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Abstract

A real world environment is often partially observable by the
agents either because of noisy sensors or incomplete percep-
tion. Moreover, it has continuous state space in nature, and
agents must decide on an action for each point in internal
continuous belief space. Consequently, it is convenient to
model this type of decision-making problems as Partially Ob-
servable Markov Decision Processes (POMDPs) with contin-
uous observation and state space. Most of the POMDP meth-
ods whether approximate or exact assume that the underlying
world dynamics or POMDP parameters such as transition and
observation probabilities are known. However, for many real
world environments it is very difficult if not impossible to ob-
tain such information. We assume that only the internal dy-
namics of the agent, such as the actuator noise, interpretation
of the sensor suite, are known. Using these internal dynam-
ics, our algorithm, namely Kalman Based Temporal Differ-
ence Neural Network (KBTDNN), generates an approximate
optimal policy in a continuous belief state space. The policy
over continuous belief state space is represented by a tempo-
ral difference neural network. KBTDNN deals with continu-
ous Gaussian-based POMDPs. It makes use of Kalman Filter
for belief state estimation. Given only the MDP reward and
the internal dynamics of the agent, KBTDNN can automat-
ically construct the approximate optimal policy without the
need for discretization of the state and observation space.

Introduction
Traditional learning approaches deal with models that define
an agent and its interactions with the environment via its per-
ceptions, actions, and associated rewards. The agent tries to
maximize its long term reward when performing an action.
This would be easier if the world model was fully observ-
able, namely the underlying process was a Markov Decision
Process (MDP). However, in many real world environments,
it will not be possible for the agent to have complete percep-
tion. When designing agents that can act under uncertainty,
it is convenient to model the environment as a Partially Ob-
servable Markov Decision Process (POMDP). This model
incorporates uncertainty in the agent’s perceptions that have
continuous distributions, actions and feedback which is an
immediate or delayed reinforcement. POMDP models con-
tain two sources of uncertainty; stochasticity of the con-
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trolled process, and imperfect and noisy observations of the
state (Kaelbling, Littman, & Moore 1996).

In POMDP’s, a learner interacts with a stochastic envi-
ronment whose state is only partially observable. Actions
change the state of the environment and lead to numeri-
cal penalties/rewards, which may be observed with an un-
known temporal delay. The learner’s goal is to devise a
policy for action selection under uncertainty that maximizes
the reward. Although, the POMDP framework is useful in
practically modeling a large range of problems, it has the
disadvantage of being hard to solve, where previous studies
have shown that computing the exact optimal policy is in-
tractable for problems with more than a few tens of states,
observations and actions. The complexity of POMDP algo-
rithms grows exponentially with the number of state vari-
ables, making it infeasible for large problems (Boyen &
Koller 1998; Sallans 2000).

Most of the methods dealing with POMDPs assume that
the underlying POMDP parameters are known. However,
collecting such information is impossible for most of the
real world cases. Additionally, past work has predominately
studied POMDPs in discrete worlds. Discrete worlds have
the advantage that distributions over states (so called “be-
lief states”) can be represented exactly, using one parame-
ter per state. The optimal value function (for finite planning
horizons) has been shown to be convex and piecewise linear,
which makes it possible to derive exact solutions for discrete
POMDPs (Kaelbling, Littman, & Moore 1996).

In this study we aim to use POMDP as a model of the real
environment. Since discrete case POMDPs are hard to solve,
many studies focus on these type of problems. But the appli-
cation of such algorithms to robotics which are continuous
in nature is nearly impossible. There are a few studies on
continuous POMDPs. Recently two studies have been pre-
sented. Vlassis, Porta and Spaan, in their work, assume dis-
crete observation over continuous state space (Porta, Spaan,
& Vlassis 2005). Hoey and Poupart assume discrete state
space with continuous observation space (Hoey & Poupart
2005). In these two studies, they further assume that the
world model is given. We have made two assumptions that
do not exist in nearly none of the previous studies. First,
we assumed that the POMDP parameters or world dynam-
ics, such as observation and transition probabilities, are not
known, and we expect our agent, simply using its internal



dynamics, to generate an optimal policy by making an ap-
proximation to exact value function over belief space. Sec-
ond, since a large number of real world problems are contin-
uous in nature, we are interested in POMDP’s with continu-
ous parameters which cannot be solved exactly.

