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Abstract

We examine the problem of Object Discovery, the au-
tonomous acquisition of object models, using a combi-
nation of shape, appearance and motion. We propose a
novel multi-stage technique for detecting rigidly mov-
ing objects and modeling their appearance for recogni-
tion. First, a stereo camera is used to acquire a sequence
of images and depth maps of a given scene. Then the
scene is oversegmented using normalized cuts based on
a combination of shape and appearance. SIFT image
features are matched between sequential pairs of im-
ages to identify groups of moving features. The 3D
movement of these features is used to determine which
regions in the segmentation of the scene correspond to
objects, grouping oversegmented regions as necessary.
Additional features are extracted from these regions and
combined with the rigidly moving image features to cre-
ate snapshots of the object’s appearance. Over time,
these snapshots are combined to produce models. We
show sample outputs for each each stage of our ap-
proach and demonstrate the effectiveness of our object
models for recognition.

Introduction
With the growing use of robots in our society, demand is
increasing for them to be adaptive and to function intelli-
gently in new situations. Consider the problem of training
a camera-equipped robot to fetch requested objects. This
is a generic task required for many applications like assis-
tive care or warehouse management, both areas where robots
are seeing increased interest. Teaching robots to identify all
unknown objects is impractical so an object-fetching robot
needs to constantly adapt to its environment and learn about
objects. The robot needs to use its camera to discover new
objects that enter its environment and to model their physical
properties for re-identification.

The goal of object discovery is to find a segmentation in
observational data such that all data in a group corresponds
to a single object, and then use that data to construct a model
of the object’s physical properties (Sanders, Nelson, & Suk-
thankar 2002). Individuation is the process of segmenting
the input into regions containing objects and regions con-
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taining background. Over time these individuated input re-
gions can be used to create object models that encode the
physical properties of the object shown in those regions. Ob-
ject discovery should not be confused with object recogni-
tion, where the goal is to match a model with a set of in-
put data, such that model-to-data correspondences are es-
tablished and the object’s scene position is known (Fisher
1989). Object recognition can be performed using models
acquired through object discovery but it is not a required
component.

Object discovery is complicated by the lack of a clear
definition of what constitutes an object. We believe that
rather than trying to find an all encompassing definition of
an “object” that would be difficult or impossible to apply,
we should use a definition that identifies objects useful for
a robot, given its task. From the perspective of the object-
fetching robot, useful objects would be structures that can be
picked up and carried. This definition differentiates between
objects and background, identifies useful, portable objects
and is based on information that the robot can acquire with
its camera. To this end, we use two properties as the basis
of our object definition: separability and coherence. Sep-
arable means that the object is physically dissociated from
its surroundings and coherent means that the object does not
divide into multiple parts if it is moved.

Previous Work
In object discovery research, object motion is most com-
monly used as the basis for individuation since without ob-
ject motion it is impossible to determine whether an object is
separable from the background. Humans are able to predict
that an object will be separable based on previous experience
but unless the object moves, they cannot be certain.

Object motion can be determined through optical flow in
a video sequence. Sparse optical flow, which uses feature
matching between frames to identify motion, was used as
the basis for individuation in work by (Sivic, Schaffalitzky,
& Zisserman 2004), where the goal was to group image fea-
tures belonging to objects in a movie. Their offline approach
utilized the high frame rate and professionally focused clear
images of a Hollywood movie to track image features over
50-100 frames, perform structure from motion on these fea-
tures to find their 3D position in each frame. Coherently
moving features were then grouped to create a model of



the objects appearance. A limitation of sparse optical flow
based techniques like this is that they only model views of
the object that are persistent over multiple frames. Also,
rather than segmenting the input data into objects and back-
ground, this approach derives image features from the data
and groups them, so the original views of the objects are not
retrieved.

