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Abstract 
In this paper we argue that machine consciousness can be 
successfully modelled to be the base of a control system for 
an autonomous mobile robot. Such a bio-inspired system 
provides the robot with cognitive benefits the same way that 
consciousness does for humans and other higher mammals. 
The key functions of consciousness are identified and 
partially applied to an original computational model, which 
is implemented in a software simulated mobile robot. We 
use a simulator to prove our assumptions and gain insight 
about the benefits that conscious and affective functions add 
to the behaviour of the robot. A particular exploration 
problem is analyzed and experiments results are 
evaluated. We conclude that this cognitive approach 
involving consciousness and emotion functions cannot be 
ignored in the design of mobile robots, as it provides 
efficiency and robustness in autonomous tasks. Specifically, 
the proposed model has revealed efficient control behaviour 
when dealing with unexpected situations.  

The Machine Consciousness Approach 
Consciousness is an extremely complex attribute present in 
humans and other higher mammals (Seth et al., 2005). 
Even though its detailed machinery is not fully understood 
yet, there exist many theories of all kinds that try to 
account for it (Atkinson et al., 2000). In the context of this 
research work we mainly focus in the emotional and access 
dimensions of consciousness. Other aspects such as 
phenomenology are considered outside of the scope of this 
paper. We intend to identify from a functional perspective 
the key roles of consciousness and the relations amongst 
them. Once the main functions of consciousness are 
understood, they are used to design an artificial model; 
which is not directly inspired in the actual underlying 
neural systems but in their primary functional properties. 
The advantages of this approach are the ease of 
implementation and the fact that a detailed explanation of 
the neural correlates of consciousness is not required. It is 
assumed that computational correlates of consciousness are 
enough to model consciousness functions in a robot. The 
obvious disadvantage is that a purely functional model 
based on a set of main roles and their relationships is an 
oversimplification. However, for the purpose of efficiently 
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controlling an autonomous robot we prove that such a 
simplified cognitive model suffices. 

Reasoning Consciousness 
Consciousness is an evolutionary advantage not due to its 
underlying building blocks but thanks to its associated 
functions. The same functions implemented using a 
complete different technique should present the same 
benefits. This is the hypothesis we aim to corroborate using 
a mobile robot as testbed. As Atkinson et al. (2000) have 
pointed out, most of the theories support the idea that 
consciousness is produced due to specific processes 
running in specialized machinery. Based on this 
assumption a simplified machine consciousness model is 
devised, implemented and evaluated using a software 
simulator. Machine consciousness is supposed to provide 
the robot with a better performance when dealing with 
unexpected situations. Additionally, learning capabilities 
are expected to be improved as they are driven by 
attention. 
 For the design of the machine consciousness model we 
have analysed the major consciousness theories (Schacter, 
1989; Dennett, 1991; Baars, 1995; Tononi et al. 1998; 
Grossberg, 1999; Rosenthal, 2000; Crick and Koch, 2003). 
Specifically, we have focused on the cognitive functional 
aspects of the different approaches. Current theories cover 
several dimensions or perspectives of consciousness, which 
are often merged confusedly. Although we have focused 
only in part of them it is required to briefly review all the 
concepts in order to put this work in context. Block (1995) 
makes a helpful distinction between Phenomenal 
Consciousness (P-Consciousness), Access Consciousness 
(A-Consciousness), Monitoring Consciousness (M-
Consciousness) and Self-Consciousness (S-
Consciousness). This quartet comprises all the current 
scientific perspectives of consciousness. Quite briefly 
described, P-Consciousness refers to subjective experience 
or qualia (Dennett, 1988). A-Consciousness defines the 
accessibility of contents for reasoning, volition and speech.  
M-Consciousness is about inner perception or 
introspection. Finally, S-Consciousness is the ability of 
self-recognising and reason about the recognized self. In 
the context of this research work we have primarily built 
on a combination of A-Consciousness, M-Consciousness 
and S-Consciousness, which we call Reasoning 
Consciousness. According to Block (1995), it is feasible to 