In section 2 we formally describe conventional POMDP
solution techniques. In section 3 we describe Kalman Based
Temporal Difference Neural Network for Policy Generation
under Uncertainty (KBTDNN) algorithm in detail. In sec-
tion 4 we give the experimental results for some well-known
POMDP problems. We conclude in section 5.

POMDP and Conventional Solution
Techniques

POMDPs contain two sources of uncertainty: the stochas-
ticity of the underlying controlled process, and imperfect
observability of its states via a set of noisy observations
(Sondik 1978). Noisy observations and the ability to model
and reason with information gathering actions are the main
features that distinguish the POMDPs from the widely
known Markov decision process (MDP).

The formal definition of a POMDP is a 6 tuple (S, A, Θ,
T, O, R) where;

• S is the set of states,

• A is the set of actions,

• Θ is the set of observations,

• R is the reward function S × A �→ R,

• O is the set of observation probabilities that describe the
relationships among observation states and actions S × A
× Θ �→ [0,1],

• T is the state transition function S × A �→ Π(S), where
a member of Π(S) is a belief state that is a probability
distribution over the set S.

The immediate rewards, received when the agent takes an
action at any given belief state, are fed in order to give hint
to the agent about what is right and what is wrong. The goal
of a POMDP agent is to optimize the expected discounted
reward that is the discounted infinite sum of instant rewards,
given in Eq. 1.

E

( ∞∑
t=0

γt r(t)

)
(1)

The methods for learning within the POMDP (Kaelbling,
Littman, & Moore 1996) framework may be classified as ex-
act but intractable methods and approximate methods. There
are two versions of the POMDP training problem: learning
when a model of the POMDP is known, and the much harder
problem, learning when a model is not available. Obtaining
the world dynamics for complex environments is very dif-
ficult. Since the final policy is built on world dynamics, a
wrong or idealized world model will lead to poor policies
which will cause serious problems in real world environ-
ments. Therefore, most of the suggested solution techniques
for discrete state space POMDPs where the world model is

given are not appropriate for robotics in which world dy-
namics can not be calculated exactly and is continuous in
nature.

Recently two studies, one assuming discrete observation
over continuous state space (Porta, Spaan, & Vlassis 2005)
and one assuming discrete state space with continuous ob-
servation space (Hoey & Poupart 2005) have been presented.
Although, they assume that the world model is given, both of
them use point based value iteration technique (Pineau, Gor-
don, & Thrun 2003) for Gaussian-based POMDPs. Point
based value iteration (PBVI) is an approximate solution
technique that requires belief point backups chosen based
on a heuristic. The solution is dependent on the initial belief
and, need a time consuming belief point set expansion and
pruning phase for α-vectors.

Kalman Filters
In the POMDP approaches, the agent’s state is not fully ob-
servable; the agent tries to convey uncertain or incomplete
information about the state of the world. The agent remem-
bers past observations up to some finite number of observa-
tions, called a history denoted by the set, ht−1 , ht−2 , . . . ,
ht−n

Astrom (Astrom 1965) conceived an alternative to storing
histories: a belief state, which is the probability distribution
over the state space, S, summarizing the agent’s knowledge
about the current state. The belief state is sufficient in the
sense that the agent can learn the same policies as if it had
access to history (Kaelbling, Littman, & Moore 1996).∑

s∈S
bt(s) = 1 (2)

Here bt(s) is the probability that the world is in state s at
time t. Knowing bt(s) in Eq. 2, an action, a and an obser-
vation, o, the successor belief state can be computed by Eq.
3.

bt+1(s) =
∑

s bt(s)P (s′ |s, a )P (o |s, a , s′)∑
s,s′ bt(s)P (s′ |s, a )P (o |s, a , s′)

(3)

Eq. 3 is equivalent to Bayes filter, and its continuous
case forms the basis of Kalman filters (Howard 1960). The
Kalman filter (Grewal & Andrews 1993; Maybeck 1979) ad-
dresses the general problem of trying to estimate the state of
the agent. Nearly all algorithms for spatial reasoning make
use of this approach.

Figure 1: Graphical representation of POMDPs.

