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Abstract 
The challenge addressed by this research project is to create 
a hybrid cognitive architecture that will possess key features 
of human higher cognition. Our approach is based on the 
integration of symbolic and connectionist components at the 
top representational level.  The framework of schemas, 
which is the base of this architecture, is described in the 
context of integration with neuromorphic cognitive maps in 
specific learning paradigms. The formalism of schemas is 
illustrated by several examples set in a virtual Roboscout 
environment.

Introduction
One of the greatest challenges of our time is to create a 
hybrid, integrated cognitive architecture that will possess 
key features of human higher cognition sometimes referred 
to as the “magic” of human cognition. These key features 
include:  

(a) autonomous cognitive growth and human-like 
learning capabilities,  

(b) the basic kinds of human memory and attention 
control,  

(c) social meta-cognition and self-awareness,  
(d) human-like communicational capabilities, and 
(e) emotional intelligence.    

In the present work we address the features (a) and (b). 

Approach to Integration 
The approach pursued in this work is based on our recent 
proposal for the integration of symbolic and connectionist 
components at the top representational level (Samsonovich 
and De Jong 2005). On the symbolic side of this 
integration scheme, the key elements are a unique, central 
notion of a “self” and a formal representation system based 
on the innovative building block called a “schema”, which 
is the primary focus of the present work. On the 
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connectionist side, the key elements are neuromorphic 
cognitive map components: neural networks that provide 
for associative indexing of symbolic memories, path-
finding in modeled cognitive spaces (Samsonovich and De 
Jong 2005), reinforcement learning, and other functions 
some of which are discussed below. The integration is 
achieved through an associative learning mechanism 
between the symbolic and neuromorphic components. 

Architecture 
In summary, the architecture has eight components that are 
highly interconnected to each other (Samsonovich and De 
Jong 2005): working memory, episodic memory, semantic 
memory, input-output buffer (all these four components 
operate using symbolic representations: schemas and their 
instances, see below), procedural memory (interface and 
“foreign” functions called here primitives), a driving 
engine (an “operating system” that runs all components), a 
reward and punishment system (used in reinforcement 
learning and as the origin of goal-directed behavior), and 
finally a neuromorphic component implementing cognitive 
maps. 

Mental State Lattice 
As a part of implementation of the self concept, working 
memory in our architecture is dynamically partitioned into 
mental states. Each mental state corresponds to an instance 
of a “self” and represents the mental perspective of that 
instance, which is partially captured by a self-explanatory 
mental state label: e.g., I-Now, I-Previous, I-Imagined. 
None of the mental states are permanent architectural 
components: mental states may emerge and disappear, 
move across memory systems, change their labels, 
functional roles and relationships; however, a certain set of 
standard labels are likely to be present at any given time in 
an awake system. Among them are I-Now and I-Next: they 
represent states of awareness of the subject at present and 
at the next moment. These and other mental states form a 
dynamical graph on the lattice of all possible mental 
perspectives. The content of each mental state is a set of 
instances of schemas bound to the corresponding mental 



perspective and to each other. The underlying schema-
oriented representation formalism that was described 
previously at an abstract level (Samsonovich and De Jong 
2005) is specifically designed to enable cognitive growth 
capabilities and to allow for indexing, retrieval, and 
organization of memories by the connectionist component. 
This formalism is addressed in the following section. 

Cognitive Map 
The neuromorphic cognitive map component includes: (1) 
a contextual map that indexes episodic memories, (2) a 
conceptual map that indexes semantic memories, and (3) a 
separate map for emotional memories that may involve 
episodes as well as semantic knowledge. The notion of a 
(spatial) cognitive map was introduced by O’Keefe and 
Nadel (1978). A cognitive map in the present framework is 
understood as an abstract multi-dimensional space that is 
used to index memories. It can be implemented as a (subset 
of) the phase space of a neural network (e.g., an attractor).  
 Therefore, points of the map correspond to dynamical 
states of the network (patterns of activity). The map can be 
linked to symbolic memory traces via associative learning. 

Virtual Roboscout Paradigm 
One possible scenario in which the architecture can be 
used is the ontogenesis of an agent embedded in a virtual 
urban scout environment (snapshot shown in Figure 3 A). 
This general paradigm can be called “a Car World”.
 The embodied agent is born as a car in a virtual city. It 
has innate senses, effectors, cognitive abilities and values. 
The ontogeny of the agent is based on a sequence of 
scenarios that can be viewed as a specially designed 
“training facility”. These scenarios will be designed to 
allow the agent to incrementally acquire new cognitive 
abilities. Some of them may require interactions with an 
instructor or with other cars controlled by similar virtual 
agents or human participants. Success in each new scenario 
will depend on the ability to use previously acquired 
knowledge. With this general setup, several test scenarios 
and metrics can be proposed that should specifically 
address the higher cognitive dimensions (a) and (b) listed 
above: the “magic” of human cognition. 