have access consciousness without phenomenal 
consciousness, and this is what we aim in our model. 
 The three basic aspects of reasoning consciousness (A, 
M and S-Consciousness) are often explained as produced 
by specialized machinery and specific processes 
(Cleeremans, 2005), as they seem to match better with the 
latest neurological evidences (Tononi et al. 1998; Dehaene 
and Naccache, 2001; Baars, 2002). Other kinds of 
approaches, for instance, quantum mechanics (Hameroff 
and Penrose, 1996) or emerging self-organizing 
consciousness (Perruchet and Vinter, 2002) have been 
disregarded in this context. Essentially, we intend to 
implement the computational correlates of reasoning 
consciousness in our proposed model, where P-
Consciousness is considered out of the scope because it 
does not represent a functional concept. A functional 
description of reasoning consciousness is described below 
in terms of its necessary conditions or functionality 
modules. 
 One common denominator to all analysed theories is the 
conscious/unconscious duality. This is represented by 
different ways of processing knowledge; e.g. implicit vs. 
explicit learning (Cleeremans, 1997; Sun, 1997). 
Generally, the following variables are used to distinguish 
between the conscious and the unconscious (Baars, 1997; 
Sun, 2002): process parallelism, content access, nature of 
memory, form of knowledge, type of learning and 
reasoning. At any given time, there are thousands of 
unconscious neuronal processes running concurrently in a 
human brain. However, only some selected contents are 
rendered conscious by attention. Conscious processes are 
much more limited in computational and memory 
resources, and are essentially executed in a single thread. 
The conscious process thread manages explicit knowledge, 
while unconscious processes deal with implicit knowledge. 
Sun (2002) argues that cognitive processes are structured 
in two levels (explicit and implicit), each one encoding a 
complete set of knowledge. As the knowledge overlaps, 
results from both levels have to be combined. The 
coordination between the two differentiated domains has 
been also explained in terms of global access (Baars, 
2002), or in terms of resonant states between bottom-up 
and top-down processes (Grossberg, 1999).  

Functions of Consciousness 
In order to implement a computational model it is required 
to clearly define the functions of consciousness, as they 
will be considered the requirements in the design of the 
model. Functions identified depend on what aspects of 
consciousness one focuses on. The case here is reasoning 
consciousness as introduced in the previous section, plus 
some additional considerations regarding emotional aspects 
that will be described below.    
 Baars (1997) identifies nine functions of consciousness 
according to the Global Workspace Theory (which mainly 
accounts for A-Consciousness). The functions identified by 
Baars are about adaptation, learning, contextualization, 

access to a self system, prioritization, recruitment of 
unconscious processors, decision making, error-detection, 
self-monitoring, and optimization. Taking into account 
these functions and including a more elaborated affective 
dimension to the picture, we have defined a set of basic 
modules intended to accomplish all the reasoning 
consciousness functionality. The defined modules are as 
follows: 

(1) Attention module.  
(2) Status assessment module. 
(3) Global search module. 
(4) Preconscious management module. 
(5) Contextualization module. 
(6) Sensory prediction module. 
(7) Memory management module. 
(8) Self-coordination module.  

We think that at least these modules (or equivalent 
functional components) have to be present in any 
implementation of machine consciousness. Nevertheless, 
the former list does not include all the modules and 
functions required in an intelligent robot control system. In 
a complete model of mind, these concepts are to be 
integrated with sensory pre-processors, planning system, 
belief structure, memory systems, and so forth. The 
proposed detailed architecture that put together all the 
modules and integrates their synergic interrelations is 
introduced below.  
 The implementation of the attention module implies a 
mechanism that allows the robot to pay attention to a 
particular object or event. This focus point should drive its 
perception, behaviour and explicit learning processes. 
Status assessment embodies the main role of emotions. The 
model considers that emotion are the conscious summary 
of the robot overall status (Marina, 2002). Global search 
module makes possible the global access. As described by 
Baars (1995), global access is the capacity of accessing any 
piece of knowledge. This module is required to retrieve 
any unconscious routine or information, thus collaborating 
to fulfil contextualizing and recruitment functions. 
Preconscious management module is designed to be the 
interface between conscious and unconscious processes, 
which deal with different kinds of knowledge. Explicit 
knowledge is managed by a unique conscious thread, while 
implicit knowledge is managed by multiple unconscious 
parallel processes. Learning occurs at both levels, and the 
preconscious module is in charge of the interrelation of 
bottom-up and top-down cognitive flows. The 
contextualization module is the mean used for retrieving 
the required resources from the unconscious domain. Also, 
for problem solving and associative memory the 
contextualization mechanisms are necessary. The sensory 
prediction is based on a monitoring process that allows 
unconsciousness prediction of the information retrieved by 
the senses. When the perceived is different from the 
predicted, the corresponding information has to come to 