The Kalman filter is a recursive estimator. This means
that only the estimated state from the previous time step, ac-
tion and the current measurement are needed to compute the
estimate for the current state. In contrast to batch estimation
techniques, no history of observations and/or estimates is re-
quired. A belief state is represented by Kalman filter with a
mean, the most probable state estimation and a covariance,
the state estimation error.



The graphical representation of POMDPs is given in Fig.
1. The Kalman filter relates the current state, st, to previ-
ous state, st−1, and action at−1, disturbed by actuator noise
using a state transition equation. Likewise, the observation
ot is a function of the current state and disturbed by sensor
noise. Both the actuator and the sensor suite of real world
agents are subject to some noise. Kalman assumes that these
are Gaussian as given in equations 4 and 5. In practice, the
process noise (v) covariance, Q, and measurement noise (n)
covariance, R, matrices might change with each time step or
measurement, however in this research we assume that they
are constant.

p(v) ∼ N(0, Q) (4)

p(n) ∼ N(0, R) (5)

In this research, we have linearized the motion model.
The general linearized motion model equation is given in
Eq. 6.

st = Ast−1 + Bat−1 + vt−1 (6)

Likewise, we have also linearized the sensor model. The
general linearized sensor model equation is given in Eq. 7.

ot = Hst + nt (7)

The matrix A in Eq. 6 relates the state at the previous time
step to the state at the current step, in the absence of either
a driving function or process noise. Note that in practice A
might change with each time step, but here we assume it is
constant. The matrix B relates the optional control input to
the state s. The matrix H in Eq. 7 relates the state to the
measurement o. In practice H might change with each time
step or measurement, but in this research we assume that it
is also constant.

To compute the minimum mean square error estimate of
the state and covariance, the following equations are used.
The estimate of the state variables,

s−t|t−1 = Ast−1 + Bat−1 (8)

Where the subscript (t|t−1) denotes that the value at time
step t is predicted using the value at time t-1. The estimate
of the sensor reading,

ot|t−1 = Hst|t−1 (9)

The covariance matrix for the state P,

Pt|t−1 = APt−1 AT + Q (10)

Kalman filter calculates parameters of a Gaussian distri-
bution, the mean representing the most probable state and
the covariance representing the uncertainty. In our study, re-
cursively calculated Gaussian distribution represents a be-
lief state. At each time step, the state and covariance is
calculated recursively. This feature matches the belief state
defined by Astrom (Astrom 1965), as a sufficient statistic
representing the whole history. The Kalman filter divides
these calculations into two groups: time update equations

and measurement update equations. The time update equa-
tions are responsible for projecting forward (in time) the cur-
rent state and error covariance estimates to obtain the a priori
estimates for the next time step. The measurement update
equations are responsible for the feedback, i.e. for incorpo-
rating a new measurement into the a priori estimate to obtain
an improved a posteriori estimate. The final estimation al-
gorithm resembles that of a predictor-corrector algorithm.

The specific equations of time update functions are given
in Eqs. 8 - 10, and the specific equations of measurement
update functions are as follows:

Kt = P−
t HT (HP−

t HT + R)−1 (11)

st = s−t + Kt(ot −Hs−t ) (12)

Pt = (I −KtH)P−
t (13)

The superscript - at the Eqs. 11 - 13 denotes that the value
calculated at the prediction phase will be updated in the cor-
rection phase. Kt, the Kalman gain, determines the degree
of estimate correction. It serves to correctly propagate or
magnify only the relevant component of the measurement
information. Detail of the derivation of Kalman gain can be
found in (Maybeck 1979) .

After each time and measurement update pair, the process
is repeated with the previous a posteriori estimates used to
project or predict the new a priori estimates. This recursive
nature is one of the very appealing features of the Kalman
filter; making it very suitable for POMDP problems which
has to keep history. Moreover, it keeps the history implicitly
by summarizing all previous states in the current state esti-
mate and its covariance. This is obviously superior to some
approaches that keep time window over past history.

