neurons recognize motion
indicative of a particular primitive? What computational op-
erators should be used to compose primitives to express a
broader span of motion?

Our work addresses these computational issues through
the unsupervised learning of motion vocabularies and their
usage with probabilistic inference. The alternative methods
of Schaal et al. (Schaal er al. 2004; Ijspeert, Nakanishi, &
Schaal 2001) encode each primitive to describe the nonlin-
ear dynamics of a specific trajectory with a discrete or rhyth-
mic pattern generator. New trajectories are formed by learn-
ing superposition coefficients through reinforcement learn-
ing. While this approach to primitive-based control may be
more biologically faithful, our method provides greater par-
simony motion variability within each primitive and facili-
tates movement perception (such as monocular tracking) as
well as control applications. Work proposed by Bentivegna
et al. (Bentivegna & Atkeson 2001) and Grupen et al. (Gru-
pen et al. 1995; Platt, Fagg, & Grupen 2004) approach robot
control through sequencing and/or superposition of manu-
ally crafted behaviors.

Monocular Tracking and Data-Driven Motion
Modeling

Many approaches to data-driven motion modeling have been
proposed in computer vision, animation, and robotics. The
reader is referred to other papers (Jenkins & Matari¢ 2004;
Urtasun et al. 2005; Kovar & Gleicher 2004) for broader
coverage of these methods. We pay particular attention
to methods for kinematic tracking and activity recogni-
tion. Particle filtering (Isard & Blake 1998; Thrun, Bur-
gard, & Fox 2005) is a well established means for inferring
kinematic pose from image observations. Yet, particle fil-
tering often requires additional procedures, like annealing



(Deutscher, Blake, & Reid 2000) or nonparametric belief
propagation (Sigal et al. 2004; Sudderth er al. 2003), to
account for the high dimensionality and local extrema of
kinematic joint angle space. We explore the use of non-
linear dynamical models proposed by Jenkins and Matarié¢
(Jenkins & Matari¢ 2004) to represent families of motion as
manifolds in parsimonious state spaces.

The method we propose for motion modeling and kine-
matic tracking is similar to the work of Urtasun et al. (Urta-
sun et al. 2005) and Ong et al. (Ong, Hilton, & Micilotta
2005). Unlike these approaches geared towards a single
motion and activity, our work has a broader focus in mod-
eling and tracking motion composed of multiple activities.
Although we use predictions similar to the instantaneous
“flow” of Ong et al., we developed a “bending code” dis-
tribution to account for faster motion with a extended look-
ahead in time. Urtasun et al. use similar manifold learning
techniques, but is focused on interpolating a set of motion in
a probabilistic manner. In contrast, our approach to learn-
ing emphasizes clustering of motion representative of the
demonstrator’s underlying motor repertoire. Motion clus-
ters produced by our method could be complimented by a
probabilistic interpolation procedure.

Our unsupervised approach to activity recognition with
a motion vocabulary is comparable to the semi-supervised
techniques of Ramanan and Forsyth (Ramanan & Forsyth
2003). A monolithic semi-supervised motion library
(Arikan, Forsyth, & O’Brien 2002) is created by learning de-
cision boundaries between activities labeled through manual
annotation. Monocular tracking and activity estimation is
performed by synthesizing 3D motion with constraints given
by the motion library and 2D image features. Our tracking
and recognition approach is modular, allowing scalability
for potentially large numbers of motion primitives.

Approach

For this paper, we focus specifically on movement imitation
through virtual trajectory estimation from monocular image
sequences (illustrated in Figure 2). We consider a limited in-
stance of movement imitation where the objective is to form
a trajectory in the robot’s joint angle space representative of
a human-demonstrated motion. We assume the essence of
the demonstration is a virtual trajectory formed in the brain
of the human instructor. The motion observed by the robot
(via monocular camera input) is an execution of the virtual
trajectory by equilibrium point control with a latent set of
biological motor primitives.

We attempt to invert this process in an artificial robotic
agent using learned dynamical primitives and probabilistic
inference. Our previous work (Jenkins & Matari¢ 2004) dis-
cussed methods for uncover dynamical vocabularies from a
large repository of motion data representative of natural hu-
man performance. Each primitive B; is a gradient field ex-
pressing the expected kinematic behavior over time of the
ith activity. In the context of dynamical systems, this gra-
dient field B;(z) defines the predicted direction of displace-
ment for a location in joint space Z[t] (a 1 x I vector) at

time ¢':

@[t + 1] = fi(z[t], wilt]) = (2)
>_yenbhd(x) Wyly
| Zyeﬂbhd(w) wyAy||

= u[t]Bi(x) = u;[t]

where u[t] is the expected displacement magnitude, A, is
the gradient of pose y a motion example of primitive  ,