consciousness in order to deal with the unpredicted 
situation. The existence of such a cognitive function in the 
human brain has been proved (Ivry, 2000), and also 
provides the error detection function. From the point of 
view of its contents, memory is structured in two types. 
Modal memory stores only one type of content, for 
instance, visual memory. Multimodal memory, by contrast, 
can manage all types of contents together. The memory 
management module (in coordination with the global 
search and contextualization modules) serves as the content 
access manager for the different memory systems in the 
model, i.e. working memory, episodic memory and 
semantic memory. Self-coordination, Attention and global 
search functions are the basis for the coordination between 
conscious and unconscious domains. The self-coordination 
mechanism is in charge of managing the actions required 
for achieving the goals (prioritizing, control and decision-
making functions), and at the same time it provides the 
system with the reflective and self-monitoring function. M-
Consciousness (introspective thoughts about sensations and 
percepts) is also located in the self-coordination module, 
although it is closely related with the status assessment 
module (from which self-coordination obtain the salient 
emotional states). Self-coordination module contains also 
the verbal report in the form of a coordination log (the 
machine consciousness analogy for inner talk).   

The design of the presented modules cannot be seen just 
as each component implementing one or more 
consciousness functions. In the next section the proposed 
architecture CERA (Conscious and Emotional Reasoning 
Architecture) is described, and it is shown how most of the 
functionality in the model arises from the interaction 
between different modules (see figure 1). For instance, 
contextualization mechanism provides unity through 
binding multimodal representations; which in turn can be 
accessed thanks to global search and memory management 
mechanisms. As these tasks involve representations from 
both conscious and unconscious domains, the preconscious 
module is required to help determine the coalition of 
processes whose output will be promoted to the conscious 
workspace.  
 Apart from the identified consciousness functions, the 
model is able to implement additional cognitive functions 
(generally through the extension of the architecture in 
which it is integrated). For instance, abstraction 
mechanisms, defined as finding a common denominator in 
formerly separated contents, can be implemented applying 
the current modules (binding – contextualizing – across 
multimodal contents).  

Affective Functions and Consciousness 
The emotional dimension cannot be neglected in the study 
of consciousness as it is directly involved in attention, 
abstraction, language and the affective state (Ciompi, 
2003). Emotions provide the subject with a succinct 
evaluation of its progression in achieving goals (Franklin et 
al. 1998). For instance, joy appears if goals are being 
accomplished as expected. On the contrary, anger will 

come out as a result of failure or unexpected problems. 
Behaviour and perception are also deeply influenced by the 
emotional state. Psychologists agree that there is a small 
set of basic trans-cultural emotions. However, the list 
varies depending on authors (Marina, 2002). The great 
variety of identified emotions is the result of culture-
dependent modulations or mixtures of basic emotions. The 
way emotions affect cognition can be expressed as 
operators (Ciompi, 2003), such as cognitive activity 
modulation. The list of basic emotions we have used for 
our model along with their associated cognitive operators 
is described below.  
 Emotions are present in our proposed models in relation 
with multiple modules. Primarily, status assessment 
module is dedicated to summarize the current situation of 
the robot and maintain the corresponding emotional state. 
This state is taken as an input for the self-coordination 
module, which considers the emotions and its 
corresponding operators in the process of next action 
selection (behaviour). In general, emotions are activated by 
perceived contents, and perception itself is affected by 
emotions. The sensory prediction module triggers emotion 
activation when the calculated anticipation does not match 
the actual percept, as in (Kubota et al. 2001). Another case 
when an emotion is activated is when a sudden change in 
the environment is detected. What the new situation means 
for the robot is reckoned by status assessment mechanism.  