Value Function
A policy is simply a mapping from beliefs to actions. Let us
demonstrate this with an example. Imagine a clinic where a
patient applies with symptoms of sneezing and fatigue. Dr.
John has to diagnose and suspects that the patient suffers
from either flu or allergy. For this POMDP problem we have
two states: having flu or having allergy. In order to make the
right decision, Dr. John may require tests. After each test, he
may require additional tests or may write a prescription. The
decision tree of Dr. John is given in Fig. 2 where each el-
lipse represents an action that is valid for a belief range over
having flu given in parenthesis. The top ellipse represents
the case when Dr. John’s belief that the patient’s sickness is
flu is between 0.4 and 0.6. For this belief state, Dr. John’s
decision is to require additional tests.

Figure 2: Diagnostic decision tree.

If a policy, π, represented by a decision tree, collects max-
imum reward in the long term, it is called the optimum pol-
icy, π∗. Each node in the decision tree has a value rep-
resenting the benefit of choosing the action for that belief



range. The benefit calculated by the value function for dis-
crete POMDPs given in Eq. 14 and Eq. 15.

V π∗
t (b) = max

a
Qπ

t (b, a) (14)

Where Qπ
t (b, a) is the value of performing action a at a

belief state b at time step t. The calculation of this value is
given in Eq. 15.

Qπ
t (b, a) = Eπ

{ ∞∑
k=0

γkrt+k+1|bt = b, at = a

}
(15)

where n is the planning horizon, γ is the discount factor,
0 ≤ γ ≤ 1.

Proposed Approach
In this study, we aim to use POMDP as a model of a real
environment in which an agent exists. We further assume
that POMDP parameters are not known and that these pa-
rameters are continuous. These two assumptions make the
problem even harder and such POMDPs cannot be solved
exactly.

We use a Kalman filter to calculate Gaussian-based
POMDP belief states, under the assumption of A, H, Q and R
are time-invariant. This filter returns the best state estimate
and its covariance, a measure of uncertainty around the best
estimate. The uncertainty gradually converges depending
on the measurement, process noise and initial uncertainty
value. This feature eliminates the unvisited uncertainty val-
ues from value calculation. The Gaussian-based belief state
calculated by the Kalman filter and the action which is cho-
sen according the Boltzmann Softmax strategy (Sutton &
Barto 1998), is fed to the temporal-difference neural net-
work (TDNN) (Waibel, Sawai, & K. 1989) to calculate the
Qt(b, a) for each logically grouped action for the current be-
lief state. By the end of the tuning phase, at each decision
step, TDNN’s output which is the Qt(b, a) is used to choose
the best action which is the one with the maximum Q-value.

Belief State Representation
Assume a one dimensional maze as shown in Fig. 3. For
a discrete POMDP, initially the agent is in either one of the
four cells, and the agent’s belief can be represented as a vec-
tor given in Eq. 16.

b = [ 0.25 0.25 0.25 0.25 ] (16)

Figure 3: One dimensional maze.

In the continuous state case it is impossible to represent
each belief as a vector, since there are infinitely many states.
So we have assumed the belief as a Gaussian probability dis-
tribution where the mean is the most probable current state
and the covariance is the state estimation error or uncer-
tainty. Belief formulation at step t is given in Eq. 17, where
st is the most probable current state and Pt is the covariance.

Figure 4: One dimensional maze belief state space represen-
tations: (a) discrete case (b) continuous case with parametric
distribution.

bt(s) = N(st, Pt) (17)

In the discrete case, the belief state space dimension is
one less than the number of states as shown in Fig. 4(a).
It is normally expected that for the continuous case since
the number of states is infinite, the dimension of the belief
state space is also infinite. Using a parametric distribution,
i.e. Gaussian, for the belief state representation of the one
dimensional maze reduces the infinite dimensions to two di-
mensions as shown in Fig. 4(b). In our experiments, the
initial belief point covariance or uncertainty is P0 = Pmax.
At the next decision steps Kalman filter decreases the uncer-
tainty level until Pconverge. Although Pconverge is always
greater than 0 when an observation noise exists, the case
where P equal 0 is given in the figure since we calculate
the reward function from the definition for the MDP case as
explained in subsequent sections.

The Reward Value Calculation
The reward for POMDP problems is always defined for the
MDP case. For a MDP, whether discrete or continuous, the
reward of taking action a for state s is constant. In the one
dimensional maze POMDP problem illustrated in Fig. 3,
there exists four discrete states and the goal state is marked
with a circle. The reward definition for this problem is +1
for being at the goal state and 0 elsewhere for each possible
action. The reward function can be represented by a four di-
mensional vector [0 0 0 1]. To calculate the reward at belief
state [0.25 0.25 0.25 0.25], the vector product of the belief
state vector and the reward vector for MDP case is taken
which is 0.25× 0 + 0.25× 0 + 0.25× 0 + 0.25× 1 = 0.25.