Schema Formalism 
We previously introduced our notion of a schema 
(Samsonovich and De Jong 2005) as an abstract template 
used to instantiate mental categories. At that level, our 
notion of a schema has so many analogies and synonyms 
that it is impossible to list them all here. The top ten 
examples would be: classes in an object-oriented 
programming framework, UML models (Booch, 
Rumbaugh, and Jacobson, 2005), S-expressions in LISP, 
frames (Minsky 1975, 1985), productions and operators in 
Soar (Laird et al. 1986, 1987; Newell 1990), chunks and 
productions in ACT-R (Anderson and Lebiere 1998), 
semantic networks, finite state automata, mental models 

(Johnson-Laird 1983), “specialists” in polyscheme (Trafton 
et al. 2005). The idea of our approach is fusion and 
generalization of the above.  
 On the other hand, the term “schema” originally 
introduced by Immanuel Kant in the XVIII century is 
currently used in many fields of science, with dozens of 
different semantics, some of which appear to be close to 
our understanding of this term (e.g., Barsalou 1999). 
 We previously pointed to several distinguishing features 
of our notion of a schema, one of which is its universal 
versatility. A schema can be used to represent virtually 
anything, from an arbitrary set of mental categories 
(including abstract and concrete concepts, feelings, qualia, 
actions, volitions, etc.) to a notion as specific as a 
particular object taken at one particular moment of time. 
Similar to classes in an object-oriented framework, our 
schemas give rise to their instances (also called cognitive
states); schemas may be composed of other schemas; more 
specific schemas can descend from more general schemas, 
inheriting some of their features; and most importantly, 
arbitrary new schemas can be created by schemas.
 All symbolic components of our architecture are based 
on the formalism of schemas (Figure 1). We pointed out 
previously (Samsonovich and De Jong 2005) that our 
notion of a schema allows for a graphical representation. 
Indeed, a schema in our framework can be viewed as a 
graph structure composed of nodes that are connected to 
each other. It remains therefore to explain what are the 
nodes and the links of the graph, and how do they evolve 
over time. The best way to clarify these details is to 
consider specific examples of schemas in action. 

Figure 1.  Essential UML class diagram of 
the symbolic core of the architecture. All 
nodes of schemas have the standard list of 
attributes; this is also true about mental states. 



First Example: SVD 
Bearing in mind the Car World paradigm (see above), we 
start our consideration with the schema that we call the 
schema of a simple visible domain (SVD) applicable to 
2-D environments. This example is a convenient starting 
point for us to develop an understanding of the key 
concepts of this framework. Intuitively, given a global 2-D 
Cartesian coordinate system, SVD is understood as a 
rectangular domain defined by two points (the South-West 
Corner, SWC, and the North-East Corner, NEC). By 
definition, whenever an agent is located inside SVD, it can 
see any other object located inside the same SVD. 
Therefore, the schema of SVD can be written as a list of 
four elements that we are going to explain below: 

(SVD, SWC, NEC, (Obj)*)      (1) 

In this representation, each of the elements: SVD, SWC, 
NEC, Obj is a name of a node. A node is an atomic token 
that has a set of standard attributes (Figure 1) some of 
which we describe below. One of the attributes is the name
of the node: it is a string of characters used for labeling the 
node. One can think of it as the symbol representing the 
node. While the choice of the symbol may be important for 
the human intuitive reasoning, it is actually irrelevant to 
machine processing of nodes, schemas and instances. 
Strictly speaking, the node semantics should be inferred 
not from its name, but from another attribute called 
Category (cat), which has the value of a pointer to a (set 
of) node(s) of the global semantic network of categories,
which is a part of the semantic memory system and is used 
to organize semantic memory. 
 The first node in (1), SVD, has the name of the schema. 
This is a consequence of a general rule: the first node of a 
schema is called the head and represents the schema itself. 
Its name is the name of the schema (or the name of an 
instance of the schema, when it appears in the instance). 
The category of the head is the category of the schema. In 
this framework, there is a one-to-one correspondence 
between schemas and categories. I.e., each schema has a 
unique category, and each category is associated with its 
unique schema. At the same time, the set of all nodes used 
in all schemas could be much broader. In particular, the 
category of a node could be any subset of the set of 
categories indexed by the semantic network.  
 As long as the semantic network of categories can be 
viewed as a hierarchy, this hierarchy will entail certain 
inheritance relationships among schemas, according to the 
analogy between classes in an object-oriented framework 
and schemas in this framework. Intuitively one may expect 
this hierarchy to be organized similarly to the human 
system of knowledge, starting from the most general 
categories (entity, property, relation, event, quantity, etc.) 
and going down to specific instances and atomic elements 
in the last instance. On the contrary, a given system of 
schemas (or, the epistemic state of the agent) does not have 
to be complete or even close to completeness. 
 In addition to schemas that constitute semantic memory, 
our framework has primitives that constitute procedural 