Figure 1: Reasoning consciousness model within CERA architecture. 
Solid lines represent CERA Core (reasoning consciousness core 
modules). Dashed lines represent CERA instantiation layer (domain-
specific modules). Dotted lines represent CERA physical layer.  

The proposed reasoning consciousness model (RCM) is 
primarily based on Baars’ global workspace theory (Baars, 
1995; 1997). Therefore, there are some similarities with 
(Franklin et al., 1998)’s model, which is also based on the 
same theory. However, the RCM proposed here is intended 
as a general purpose model, which can be applied to 
different domains and implemented in the framework of 
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CERA architecture. The model also has a clear orientation 
to the autonomous robot concept. In addition to the 
processes identified by Baars, we have built further on the 
emotional and sensory prediction computational correlates, 
as they seem to be crucial in an environmentally situated 
robot (Manzotti et al., 1998; Webb, 2004). Also, the 
computational model for the next action selection 
mechanism has been adapted to cope with a physical 
environment. This is discussed in detail as part of the 
CERA self-coordination module.  

Applying Machine Consciousness in a Robot 
There exist a number of machine consciousness models, all 
of them inspired in recent neurological advances and 
theories of mind. Some remarkable examples are 
(Anderson, 1997; Franklin et al. 1998; Taylor, 2003; Sun, 
2002). Usually these models embody just a selected part of 
the corresponding theory, such as attention or learning; or 
they are focused on very specific problem domains. In the 
field of autonomous robots, few attempts of implementing 
machine consciousness and emotion have been made 
recently (Kubota et al. 2001; Holland and Goodman, 2003; 
Shanahan, 2005; Maeno, 2005). Most of this works are 
based partially on global workspace theory and/or different 
robot control models. A detailed analysis of these systems 
is out of the scope of this paper. We consider that our 
proposed architecture differentiators are the integration of a 
more elaborated affective model and robot control 
architecture design.  

Proposed Model: CERA 
The framework in which we have developed the reasoning 
consciousness concepts seen in the previous sections is 
CERA. This software architecture allows the integration of 
different cognitive components into a single autonomous 
system. It is designed to be a flexible research framework 
in which different consciousness and emotion models can 
be integrated and tested. The CERA native components 
have been already implemented following the object 
oriented design methodology. Original design requirements 
are to fulfil the aforementioned nine modules of reasoning 
consciousness and their associated functionality. These 
foundation classes can be extended and modified in a way 
that the desired models are represented and interrelated. 
This software engineering process is called CERA 
instantiation, as it produces a domain specific instance of 
CERA. What we describe below is an instantiation called 
K-CERA (Khepera CERA), where we have adapted the 
foundation classes for the specific domain of unknown 
environment exploration using the Khepera robot. CERA 
foundation classes are designed to integrate reasoning 
consciousness with the rest of possible cognitive 
components of a model of the mind. CERA is structured in 
a three-layer architecture (see figure 2). The inner layer, 
called CERA Core, encloses the reasoning consciousness 
model. Next layer is the instantiation layer, which contains 

the domain-specific cognitive components as discussed 
above. On top of the instantiation layer, an additional so 
called physical layer is required to adapt the cognitive 
components to the actual sensorimotor machinery of the 
autonomous robot.  
 The CERA core, which comprises the reasoning 
consciousness modules, defines a framework for 
implementing versatile cognitive processes. However, the 
knowledge representation is not concretely defined in this 
layer. An abstract knowledge class is used in CERA core in 
order to make the high level RCM processes definition 
representation-independent. This means that CERA core 
per se cannot be instantiated. A domain-specific 
instantiation layer is always required in order to build a 
complete cognitive model. Analogously, the physical layer 
is required in order to implement the actual autonomous 
agent control system. 

Figure 2: CERA layered design. The core layer is where the reasoning 
consciousness model foundation classes are located. Then, the 
instantiation layer adds the domain-specific cognitive systems. Finally, 
the top layer encloses the agent-specific perception and motor systems.  