The formal definition of reward r(b) for a belief state b is
given in Eq. 18, where n is the number of states.

r(b) =
n−1∑
k=0

bk(s)rk(s, a) (18)

To calculate the reward for the belief state N(s, P), we
compute an infinite sum of the product of the MDP reward
by its probability as shown in Fig 5. Since the reward in
MDP case is constant and the state probabilities are rep-
resented as Gaussian, this infinite sum is equivalent to the
integral in Eq. 19, which is equivalent to cumulative dis-
tribution function (cdf) of Gaussian across the range where
reward is non-zero.

lim
Δs→0

s=∞∑
s=−∞

b(s)ra(s)Δs =
∫
s

b(s)ra(s)ds (19)

In our study, the reward is calculated at the completion of
the action chosen according to Boltzmann Softmax strategy



Figure 5: The continuous case reward value calculation at a
belief state.

using Eq. 19 which is the cdf of Gaussian, representing cur-
rent belief state, across the range where reward is non-zero.
The reward is used in the tuning phase of the TDNN at the
decision layer.

Main Architecture
Our architecture has two layers as shown in Fig. 6.

Figure 6: Two layered KBTDNN architecture.

The TDNN at the first layer, shown in Fig. 7 is organized
as a multilayer perceptron (MLP). The MLP is a generic
nonlinear function approximator for q-values.

Figure 7: TDNN layer.

The TDNN architecture has one hidden layer with three
inputs and one output nodes. The number of nodes in the
hidden layer varies depending on the problem. Each node
in the hidden layer uses hyperbolic tangent function given
in Eq. 20 as the activation function and identity activation
function for the output node.

f(x) = tanh(x) =
ex − e−x

ex + e−x
(20)

During the learning phase, the TDNN itself is used to de-
cide on actions. At each time step, the neural network cal-
culates q-values for each action given the current belief state
calculated by the Kalman filter. The q-values are used in
the action selection mechanism using the Boltzmann Soft-
max strategy, where probability of choosing an action a for
a belief b is given in Eq. 21, where τ is a positive para-
meter called temperature. When τ is high, all actions have
almost the same probability of being chosen. When τ → 0,
the Boltzmann Softmax exploration more likely chooses the
action a that has a high Q-value.

p(b, a) =
e

Q(b,a)
τ∑

∀a′
e

Q(b,a′)
τ

(21)

The training procedure of the TDNN is as follows : The
current belief state and the action from the previous step is
fed as input vector vt to the TDNN. For each input vector vt

a corresponding q-value which is the TDNN output is calcu-
lated. At each time step, the temporal-difference algorithm
is applied to update the network’s weights. The weight up-
date rule is given in Eqs. 22, 23 and 24, where α is the
learning rate, W is the weight of a link, aj is the activation
of a hidden unit, Ik is an input.

Δi = r + Qt+1(b′, a′)−Qt(b, a) (22)

Wj,i ←Wj,i + α× aj ×Δi (23)

Wk,j ←Wk,j + α× Ik × tanh′(inj)
∑

i

Wj,iΔi (24)

The reward, r, in Eq. 22 is calculated using the technique
in section . The second layer is a Kalman filter (Grewal &
Andrews 1993; Maybeck 1979), which addresses the gen-
eral problem of trying to estimate the state of the agent. It is
governed by stochastic equations Eq. 6 and Eq. 7. At each
decision step, after the agent decides and executes the ac-
tion according to Boltzmann Softmax strategy in the tunning
phase, Kalman filter computes the minimum mean square
error estimate of the current state. The estimate is the cur-
rent belief state which is represented by most probable state
s and the covariance or state estimation error P. The output
of the Kalman filter which is the current belief state is again
fed to the TDNN layer.

Experimental Results
The algorithm is run on some well known POMDP prob-
lems, the tiger problem and the one dimensional maze prob-
lem. The learning rate for all experiments is 0.1.