Motion-based individuation from a video sequence can be
achieved by background subtraction such as with the quasi-
static object model (Sanders, Nelson, & Sukthankar 2002).
Quasi-static objects are ones observed both in motion and as
stationary in a video sequence. The authors employ a multi-
camera, pixel-level approach that reasons about changes in
pixel colour as a series of events caused by the change in po-
sition of objects. A high frame rate is not required since mo-
tion and separability are inferred through the appearance and
disappearance of static objects. This approach requires that
the cameras are static and multiple cameras may be required
to explain the series of object movement events. Also, they
have a “clean world” requirement where all detected objects
must first enter and then leave the scene during the sequence.

(Modayil & Kuipers 2004) have examined the difficult
problem of performing motion-based object discovery us-
ing only sparse depth data provided by a planar laser range
finder on a mobile robot. They infer the motion of objects
through an occupancy grid, a map of the empty regions of an
environment, providing a quantized shape-based description
of the static regions of the background. Any shape detected
in previously empty regions is a new object since it must be
able to move in order to have arrived there. This approach
also requires that objects be quasi-static, since they must en-
ter an empty region of the occupancy grid and then remain
stationary while being circumnavigated and examined by the
robot. Such purely shape-based approaches are hampered
by the lack of appearance data about objects and so cannot
differentiate between identically shaped objects.

Without the use of object motion, object discovery is
much more difficult since there is no way of determining
separability. Static object segmentation approaches are usu-
ally based on identifying homogeneity in the input space,
such as consistent color or texture in an image (Shi & Malik
2000) or coherent structures in 3D depth space (Yu, Ferencz,
& Malik 2001). Such segmentation approaches can, at best,
only segment the observational data across boundaries be-
tween objects and background; they cannot reliably identify
which regions contain separable objects. In the end, object
motion stands out as the most useful basis for object discov-
ery.

Object Discovery using Motion, Appearance
and Shape

For our approach to object discovery, we want a system
that can segment multiple objects simultaneously and model
their appearance. To work on a robot the system needs to
be tolerant of camera motion and not require any human
intervention for camera targeting or focusing. Since even-
tually we are looking towards a real-time system, we want
an incremental approach that can model objects after only a

Figure 1: This flowchart shows the steps we follow when
performing object discovery. There are two components: a
primary one based on motion and an optional secondary one
that discovers static, previously modeled objects.

small number of frames (2-5) and can continue to improve
the models as long as the objects are visible. We want a sys-
tem that can extract entire views of an object, not just image
features, and that can capture information about an object’s
appearance which might only be visible in a single frame.
Finally, we want an approach that is able to segment objects
while they are in motion and once they are quasi-static.

Object motion is used as the primary mechanism for in-
dividuation, using a sparse optical flow approach based on
image features. We use a stereo camera as our input device
since it provides both shape and appearance data. This data
can be used both to perform static segmentation based on
appearance and shape and to identify the 3D position of im-
age features. Our approach looks for rigid objects since they
are known to be coherent and because rigidity can be used
to differentiate between multiple moving objects. Since we
wanted to extract entire views of the object, we also employ
visual and spatial cues for finding the segmentation between
objects and the background in the image plane. Discontinu-
ities in the color and texture of an image can signal the edge
of an object, as can spatial discontinuities in a depth map.
Segmentation of the static scene also serves as the basis for
segmenting quasi-static objects since we cannot use object
motion.

There are two parts to our approach: an initial moving ob-
ject discovery component and an optional static object dis-
covery component. Figure 1 is a flow chart showing the
stages of each component. The first component identifies,
segments, tracks and models objects while they are in mo-
tion using sparse, rigid optical flow and scene segmentation.



The second part continues this process after the object’s
motion has ceased by performing scene segmentation and
matching image features in the segmented regions against
known object models.

Input

At each time step t there are two required inputs, an image It

and the corresponding depth map Dt. Information on the ap-
proximate camera position and orientation is also necessary
if the camera is moving. The depth map D is acquired us-
ing correspondence stereo on the two images from the stereo
camera. Figure 2 shows the image and corresponding depth
map from a video sequence that will be used to demonstrate
each stage of our approach. The depth map shown is of usual
quality for our stereo camera.