CERA provides the framework for communication and 
integration of all the components of RCM. Additionally, it 
provides flexibility in the design of upper layers. This 
allows different learning techniques or memory systems to 
be tested under a common infrastructure.  
 For the initial prototype of CERA we have selected a 
relatively simple problem: to explore an unknown 
environment and autonomously generate a two-
dimensional map. This is a simplification of the kind of 
missions that a real autonomous robot probe would 
accomplish. For instance, obtain the map of an unexplored 
area of Mars in order to find a good place to land a bigger 
spacecraft. As prototype testbed we have used the Khepera 
robot (Mondada et al., 1993). For the simulations and 
controller testing the WSU Khepera Suite has been used 
(Perretta y Gallagher, 2002). The robot main task is to 
explore efficiently the surrounding area and build the 
corresponding map. Map representation will simply 
indicate, based on the relative position of the robot, where 
walls and other obstacles are located. Initially, all 
unexplored areas are supposed to be free of obstacles. The 
map is completed by the robot as it explores the 
environment. When wandering around it may discover a 
new obstacle, and that unexpected event will catch its 
attention. In the exploration task the robot is expected not 
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to pass by the same place twice (whenever it can be 
avoided), thus minimizing mission time and resources.  
 Khepera robot is equipped with 8 infrared sensors, 6 on 
the front and 2 in the rear (see figure 3). The two wheels of 
this 55mm diameter robot are controlled by two DC motors 
that can move in both directions. The 8 sensors and 4 
motors are directly controlled by the CERA physical layer. 
In the next sections, the K-CERA instantiation salient 
aspects are explained along with the common CERA 
components. Even though CERA interfacing with the 
Khepera sensorimotor machinery is done in the physical 
layer, goal-related control aspects are also discussed as part 
of the instantiation layer (as they are dependent on the 
problem domain).  

Figure 3: Khepera robot scheme. S0 to S5 are the front infrared sensors. 
S6 and S7 are the rear infrared sensors. M0 and M1 are the two motors, 
and the black rectangles represent the wheels. Additional actuators are not 
considered for the experiments in this paper.  

CERA Core Layer 
The most important aspect of this layer is its primary 
function: to integrate the rest of cognitive components 
according to the reasoning consciousness model, providing 
the required information flow. One of the key roles located 
in the CERA Core layer is the volitive function, which is 
part of the self-coordination module. In the context of 
RCM, volition is reduced to the next action selection 
operator, which is affected by CERA three level goals (see 
figure 4). Goals are distributed across CERA layers 
according to their nature. Hence, physical layer goals (or 
basic-goals) are actually stimulus-driven reflexes in a 
primitive reactive system. Instantiation layer goals (or 
mission-goals) are the full or partial solutions of the 
specific problem domain. Finally, CORE layer goals (or 
meta-goals) represent the highest general-purpose 
cognitive goals, i.e. robot personality.  
 Goals have a default assigned priority as shown in figure 
4. This scheme follows the same underlying approach as in 
Brooks’ subsumption architecture (Brooks, 1986). 
However, the output of the status assessment module 
(emotions) can change the priorities temporarily. This case 
is illustrated below with an example.  

Figure 4: CERA goal hierarchy. Highest priority is assigned for basic-
goals, medium priority for mission-goals, and low priority for meta-goals. 
Emotional tension can affect this priority scheme as discussed below. L
stands for level, P stands for priority. 

 In the CERA prototype we have identified the following 
basic-goals: 

GB00 B= Keep positive emotional state (we don’t want a 
depressive robot).  

GB01B = Discover abstractions (prevent redundant 
information by extracting an invariant in a variance). 

Emotional response is produced at all levels and is 
consolidated by the status assessment module. Emotions 
have associated effects on cognition (Ciompi, 2003): they 
can activate or inhibit cognitive activity, focus the attention 
on specific cognitive contents and exclude others, store 
cognitive contents in affect-specific ways in memory 
(state-dependent memory), and associate elements with 
similar emotional flavour (CERA consider this a case of 
abstraction). Initially, there are no derivate emotions in 
CERA. The selected set of basic emotions and their 
influence in self-coordination are:  

EB0B = Curiosity (directs attention focus toward selected 
cognitive contents and activate explicit learning). 

EB1B = Fear (directs attention and promotes avoidance of 
selected cognitive contents)  

EB2B = Anger (establish or reinforce boundaries toward 
cognitive contents). 

EB3B = Joy (induces closeness and bonding with selected 
cognitive contents). 