For virtual trajectory estimation, each primitive is respon-
sible for identifying when observed movement accords to
the dynamics of specific activity. Towards this end, we in-
stantiate a particle filter for each primitive to perform pose
estimation with respect to a specific activity. The particle fil-
ter allows for estimation of the demonstrator’s pose given the
activity and image observations. Each primitive constrains
the priors and motion models of its filter to consider relevant
subspaces and avoid computational intractability. These
constraints are expressed through estimates of the intrinsic
dimensionality and dynamic predictions of each primitive.
By taking this approach we avoid computational issues in-
curred by standard methods for probabilistic inference in
this manner (Deutscher, Blake, & Reid 2000).

We analogize the likelihood of each primitive’s pose es-
timate to the firing of an idealized mirror neuron. We hy-
pothesize that the pose likelihoods across all primitives is
proportional the primitive combination coefficients u[t], ex-
pressing the control dynamics at time ¢. These likelihoods
are used by an activity recognition system to determine the
superposition coefficients over time to form an estimate of
the demonstrator’s virtual trajectory. The estimated trajec-
tory is then actuated by the robot to execute the imitation.
Ideally, the trajectory estimate can be bypassed and the su-
perposition coefficients from fusion could be directly exe-
cuted by the robot’s primitives to perform imitation. How-
ever, given that primitives are learned sequentially, we focus
on activity recognition as an arbitration process and present
positive results for this limited implementation. We assume
a transform between the kinematics of the demonstrator and
the robot is known.

Monocular Kinematic Pose Estimation

Kinematic tracking from silhouettes is performed via the fol-
lowing procedure. The global root of the human are deter-
mined using the best estimate of the kinematic pose in the
previous time step for each primitive. Kinematic pose is
then inferred using a particle filter in the latent space of each
primitive. The demonstrator’s activity and virtual trajectory
is estimated based on arbitrating the most likely pose esti-
mate at a given time and concatenating over time.

For each primitive, an estimate over the subject’s global
position (x,y,z and 6, rotation about the vertical axis) is
maintained as a unimodal distribution. These estimates are
initialized by a random distribution about the silhouette cen-
ter of mass. These estimates are refined over time: Gaussian

'nbhd() identifies the k-nearest neighbors in an arbitrary coor-
dinate space, used both in joint angle space and the space of motion
segments.
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Figure 2: A “toy” example our approach to movement imitation. The movement of a human demonstrator assumed to be
generated by virtual trajectory executed as a weighted superposition of motor primitives. We estimate these motor primitives
from human motion data as a vocabulary of predictive low-dimensional dynamical systems. For movement imitation, a particle
filter for each primitive performs kinematic state (or pose) estimation. Pose estimates across the vocabulary are fused at each
timestep and concatenated over time to yield an estimate of the virtual trajectory for the robot to execute.

noise is added to the current position, and if the pose likeli-
hood is calculated to be higher, the new position is accepted.

Kinematic Pose Estimation

Kinematic tracking is performed by particle filtering (Isard
& Blake 1998; Thrun, Burgard, & Fox 2005) in the in-
dividual latent spaces created for each primitive in a mo-
tion vocabulary. The primitives infer pose individually and
in parallel to avoid high-dimensional state spaces, encoun-
tered in (Deutscher, Blake, & Reid 2000). Given results in
motion latent space dimensionality (Urtasun et al. 2005;
Jenkins & Matarié¢ 2004), we construct a low dimensional
latent space to provide parsimonious observables y; of the
joint angle space for primitive ¢. These observables are ex-
pressed in the output equation of the dynamical system of
each primitive, such as in (Howe, Leventon, & Freeman
2000):

yilt] = gi(zt]) = Aix[t] (3)

where g; is the latent space transformation and A; is the
expression of g; as an affine transformation into the principal
component space of primitive i2. We chose a linear trans-

22[t] and y;[t] are assumed to be homogeneous in Equation 3

form for g; for inversion simplicity and evaluation speed. A
particle filter of the following form is instantiated in the la-
tent space of each primitive :

plyill: 1] | zi1: 8]) o< p(=[t] | g7 (walt)) 4)
> p(ilt] | yilt = )p(yslt <t = 1] | 2[1: ¢ —1])