Normalized Cut Static Individuation

Static individuation can rarely achieve a one-to-one relation-
ship between segmented image regions and objects. Regions
either contain pixels from multiple objects (undersegmenta-
tion) or the pixels corresponding to an object are split over
multiple regions (oversegmentation). However, techniques
can be made biased towards oversegmentation rather than
undersegmentation, creating a many-to-one relationship be-
tween regions and objects. The task of recombining an over-
segmented image is simpler than splitting up regions in an
undersegmented image, since the first only requires finding
which regions correspond to the same object, while the sec-
ond requires both determining which regions are underseg-
mented and then resegmenting those regions.

Given It and Dt , we want to find a static oversegmen-
tation of the scene. Many appearance-based (D. Walther &
Perona 2005) (Shi & Malik 2000) and depth or shape-based
(Yu, Ferencz, & Malik 2001) (Modayil & Kuipers 2004)
static object individuation approaches rely on clustering and
segmentation to group data points that correspond to objects.
Few approaches, however, use a fusion of these properties.
The combination of both appearance and shape can provide
cues about object boundaries in situations where they fail
individually.

For our static segmentation we use normalized cuts based
on pixel-level intensity and depth. Normalized cuts is a tech-
nique for segmenting a graph based on a dissimilarity func-
tion between nodes (Shi & Malik 2000). Image segmenta-
tion can be performed by treating the image as a graph where
the nodes in the graph are the pixels with an edge between
every pairs of node based on pixel dissimilarity. For the nor-
malized cuts, we employ a dissimilarity function based on
both the input image It and depth map Dt. Fast algorithms
exist for approximating the minimal energy normalized cuts
of a graph for a fixed number of segments N . The edge
weight wij is the likelihood that the two pixels i and j cor-
respond to the same object. In our system, wij is based on
the difference between pixels i and j in intensity, depth and
position in the 2D image plane. The function used to find
wij in the our system is based on one presented in (Shi &
Malik 2000), modified to include pixel depth information,

(a) Input Image

(b) Depth Map

Figure 2: (a) is an example of an image from a video se-
quence of someone pouring milk into a cup. The video was
acquired using a stereo camera. (b) is an example of the cor-
responding depth map. Regions of the scene with little or no
texture provide poor responses and were removing using a
texture validity constraint. These regions are shown as white
in this image.



Figure 3: This is the resulting segmentation of the image and
depth map in Figure 2 using normalized cuts based on both
the pixel intensity and depth. Each region is represented by
a constant grey level in this image.

wij = e

−‖I(i)−I(j)‖
2
2

δ2
I ∗ e

−‖D(i)−D(j)‖
2
2

δ2
D ∗

∗

⎧⎨
⎩ e

−‖P(i)−P(j)‖
2
2

δ2
P if ‖ Pi − Pj ‖2< r
0 otherwise

(1)

where for pixel i, I(i) is the intensity, D(i) is the depth and
Pi is the (x, y) coordinates in the image. The edge weight
of any two pixels that are r apart is 0, so there is no penalty
for cutting between them. δI , δS and δP are control param-
eters for each property and these values, in conjunction with
N and r, were adjusted to prefer oversegmentation to under-
segmentation. These values were set by hand but were not
changed during our experiments.

The output of the static individuation stage is a segmenta-
tion of input image It which gives a mapping from each
pixel to an object region. Object regions are segmented
groups of pixels expected to correspond to the same object.
Figure 3 contains the resulting segmentation from the image
and depth map in Figure 2.

Rigid Body Motion Individuation through Sparse
Optical Flow
We employ shift invariant features (SIFTs) for both finding
rigid object motion between frames and for modeling the
appearance of objects. A SIFT feature is a descriptor of a
region of an image that is highly recognizable from different
viewpoints (Lowe 2004). Features found on an object can be
matched against features from another image to determine
the presence and location of that object in the other image.
So therefore, SIFT features matched between two images
are likely to be centered on the same point on the objects in
each image. This means that the 3D position of the center

point of a SIFT feature should remain at approximately the
same point on an object in any frame where that feature is
found.