The Tiger Problem
The tiger problem has been converted to continuous obser-
vation over discrete states case by Hoey and Poupart (Hoey
& Poupart 2005). Although our algorithm works for con-
tinuous observation over continuous states, we modeled the
tiger problem as defined in (Hoey & Poupart 2005). We as-
sumed that B is equal to the zero matrix, A and H are equal
to the identity matrix and only the observation noise exists,
N(0, 0.625), i.e., there is no actuator noise. The penalty of
opening the door with the tiger is -100, the reward of open-
ing the door without the tiger is +10 and the cost of listening
is -1. s0 is 0 and P0 is 0.625. TDNN has five nodes in the
hidden layer for this problem. The resulting policy decides
on a door after listening for three steps where the state esti-
mation error reduces to 0.1563. The decision for selecting
the door without the tiger depends on the observation. Fig.
8 shows a sample test run, where the tiger is located at the
right door. The agent listens for three steps until it estimates
the tiger’s most probable location greater than 1.0, then it
opens the door located at -1.0 which is the left door.

Figure 8: Representative belief states for the tiger problem.

The One Dimensional Maze Problem
In this problem, the goal is placed at the right end. The
agent, can move EAST and WEST. The agent has a sin-
gle range finder. We assumed A, B and H are equal to the
identity matrix and the sensor and the actuator noises are
N(0, 0.625) and N(0, 0.625) respectively. Initially E(s0) is
0.5, and P0 is 1.0. TDNN assumes three nodes in the hidden
layer for this problem. Fig. 9 shows a sample test run after



the policy has converged. The agent always moves right till
the goal location. Note that as the agent moves right it is
more certain of its state.

Figure 9: Representative belief points for the one dimen-
sional maze problem.

Collected Rewards
For each experiment the approximate policy of KBTDNN
and the MDP case optimal policy is compared in terms of
expected reward. The expect reward for approximate policy
of KBTDNN is the average of 150 sample runs. The results
are given in Table 1. For the tiger problem, the MDP case
optimal policy where no noise exists, the agent listens only
once and then opens the right door. Likewise, for the one
dimensional maze problem, for the optimal policy MDP case
the agent the agent always collects the maximum reward, 1.

. Tiger 1D Maze
Optimal Policy (MDP) 9 1

Approximate Policy 5.06 ± 0.34 0.733 ± 0.06

Table 1: Comparison of collected rewards with MDP case.

Conclusion
The KBTDNN algorithm introduced in this study deals with
continuous Gaussian-based POMDPs, and as a new ap-
proach suggests making use of Kalman filter for state es-
timation and temporal-difference neural network at the de-
cision layer. The Kalman filter approach assumes that the
motion and sensor models are given and their noise can be
modeled as Gaussian. It enables easy pruning of unreach-
able belief points.

Nearly all previous studies assumed discrete POMDPs.
As a comparative work, Porta, Spaan and Vlassis (Porta,
Spaan, & Vlassis 2005) suggested a method for Gaussian-
based POMDPs with continuous state space and discrete
observation space. Alternatively, Hoey and Poupart (Hoey
& Poupart 2005) suggested a method for Gaussian-based
POMDPs with discrete state space and continuous observa-
tion space.

Both assume that the world model is given, and use PBVI
technique (Pineau, Gordon, & Thrun 2003) for Gaussian-
based POMDPs. They calculated value iteration on a pre-
collected set of beliefs, while the Bellman backup operator
is analytically computed given the particular value function
representation. Depending on the POMDP problem, they
have to keep a large number of belief points and correspond-
ing α-vectors, in order to calculate the next horizon value
function, rather KBTDNN keeps a small number of weights
which composes the TDNN.

Moreover, KBTDNN handles continuous state and obser-
vation space. For generating the optimal policy, KBTDNN
does not keep α-vectors and has no belief point set ex-
pansion and pruning phase for α-vectors, rather KBTDNN

keeps only the weights of TDNN. In summary, KBTDNN
is time and space efficient, as opposed to other point based
methods.

In real world applications, motion and sensor noises are
rarely constant. For example, when an agent navigates on
a carpet, it is normally expected to have a different noise
characteristic compared to navigation on a marble floor. Our
study assumed that motion and sensor noises are assumed to
be constant. As a future work, we plan to adapt the method
for dynamically changing noise characteristics.
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