EB4B = Sadness (reduces and eliminates bonds with lost 
cognitive contents) 

These emotions can be activated by specific cognitive 
perceptions and their consequences on goals achievement, 
i.e. emotion activation is a function of goals and their 
related perceptions (see figure 5). Consequently, in CERA 
all goals are assigned an emotional evaluation operator, i.e. 
progress evaluation function. The loop depicted in figure 5 
indicates that emotional state is affected by perception, 
whilst perception and attention are in turn affected by 
emotions. Attention is directed by both self-coordination 
and sensory prediction. Emotions can be activated by 
specific cognitive perceptions, but they also influence what 
is perceived. This control loop can be regulated by 
emotional learning.  
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Self-coordination control of attention focus includes the 
habituation function. The idea behind is that accustomed 
behaviours can be executed semi-automatically (mostly 
unconsciously, involving only implicit learning). A higher 
degree of awareness and conscious feeling is only required 
to deal with novel situations, when explicit learning is 
required.  

Figure 5: Goals achievement is determined using the corresponding 
emotional operators. Attention and behaviour are directed by goals and 
the corresponding emotional state. Emotional operators can be learnt to 
maximize goal achievement and efficiency. Dotted grey arrows represent 
a reflex triggered by an unexpected sensory percept or sudden change.  

Once next action is consciously selected, i.e. an explicit 
action is active; the actual realization of the action is 
triggered. This means that one or more unconscious 
processors are invoked. They perform the corresponding 
action in the physical layer as learned implicitly. For 
instance, turn right when the area in front has been visited 
already. For the ‘turn right’ conscious action, the 
unconscious processors will stop the left motor and 
activate for a given time the right motor. 
 Forward models concept, as described by (Jordan and 
Rumelhart, 1992) is the base for the technique used to 
represent the sensory prediction. A forward model is 
formed by two interconnected networks: the first produces 
the current action, while the second anticipate the sensory 
consequences. In CERA the first network is part of the 
more elaborated next action selection loop as depicted in 
figure 5. The second network is located in the sensory 
prediction module. Forward models are inspired in 
vertebrate and invertebrate control systems (Webb, 2004).  

K-CERA Instantiation Layer 
Goals component in the instantiation layer contains the 
mission-goals (see figure 1). In addition to the inter-layer 
goal prioritization (as depicted in figure 4), these domain-
specific goals could be in turn organized in priority levels. 
This would be useful for instance in a more complex 
problem, where different missions have to be accomplished 
and coordinated. However, for the problem we are facing 
we do not see the need for intra-layer goal prioritization. 
Mission-goals in K-CERA are as follows: 

GB10B = Explore the environment creating a map.  

GB11B = Create an accurate map, confirming that already 
created map is correct. 

As discussed, the core module status assessment needs to 
have a measure of how well the goals are being achieved. 
The evaluation functions are as follows: 

eval(GB10B) B B= Current number of map model new updates. 
eval(GB11B) = Current number of mismatches between 

revisited areas and the corresponding internal map 
representation. 

The associated emotional operators are defined as: 
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These operators are used by the status assessment module 
to calculate the emotional state of the robot. 
Exploration_iterations is the counter of next action 
selection cycles. It is used here to normalize the evaluation 
of goal achievement into the emotional operation 
functions. The general emotional status is a combination of 
emotional responses to each goal. As discussed before, the 
emotional response is a function of the goal and the 
perceptions related to its achievement (eval functions). 
Furthermore, the goal emotional response can have 
multiple emotion components as represented by the 
control-addition operator in the emotion functions: 

21031010 ))(1()()( EGopEGopGemotion

21131111 ))(1()()( EGopEGopGemotion

Where EB3 B is Joy and EB2 B is Anger. As both op(GB10B) and 
op(GB11B) possible values range from 0 to 1, they are used to 
modulate the impact of each basic emotion in the general 
mission-dependant emotional response. The equations 
above indicate that the robot will be happy when it 
explores the environment optimally and the previously 
annotated obstacles match with its current perception. On 
the contrary, it will “feel” anger in case of repeatedly 
exploring an already known area. Anger will become 
bigger if the robot discover that it is lost, i.e. previously 
annotated obstacles are not sensed where they are supposed 
to be located according to the internal map representation). 
The emotions functions possible values correspond to the 
gradual significance or weight. A determined threshold has 
to be exceeded in order to make the feeling conscious.  
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K-CERA Physical Layer 
The usually highest priority goals are located in the 
physical layer. In the considered K-CERA design only one 
basic-goal has been considered. However, in this case we 
have defined two evaluation functions and two emotional 
operators corresponding to the same goal: 