By matching SIFT features between sequential frames,
we can can find sparse optical flow, an indicator of motion
in the scene. However, to separate multiple moving objects,
we need to be able to segment groups of moving SIFTs from
different objects and for that we use rigidity (Fitzgibbon &
Zisserman 2000). The goal of this step is to find groups of
SIFT features that have moved rigidly in 3D between the
current image It and the previous one It−1. A group of
features that move rigidly between the current and previous
frame is a strong indicator of the location of a rigid moving
object in the image.

We first extract the SIFT features in images It and It−1

and find the approximate 3D position of the center of each
SIFT feature. This is done by taking the subpixel location of
the center of each SIFT feature and finding the 3D location
of that point using Dt or Dt−1.

Next, we determine which features belong to objects that
have moved between the previous and current frames. We
match features between these frames based on the Euclidean
distance between their histogram descriptors (Lowe 2004)
and then find all the matching pairs where the change in
3D position is greater than a constant δmd between t and
t − 1. These features could correspond to a moving ob-
ject in the environment or motion of the background from
camera movement. Then we divide these moving features
into groups of features that follow a common rigid trans-
form. Using the property that the distance between a pair
of rigidly moving points is constant before and after a rigid
transform. Using RANSAC (Fischler & Bolles 1987), we
identify groups where the distance between each pair of fea-
tures in a group is within δp at time t and t − 1. To remove
poor responses, we ignore all groups where the number of
rigidly moving features is < 5.

If the camera is moving, one of the feature groups should
correspond to the rigid movement of the background. Since
we know the approximate position and orientation of the
camera at time t and t − 1, we can determine the expected
rigid transformation of the static background features. The
background features are assumed to belong to the rigidly
moving feature group with the closest transform to the one
expected given the camera movement. If the camera is static,
the background features will of course be those that did not
move. The rigid feature group corresponding to the back-
ground is used to perform error checking in the next step.
Figure 4 shows the rigidly moving feature groups found in
the image from Figure 2.

Moving Object Region Voting
At this point, we have a segmented image and groups of
rigidly moving features that correspond to moving objects.
The segmentation component of the system favours overseg-
mentation to undersegmentation, so the oversegmented re-
gions must be recombined to determine which pixels corre-
spond to moving objects. The rigidly moving feature groups
found in the previous step are spare and often only contain
a small number of features. However, since they were ob-



Figure 4: This image shows the position of two groups of
rigidly moving image features from Figure 2. Rigidly mov-
ing features on the cup to the left are indicated with Os while
rigidly moving features on the milk box to the right are indi-
cated with Xs. Since the camera was static, there is no group
of moving features associated with the background.

served moving rigidly, we can be confident that they all be-
long to the same moving object.

Object region voting compensates for the oversegmenta-
tion of the static segmentation step using rigid object mo-
tion. We adopted this simple technique and found it effec-
tive in practice. The groups of rigidly moving features found
through rigid body motion are used to determine which re-
gions belong to the same object and should be aggregated
to compensate for the oversegmentation. With region vot-
ing, rigidly moving feature groups vote on whether a region
contains part of the object that corresponds to that group.
The number of votes is the number of features from a group
within that region. We also allow the background feature
group to vote on whether a region corresponds to the back-
ground as an error detection and correction mechanism.

For each region in our segmented image, we count the
number of features from each rigidly moving feature group
with a 2D projection into that region. A region is associated
with a rigid feature group if that group has at least n features
in the region and k times more features within that region
than any other group.

The n feature threshold prevents problems with outlier
features, features belonging to an object that, when projected
onto the 2D image plane, are not in a region corresponding
to that object. This sometimes happens around around the
edges of objects, where features are incorrectly projected
into neighboring regions because of inaccurate segmenta-
tion. Since the number of such features is usually small,
the n threshold prevents that region from being associated
with the wrong group.

The k threshold deals with situations where there is under-
segmentation in the static individuation since it is difficult

Figure 5: This figure shows the object snapshots of the cup
and the milk box acquired through region voting.

to set the static individuation parameters such there will be
no undersegmentation. If the N parameter is set too high,
the regions will be too small to have more than n features
in them. If two moving rigid objects are in the same re-
gion, there will be rigid moving features from two groups
in that region. The k times more features threshold prevents
that region from being associated with any rigidly moving
group. If the undersegmentation region contains both the
background and an object, this can still be detected since we
allow the rigid features belonging to the background to vote
in each region to associate it with the background.