memory. Accordingly, there are two kinds of nodes that 
may appear in schemas: those that refer to schemas and 
those that refer to primitives. The main difference between 
schemas and primitives is in their implementation. While 
schemas are all implemented in one universal format (as 
graphs of nodes, where each node has the standard set of 
attributes) and are transparent (i.e., all their internal parts 
are in principle “visible” and accessible for other schemas 
and instances), primitives in general are opaque (“black 
boxes”) and allow for a proprietary implementation. As far 
as the protocol of binding is concerned, however, there is 
no substantial difference between schemas and primitives 
referenced by nodes. Therefore, primitives are analogous 
to “foreign functions” in the language based on schemas. 
While in most cases a schema would be as good a 
performer as a primitive (and therefore is favorable due to 
its transparency and versatility), in some special cases the 
usage of primitives is inevitable. Examples are the input-
output channels: sensory signal-to-symbol transduction and 
the control of effectors and actuators. In addition, in some 
special “internal reasoning” cases, while schemas in 
principle could be used, primitives provide a much more 
rational and powerful choice (built-in arithmetic and logic 
operations, standard routines like sorting, etc.). 
 The fact that there are nodes SWC, NEC, and Obj in (1) 
implies that there are corresponding categories (and the 
corresponding schemas) available in semantic memory 
(here we should be more precise: e.g., instead of SWC and 
NEC, semantic memory may have just one schema of a 
point; on the other hand, the node Obj may be a template 
that matches any of several available schemas of objects: 
e.g., an agent and a gas station, while semantic memory 
may lack a general schema of a physical object).  
 How does the SVD schema work? For example, in one 
possible scenario, our agent may have tunnel vision: it can 
look at only one location at any moment of time. 
Furthermore, the agent becomes aware (i.e., reflects in 
I-Now) of only a subset of all that it can see. Suppose the 
agent looks at some location X, and then traces down to 
some location Y, while seeing nothing special during this 
focus of attention shift (no objects or walls). Then the 
agent is aware of two visible locations X and Y. For an 
intelligent agent, it would be natural to assume in this case 
that the two points X and Y belong to the same SVD. 
Instead, our rather simplistic agent will take this belief for 
granted. Here is how this happens. When the agent is 
aware of X and Y, its driving engine attempts to map the 
SVD schema onto the content of awareness, and succeeds 
in binding X and Y to SWC and NEC, respectively (both 
nodes SWC and NEC have their mode of binding, or mob
attribute, set to “Find”, which means that under normal 
conditions of this schema mapping, the binding can only 
occur when the matching content is found in the target 
mental state; in addition, by a general rule of binding, 
unless specified otherwise, the two nodes should match 
two different entities found in I-Now). A general rule is 
that the head of a schema should be bound last. In this 
case, however, the head SVD can be bound as soon as 



SWC and NEC are bound, because the node Obj is 
quantified and allows for an empty set of matching entities. 
Therefore, the driving engine binds the head of SVD: this 
completes the first stage of processing of the instance. At a 
next stage (that will be repeated as long as the instance is 
not terminated and the mental state remains in the position 
of I-Now), the driving engine will look for new visible 
objects that could be incorporated into this SVD. 
 Returning to the definition of the SVD schema, we now 
want to modify it by adding a couple of constraints. The 
first one is a condition that we need just for convenience: 
the point SWC must be more southern and more western 
than the point NEC. For now we assume that this 
constraint is automatically verified by a primitive called 
“Ordered”. A node in our modified SVD schema that will 
invoke this primitive will be called “Ordered1”. In order 
for this constraint to work, internal links must go from 
Ordered1 to SWC and to NEC, thereby providing the 
primitive with access to the coordinates associated with 
SWC and NEC. Next, we use exactly the same “trick” to 
make sure that an object associated with SVD is located 
between the two corners (we assume that the primitive 
Ordered can take three pairs of coordinates). Now our SVD 
schema looks like a graph (Figure 2). 