GB20B = Wander safely without hitting obstacles. 
evalB0B(G B20 B) = Number of collisions.  
evalB1B(G B20 B) = Minimum distance to obstacle. 
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_
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200
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Where SB0B to SB7 B are the Khepera infrared sensors current 
value and Q is the quantization function. Q function 
establishes a discrete range of sensed distance measures 
ranging from d B1 B (hitting an object) to dB100B (sensor does not 
detect any obstacle). Possible emotion responses in relation 
with goal GB20B are represented in the following equation, 
where EB0B, EB1 B and EB3 B mean curiosity, fear and joy
respectively. Not hitting obstacles is a reason for joy, while 
wandering too close to walls makes the robot “feel” fear. 
Curiosity is greatly activated when no obstacles are 
detected:
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K-CERA Emotional Behaviour and Learning 
Even in the simplified problem domain that has been 
defined, some specific situations require emotional 
learning. Let’s consider the situation illustrated in figure 6.  

Figure 6: Example of emotional/goal conflicting situation. The hole in 
front of the robot is too narrow to prevent passing by too close to walls. 
Fear advices to move the robot away from walls, whereas curiosity 
suggests entering the unexplored area. 

The robot has already mapped the entire environment but a 
concrete area, whose entrance is very tight for Khepera. In 
this case there is an emotional conflict. In one hand, the 
robot “feels” anger if it has to go back through an already 
explored area. In the other hand, it “feels” fear to hit an 
obstacle (as the passage is too tight and infrared sensors 
report a high probability of collision). There is also a 
tendency to enter the unexplored area promoted by 
curiosity. 
 The emotional resolution of different layer goal 
contradiction is solved by emotional learning. In the 
presented case, curiosity finally makes the robot to 
overcome fear and obtain joy afterwards. This emotional 
rule learning is performed in two steps: firstly, an interim 
change in goal priorities permits to explore a possible 
conflict resolution. Then, if successful, the new emotional 
response is learned.  

Conclusion and Future Work 
The RCM, where the key functions and modules of 
consciousness are embodied, has been applied to the 
flexible experimentation architecture CERA. A proof of 
concept instantiation of CERA has been built for an initial 
simple problem domain. CERA flexibility and extendibility 
have been demonstrated, and its main drawback, the 
development needs, has been addressed.  This 
implementation has implied, as discussed in the previous 
sections, the definition of domain-specific emotional 
operators. However, the underlying CERA mechanisms for 
emotional learning, behaviour generation (next action 
selection), and integrated layered control are designed to be 
domain-independent. 
 Thanks to the recent advances in the theories of mind, 
the application of models of consciousness and emotions 
are promising in the field of cognitive robotics. 
Consciousness is a paradigm that cannot be ignored, as it is 
an evolutionary advantage emerged in humans and other 
higher mammals. This indicates that it might be beneficial 
if applied to other kinds of environment-situated agents. 
Therefore, much more effort need to be done in this 
research area to explore the possible challenges it might 
offer. 
 It is our intention to extend CERA prototype in order to 
make it able to cope with more complex problems. 
Concretely, more research is needed regarding uncertainty 
in perception and its management using robot internal 
models (Holland and Goodman, 2003). Other significant 
research scenarios in this direction are conscious multi-
robot collaboration and intersubjectivity, roles of 
consciousness and language in robot communication, and 
implicit versus explicit learning and knowledge 
representation. 
 Computational performance is another issue when 
modelling mind. Complex problems are difficult to address 
in real-time environments. For instance big simulated 
neural networks require huge processing power. Hence, 



more efficient implementations techniques have to be 
explored for CERA. Another outstanding challenge in the 
application of cognitive and consciousness models to 
robotics is the development of a general purpose model, 
i.e. eliminate the domain-specific CERA instantiation.  
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