After the voting, all regions corresponding to a rigidly
moving feature group are aggregated to produce an im-
proved segmentation of the scene. We refer to these seg-
mented image regions as object snapshots. Figure 5 shows
an example of object snapshots found through region voting.

Moving Object Modeling
Region voting provides a segmentation of all objects moving
rigidly between time t− 1 and t. They need to be associated
with objects individuated before time t − 1 and modeled so
they can be recognized again.

First, we find all the SIFT features within each object
snapshot since there are usually many more features within
a snapshot than in the rigidly moving feature group used for
region voting. These new features include novel features not
found in It−1 and other features which failed to match or
move rigidly.

The model of each object discovered is a set of all dif-
ferent image features that were within any snapshots of that
object. Figure 6 shows all the image features found on the
two objects from Figure 2 after region voting. Features in
the model are divided into two groups based on our con-
fidence that they belong to the object. Core features are
those that were discovered through rigid body motion indi-
viduation. We have very high confidence that they belong



Figure 6: This image shows the position of every feature
within the regions corresponding to the rigidly moving fea-
tures in Figure 4, both core features and adjunct features.
Features belonging to cup on the left are indicated with Os
while those belonging to the milk box on the right are indi-
cated with Xs.

to the object because they were observed moving rigidly
with each other. Adjunct features are the features discov-
ered through segmentation and region voting using the core
features. Within the object snapshot there are usually many
features that were not in the rigid feature group and they are
the adjunct features. Since undersegmentation is a possi-
bility in our approach, we cannot be as confident that these
features belong to the object but they are valuable since they
are usually much more numerous than the core features and
may correspond to novel views of the object’s surface only
observed for one frame.

To determine whether an object in a snapshot has been
modeled previously, we perform feature matching between
the features in the snapshot and those in all existing object
models (using both core and adjunct features in both the
snapshot and model). If there are more than δm matches
between the snapshot and multiple models, then the classifi-
cation is uncertain and the snapshot is discarded. If none of
the models have δm matches, then the snapshot is classified
as unknown and a new model is created, containing all the
core and adjunct features. If there are more than δm matches
between the snapshot and only one model then the features
are classified as belonging to that model and any features
that do not match an existing feature in the model are added
to the set. This way new features are added without the num-
ber of features in a model growing uncontrollably over time.

Secondary Static Object Discovery System
Motion is a useful indicator of the separability and coher-
ence of an object and can be a valuable component of any
object discovery system. However, in many environments,
objects move very rarely and only being able to model an

object when it is in motion is a serious limitation. To deal
with this, our system continues to model objects after their
motion has ceased. As the camera position changes, novel
views of an object can be detected and the data incorporated
into the model.

Static Object Region Voting
Static object region voting is a technique for adding ad-
ditional adjunct features to an existing object model, after
the motion of that object has ceased but while the camera
is moving. This happens after the motion-based modeling
component because motion-based object discovery is usu-
ally more reliable, so we acquire as much data through it as
possible first.

For each region in the segmented image that was not as-
sociated with a rigid feature group, this component will at-
tempt to associate it with an existing object model by re-
gion voting. As before, the voting is based on the number
of features with a 2D image position within a given region.
However, now features within each region in the segmented
image are matched against the core features of each mod-
eled object. If there are n matching features from a model
and k times more features matching this model than there
are matching any other model, then new features from that
region are added to the model.

It is important for static individuation that only core fea-
tures from the model are matched against the features in the
object region because of potential undersegmentation. If the
image were undersegmented and static object discovery per-
formed, then it is possible for features from the background
to be added to an object model as adjunct features. Then, if
background adjunct features from model were used for static
object region voting in a future frame, background regions
might match against the model. By restricting the matching
to be between the background features and the model core
features, we can decrease the likelihood of this occurring.
This may result in some views of the object not matching
against the model.