where z;[t] are the observed sensory features at time ¢ and
9; ! is the transformation into joint angle space from the la-
tent space of primitive i. The likelihood function p(z[t] |
g; *(i[t])) can be any reasonable choice for comparing the
hypothesized observations from a latent space particle and
the sensor observations. Ideally, this function will be mono-
tonic with discrepancy in the joint angle space. With linear
transformation g¢;(x), the posterior from the previous time
step p(y;[1 : t — 1] | z[1 : t — 1]) is a d-dimensional el-
lipsoid in joint angle space. For faster computation, we use
latent space motion dynamics in formulation of the motion
model distribution p(y;[t] | y;i[t — 1]). We assume latent

space dynamics, governed by f;* , are a reasonable direc-

3f; in a latent space is computed in the same manner as f in



(a) Kinematic endpoint trajectories for learned primitive manifolds: (left to right) hand circles, dancing “the twist”, punching, arm waving
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Figure 3: Examples of manifold structures (a,b) learned from unlabeled kinematic time-series and their predictive dynamics (c)

within a neighborhood of a joint space point x.

tional approximation of joint space dynamics:
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At first glance, the motion distribution p(y;[t] | y:[t — 1])
could be given by the instantaneous “flow”, as proposed by
Ong et al. (Ong, Hilton, & Micilotta 2005), where a locally
linear displacement with some noise is expected. However,
such an assumption would require temporal coherence in the
sensory observations of the motion. Observations without
temporal coherence cannot simply be accounted for by ex-
tending the magnitude of the displacement vector because
the expected motion will likely vary in a nonlinear fashion
over time. To address this issue, we use a “bending cone”
distribution (Figure 4) over the motion model. This distri-
bution is formed with the structure of a generalized cylinder
with a curved axis along the motion manifold and a variance
cross-section that expands over time. The axis is derived
from K successive predictions g;[t] of the primitive from
a current hypothesis y;[t] as a piecewise linear curve. The
cross-section is modeled as cylindrical noise C(a, b, o) with
local axis a — b and normally distributed variance o about
this axis. The resulting parametric distribution:

k
pilt] [ wilt — 1) = > C(ilk + 11,5 [k], f(k))  (6)
¥i[t]
is sampled by randomly selecting a step-ahead & and gen-
erating a random sample within its cylinder cross-section.
Note that f(k) is some monotonically increasing function of
the distance from the cone origin; we used a linear function.

joint space.

Figure 4: Illustration of the bending cone distribution. The
blue dot represents y;(¢) a pose hypothesis. The green line
and dot show the divergence that results from prediction by
extending linear displacement. Instead, we use a bending
cone (in blue) to provide an extended hypothesis horizon.
We sample the bending cone for a motion update y; (¢ + 1)
(red dot) by selecting a cross-section A(t)[k] (black dot) and
adding cylindrical noise.



We hypothesize that observed motion can be tracked if: 1)
the primitive is representative of the motion at that interval
of time, 2) the bending cone is well sampled, and 3) K is a
far enough look-ahead.

Activity Recognition

For activity recognition, we create a probability distribution
across primitives of the vocabulary, assuming each primi-
tive is an activity of interest. We take the likelihood of the
pose estimate from each primitive and normalize them into
a probability distribution:

_ plel) | m ()
2 p(2[t] | Zilt])
where ;[t] is the pose estimate for primitive ¢. The prim-

itive with the maximum probability is estimated as the ac-

tivity currently being performed. As we describe in Section

, this technique for activity recognition has the potential to

be improved by considering “attractor progress”.

p(Bilt] | 2[t]) (M

Experimental Results

For our experiments, we developed a system in C++ that
used a vocabulary of learned motion primitives to track kine-
matic motion and estimate activities performed from monoc-
ular silhouettes. The motion vocabulary was provided by
the authors of (Jenkins & Matari¢ 2004) from their previous
work. We used a subset of their motion primitives for per-
forming punching, hand circles, vertical hand waving, and
horizontal hand waving. Observations, as silhouettes, were
computed with standard background subtraction and median
filtering techniques for color images. Image sequences were
obtained from a Fire-i webcam at 15 frames per second, at a
resolution of 120x160.

We use a likelihood function, p(z[t] | g; * (y:[t])), returns
the similarity of a particle’s hypothesized silhouette with the
observed silhouette image. Silhouette hypotheses were ren-
dered from a cylindrical 3D body model to an image buffer
using OpenGL. We did not specifically adapt the body model
to either of the subjects used for the videos. A similarity
metric, R(A, B) for two silhouettes A and B, closely re-
lated to the inverse of the generalized Hausdorff distance
was used:

1
(A,B)+r(B,A) +e¢

2
r(a8) = Y- (wiglla o)) ©

acA

R(A.B) = - ®)

This measure is an intermediate between undirected and
generalized Hausdorff distance and generalized Hausdorff
distance € is use only to avoid divide-by-zero errors.