 Here the solid lines show internal bindings (all efferent 
bindings are specified by assigning a pointer to the node 
attribute called bnd), while the dashed arrows indicate that 
the successful binding of the nodes SWC, NEC and 
Ordered1 must precede the binding of the head. Again, the 
second instance of “Ordered” in Figure 2 makes sure that 
any bound object is located inside the rectangle. 
 The last terminal node in Figure 2 is not only optional: it 
is expandable. It is a quantified node that allows for 
binding a possibly empty list of objects: this fact is 
represented by the asterisk. There are two possibilities to 
implement this feature, and our formalism allows for both. 
One is to get the single node bind to a list of external 
entities (i.e., the value of bnd is a list of pointers). Another 
possibility is to allow for a duplication of the node, 
whenever a new object inside SVD is found. This process 
would be naturally accompanied by the automatic 
duplication of the internal node Ordered2 together with the 
related links. The second method, while being more 
complicated and not obviously necessary in this case, is 
conceptually important, as it demonstrates the power of the 
formalism: e.g., a schema may give rise to an instance that 
grows and becomes more complex than the schema from 

which it originated (this, however, is not an example of 
learning or cognitive growth; see below). 

Second Example: SM 
SVD is a perceptual schema: it detects a certain abstract 
feature in the environment, marks it (causing by itself no 
side effects), and stays in awareness for as long as nobody 
or nothing takes care of its termination. This could mean 
“forever” (for as long as the simulated cognitive system 
exists), because I-Now together with its content eventually 
gets frozen and stored in episodic memory, where normally 
it should not be deleted or altered. Now we consider 
another kind of schema: a schema of a self-initiated action 
of the agent. Action schemas have at least two stages of 
processing: after being bound, they wait to be executed. 
We consider a move along a straight line that happens 
instantaneously for the agent, and we call this schema a 
straight move (SM): Table 1. 

Table 1. The SM schema. 
name SM Me1 Target Me2 Move1
cat SM,vact me Point me move-pr 
att Idea Nil Desired Next -
mob Append Find Find Append - 

 In order to explain how this schema works, we need to 
introduce one more attribute called Attitude (att). Attitude 
is understood here as the position (in time and in other 
cognitive dimensions) of the object of awareness with 
respect to the subject of awareness (or vice versa – in the 
intuitive sense: the attitude of the subject toward the 
object). E.g., if I imagine myself at the next moment of 
time, the attitude of my imagined body will be “Next” in 
my I-Now. If I think of a (real) location in space where I 
want to be, the attitude of my instance of awareness of that 
location is “Desired”, and so on. 
 Here is an example of how this attribute works. When 
applied to the content of awareness in I-Now, at the first 
step, the SM schema (Table 1) finds (mob=Find) the body 
of the agent (Me1: cat=me), which has to be the actual, 
present body: not an imaginary instance of it (this is 
specified by att=Nil). At the same time, it finds the place 
where the agent wants to be (Target: att=Desired). At this 
point, the instance is bound, has the attitude “Idea” (i.e., a 
feasible voluntary action), and awaits its execution 
(according to the voluntary action procedure that we are 
not going to discuss here, but need to mention that before 
execution, the attitude must be changed to “Intent”). When 
intended for execution, the instance (Table 1) creates an 
imaginary body of the agent me2, which is in fact the 
expectation of the agent of where it is going to be after the 
move. This expectation is projected into the neighboring 
mental state I-Next. The actual, physical move is 
performed by a primitive move-pr (Table 1). When this 
happens, mental states change their perspectives (and their 
labels), as previously described in our related publications. 

SVD SWC NEC (Obj)* 

Ordered1 Ordered2

Figure 2. The elaborated SVD schema. 



Figure 3.  A: navigation to a gas station in a 
virtual city. B: The schema 3LM (see text). 

Third Example: 3LM 
Now, jumping ahead, we consider a schema of a three-leg 
move that we call 3LM (Figure 3 B). It is composed of 
elements described above, plus one new element: the 
schema of an intersection. The agent detects intersections 
in Car World using SVD during exploration of the virtual 
city. We assume that at this moment the agent has the map 
of the city available (which could be based on a special 
map schema). Without going into details in this example, 

we point that the schema 3LM (Figure 3 B) allows the 
agent to navigate to the gas station (Figure 3 A): this can 
be done automatically as soon as 3LM is mapped, which 
requires solving the matching problem by the driving 
engine. 