Experiments
The results shown in the previous sections were acquired us-
ing a DigiclopsTMstereo camera observing a scene of a per-
son pouring milk into a cup. The video sequence contained
20 frames taken at 3 Hz and the camera was static. The fi-
nal models of the milk box and the cup contained 336 and
180 features each. To demonstrate the effectiveness of these
models for object recognition, we used them to determine
the presence and position of the objects in 20 other images
each. The objects were placed in different locations with
varying light conditions and surrounded by clutter. The view
of the objects varied and included partial occlusions. Recog-
nition was done by matching SIFT features between the im-
ages and the models. A threshold of 15 correctly matched
features was needed for a successful recognition. We visu-
ally inspected the results to see if model features were cor-
rectly matched. We also performed recognition between the
model and images from the other object’s sequence to deter-
mine the rate of false positives. Here are the results:



(a) Cup Scene

(b) Milk Box Scene

Figure 7: (a) is an example of our cup model being used for
object recognition. There were 21 features matched between
the model and the image, their image positions shown with
black Xs. (b) is an example of our milk box model being
used for object recognition. There were 39 features matched
between the model and the image and shown with white Xs.
Note that the milk box is partially occluded but still recog-
nized

Results of Model Comparison
Model Images correctly matched
Cup 70%

Milk Box 85%
Model False positive matches
Cup 0%

Milk Box 0%

An example of two of the successful recognitions is
shown in Figure 7. The lower number of successful matches
for the cup is the result of two factors. Firstly, in the video
sequence, part of the cup’s surface was never visible to be
modeled, so some views of the cup couldn’t have matched
against model. Secondly, the texturing on the surface of the
cup is quite fine and many features are only discernable from
a short distance. Views of the cup from afar didn’t contain on
enough features for a successful match. The logo on the milk
box was particularly useful for recognition because it is large
and appears at multiple locations on the object’s surface. In
the example shown in Figure 7, it is clear that the logo is
the most easily recognized region. Recognition sometimes
failed because two sides of the milk box are almost com-
pletely untextured and it could not be recognized from those
views. For both objects, the SIFT features are very discrim-
inable and rarely ever matched against the wrong region in
the image, hence in the lack of false positives.

These results demonstrate that our approach can model
multiple moving objects from a small number of frames of
input. The models produced can successfully be used to rec-
ognize those objects again from a different view as long as
that view was visible during the video sequence.

Future Work
With an open ended problem like object discovery and a
powerful, descriptive data source like a stereo camera, there
is an abundance of future work open to us. The most obvi-
ous is relaxing the rigidity constraint on discovered objects
which was a result of needing a mechanism to divide the
moving features into groups. Discovery of articulated ob-
jects, where groups of rigid structures able to move in re-
lation to each other, is one extension we are examining. If
our current approach were applied to an articulated object,
each separate rigid component of the object would be dis-
covered but there is no mechanism for grouping them. The
shape data provided by a stereo camera is well suited to such
a task since it can identify that all these moving elements are
physically connected and therefore likely belong to a single
object.

Our current object model is designed for object recogni-
tion and based purely on object appearance. However, the
stereo camera could be used to determine the 3D structure
of the object in a snapshot and to include shape as well as
appearance in the object model. The difficulty with such an
approach is in registering the 3D data from a new snapshot
with the existing object model. One approach we have tried
is giving each feature in our model a 3D position relative
to the position of the features in the first snapshot that cre-
ated the model. Features from a new snapshot are matched



against features in the model. The features that matched are
used to register the position of the unmatched features. Such
an approach is complicated by the fact that even if SIFT fea-
tures match between frames, the center of feature on the sur-
face of the object can vary. This causes the simple registra-
tion techniques to fail and the resulting models of shape are
inaccurate.

Conclusion
We have described, implemented and demonstrated a tech-
nique that allows an autonomous robot to observe its envi-
ronment using a stereo camera and to produce models of
moving rigid objects it encounters. Our approach success-
fully uses a combination of appearance, shape, and rigid ob-
ject motion to discover and model multiple objects. The use
of stereo cameras in our work differentiates us from other
object discovery research and provides us with a combina-
tion of shape and appearance data that is particularly well
suited to this problem.
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