Dynamical Tracking with Sparse Particles

To evaluate the practical aspects of our monocular tracking,
we applied our system with sparse distributions (6 particles
per primitive) to three trial silhouette sequences. Each of the
trials is designed to provide insight into different aspects of

Figure 5: [Illustrations of a demonstrated fast moving
“punch” movement (left) and the estimated virtual trajectory
(right) as traversed by our humanoid simulation.

Figure 6: Tracking of a fast waving motion. Observed im-
ages (top) and pose estimates from the camera view (bot-
tom).

the performance of our tracking system. The result of each
imitation trial was output to a Biovision format motion cap-
ture file and executed on a dynamically simulated humanoid
using the Open Dynamics Engine.

In trial one, the actor performs three activities described
by the motion primitives: hand circles, vertical hand waving
and horizontal hand waving. For the purposes of evaluation,
we compared the ground truth trajectories with the trajecto-
ries produced with sparse set of particles, ranging between
six and two hundred. As shown in Figure ??, reasonable
tracking estimates can be generated from as few as six parti-
cles. As expected, we observed that the Euclidean distance
between our estimates and the ground truth decreases with
the number of particles used in the simulation, highlighting
the tradeoff between the number of particles and accuracy of
the estimation.

In trial two, we analyzed the temporal robustness of the
tracking system. The same action is performed at different
speeds, ranging from slow (hand moving at ~ 3 cm/s) to
fast motion (hand moving at ~ six m/s). The fast motion is
accurately predicted as seen in Figure 6. Additionally, we
were able to track a fast moving punching motion (Figure
5).

Viewpoint invariance is critical aspect of our system and
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Figure 7: A sequence of pose estimates for a reaching mo-
tion. Observed silhouettes (second from top) can be com-
pared with our pose estimates from the camera view (second
from bottom) and from overhead (bottom).

was tested with video from a trial with an overhead camera,
shown in Figure 7. Even given limited cues from the silhou-
ette, we are able to infer the horizontal waving of an arm.
Notice that the arm estimates are consistent throughout the
sequence.

Activity Recognition and Movement Imitation

Using the above test trials, we measured the ability of
our system to recognize performed activities to provide re-
sponses similar to mirror neurons. In our current system,
activity is recognized as the pose estimate likelihoods nor-
malized over all of the primitives into a probability distri-
bution, as shown in Figure 8. Temporal information can be
used to improve this recognition mechanism by fully lever-
aging the latent space dynamics over time. The manifold
in latent space is essentially an attractor along a family of
trajectories. A better estimator of activity would consider
monotonic progress consistent with the dynamics of the tra-
jectories in the manifold as a factor in the likelihood of the
activity. We consider this property to be attractor progress.
We have analyzed preliminary results from observing attrac-
tor progress in our trials, as shown in Figure 8. For an activ-
ity being performed, its attractor progress is monotonically
increasing. If the activity is performed repeatedly, we can
see a periodic signal emerge, as opposed to the noisier sig-
nals of the activities not being performed. These results in-
dicate that we can use attractor progress as a feedback signal
into the particle filter estimating pose for a primitive ¢ in a
form such as:

el w1 et - 1)
e S G T R (e M

where w;[1 : t — 1] is the probability that primitive B; has
been performed over time.

Because of their attractor progress properties, we believe
that we can analogize these activity patterns into the firing of
an idealized mirror neurons. The firing of our artificial mir-
ror neurons provide superposition coefficients. Given real-
time pose estimation, online movement imitation could be
performed by directly executing the robot’s motor primitives
weighted by these coefficients. Additionally, these super-
position coefficients could serve as input into additional in-
ference systems to estimate the human’s emotional state for
providing an affective robot response. In our current system,
we use the activity firing to arbitrate between pose estimates
for forming a virtual trajectory.

While this is a simplification of the overall goal, our pos-
itive results for trajectory estimation demonstrate our ap-
proach is viable and has promise for achieving our greater
objectives. In particular, relatively achievable improvements
in speed and robustness to occlusion could be obtained with
better selective attention techniques, such as approximations
of the Haussdorf distance for speed.

Conclusion

We have presented a neuroinspired method for monocular
tracking and activity recognition for movement imitation.
Our approach combines learning vocabularies of kinematic
motion offline to perform online estimation of a demonstra-
tor’s underlying virtual trajectory. A modular approach to
pose estimation is taken for computational tractability and
emulation of structures hypothesized in neuroscience. Pre-
liminary results suggest our method can perform tracking
and recognition from partial observations at interactive rates.
Our current system demonstrate robustness with respect to
the viewpoint of the camera, the speed of performance of
the action, and recovery from ambiguous situations.
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