Integration with Cognitive Map 
What happens in the last example, if 3LM is not available 
as a schema? The same solution (Figure 3 B) could be 
found by chance, by exhaustive search, or following 
guidance of an instructor. Suppose that this happens 
several times, in several slightly different situations. 
Variations may include presence or absence of objects in 
the scene, alteration of the starting and the target locations, 
alteration of the part of the virtual city where the episode 
takes place, etc. Each experience (the content of the mental 
state) is stored in the episodic memory, so that later the 
system has access to all remembered episodes and related 
mental state contents in which the solution was found.  
 Now we assume that the symbolic content of I-Now is 
linked to an auto-associative neural network that is capable 
of pattern learning and pattern completion. Details are the 
following. Each schema is associated with a unique, sparse 
binary code, which is presented to the neural network as a 
part of the input pattern, whenever an instance of the 
schema is present in the working memory. As a 
consequence, a given mental content in I-Now is 
represented by an activity pattern in the neural network. 
We assume that the network is capable of unsupervised 
pattern learning, generalization (development of a limited 
number of prototypes for a large number of input patterns), 
retrieval and completion (e.g., elimination of elements that 
are not a part of the prototype). Under these assumptions, 
one may expect the network to develop a generalizing 
pattern-prototype for a number of presented episodes of 
successful reasoning of the kind shown in Figure 3 B. 
 The output of the network in this scenario will be fed to 
the semantic memory, where it will activate schemas with 
the binary code that matches the pattern. Schema activation 
is done via changing the value of the special attribute 
called “Activation”. More active schemas are more likely 
to be selected next for an attempted binding to I-Now. 
Therefore, this mechanism provides the neural network 
with a means for “suggesting” a missing element of the 
solution that needs to be added to I-Now. In other words, 
the neural network is capable of guiding the process of 
reasoning in I-Now. 
 Here is why in this paradigm one would need not just 
any auto-associative network, but a network implementing 
a contextual cognitive map for successful guidance. The 
cognitive system may have many experiences, most of 
which may not be related to the given learning task. 
Therefore, the system must be able to treat those 
experiences separately based on their context. The 
paradigm of finding a path consisting of three legs is a part 
of the context, and so is a success in this task. With the 
help of a contextual cognitive map, the neuromorphic 
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component of the architecture will be able to “filter” the 
relevant episodes and to generalize them separately from 
others (details of this process will be presented elsewhere). 
 Our bottom line here is that the set of instances involved 
in the solution in Figure 3 B can be associatively learned 
by a neural network implementing the contextual cognitive 
map, and this network can be used to “suggest” missing 
elements of a solution in a new situation based on pattern 
completion. 
 A further modification of this paradigm would be to 
extend the integration described above to the process of 
automated new schema creation, which is an example of 
human-like learning and an important component in the 
cognitive growth. After many experiences of successful 
reasoning of the sort of Figure 3 B, the system decides to 
create a new schema (the 3LM schema) by “chunking” the 
pattern of instances and their connections involved in the 
solution of the problem. How should our architecture 
decide which instances to include in the new schema? By 
means of two criteria: (i) an instance must be productive, 
in the sense that it should be functionally involved into the 
solution process; and (ii) it should be recognized by the 
neuromorphic component as a part of the general prototype 
pattern for the given class of episodes.  Including the 
neuromorphic component that implements the cognitive 
maps addresses some of the “chunking problems” that are 
characteristic of production systems based on symbolic 
representations only. 

Conclusions
In this work we have elaborated new details of the 
formalism of schemas that underlies our concept of a 
biologically-inspired cognitive architecture (Samsonovich 
and De Jong 2005). We presented three examples of 
schemas, explaining how they solve specific cognitive 
problems in a virtual Roboscout setup. We explained the 
indexing and the pattern completion functions of the 
neuromorphic cognitive map applied to schema-based 
symbolic representations in working memory. We further 
explained how the pattern completion function of the 
cognitive map can be used  

(1) to guide the process of “thinking” in the 
architecture, e.g., to guide the selection of new 
schemas to be applied to the current mental 
content in order to solve a problem, and 

(2) to facilitate the process of cognitive growth (in 
this case, new schema creation) by suggesting 
which instances to include into the new schema. 

In general, the functionality of cognitive maps in this 
framework extends far beyond these two examples; 
however, these examples provide good illustrations of the 
new concept of integration of symbolic and connectionist 
components. Building intelligent systems that exhibit the 
“magic” of human cognition is a difficult, but probably the 
most interesting and critical challenge of our time. There 

are many views of this challenge, and many suggested 
approaches to its solution. In this paper one particular 
approach is presented that takes us one step closer to a 
robust, integrated computational cognitive framework. 
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