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Abstract

Color segmentation is a challenging yet integral subtask
of mobile robot systems that use visual sensors, espe-
cially since they typically have limited computational
and memory resources. We present an online approach
for a mobile robot to autonomously learn the colors in
its environment without any explicitly labeled training
data, thereby making it robust to re-colorings in the
environment. The robot plans its motion and extracts
structure from a color-coded environment to learn col-
ors autonomously and incrementally, with the knowl-
edge acquired at any stage of the learning process be-
ing used as a bootstrap mechanism to aid the robot in
planning its motion during subsequent stages. With our
novel representation, the robot is able to use the same
algorithm both within the constrained setting of our lab
and in much more uncontrolled settings such as indoor
corridors. The segmentation and localization accuracies
are comparable to that obtained by a time-consuming
offline training process. The algorithm is fully imple-
mented and tested on SONY Aibo robots.

Motivation

Integrated robotic systems need to sense the world they op-
erate in. One way to do that is through vision, a rich source
of information. A principal subtask of visual processing is
color segmentation: mapping each image pixel to a color
label. Though significant advances have been made in this
field (Comaniciu & Meer 2002; Sumengen, Manjunath, &
Kenney 2003), most of the algorithms are computationally
expensive and/or involve a time consuming off-line prepro-
cessing phase. In addition, segmentation is typically quite
sensitive to illumination variations: a change in illumination
causes a nonlinear shift in the mapping, which could neces-
sitate a repetition of the entire training phase.

This paper presents an efficient online algorithm for color
segmentation with limited computational resources. A key
defining feature of the algorithm is that there is no labeled
training data or apriori bias regarding the labels of points in
color space. This makes the algorithm suitable for use un-
der different lighting conditions and even changes of entire
colors (e.g. repainting all red objects as blue and vice versa).

Copyright © 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

The problem of color segmentation takes as input the
color-coded model of the world with a representation of the
size, shape, position and color labels of objects of interest.
A stream of input images are provided and the robot’s ini-
tial position (and its joint angles over time) are known. The
desired output is a Color Map that assigns a color label to
each point in the color space. But the process is constrained
to work within the limited memory and processing resources
of the robot and it should be able to cope with the rapid mo-
tion of the limited-field-of-view camera, with the associated
noise and image distortions.

We build on our previous work (Sridharan & Stone 2005),
where the robot learnt colors within the controlled lab setting
with solid colors and constant, uniform illumination condi-
tions, executing a motion sequence provided by a human ob-
server. Vision research on mobile robots is often conducted
in such settings, which makes algorithm development eas-
ier but typically makes assumptions that are not true of the
real world. Here we enable the robot to work outside the
controlled lab setting, which required algorithmic changes
to deal with the non-uniformity of the surroundings, such as
with textured surfaces. The robot is able to autonomously
plan its motion sequence for any given configuration of ob-
jects, based on environmental knowledge and heuristic con-
straints on its motion sequence.

This paper makes two main contributions. First, it
presents a novel hybrid generalization of our previous color
representation scheme such that the robot is able to learn
colors efficiently and effectively both in the controlled lab
setting and in uncontrolled indoor settings. Second, it en-
ables the robot to autonomously plan a motion sequence that
puts it in positions suitable to learn the desired colors. The
robot simultaneously learns colors and localizes, and incre-
mentally performs better at both these tasks.

Problem Description

In this section, we formally describe the problem, our pro-
posed hybrid color learning model, and the robot platform.

Color Representation

To be able to recognize objects and operate in a color-coded
world, a robot typically needs to recognize a certain discrete
number of colors (w € [0, N — 1]). A complete mapping



identifies a color label for each point in the color space:
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where C, Cy, Cj are the color channels (e.g. RGB, YCbCr),
with the corresponding values ranging from 0 — 255.

In our previous color learning approach (Sridharan &
Stone 2005), each color was modeled as a three-dimensional
(3D) Gaussian with mutually independent color channels
(no correlation among the values along the color channels).
Using empirical data and the statistical technique of boot-
strapping (Efron & Tibshirani 1993), we determined that this
closely approximates reality. In addition to simplifying cal-
culations, with the Gaussian model, the mean and variance
are the only statistics that need to be stored for each color.
This reduces the memory requirements and also makes the
learning process feasible to execute on the mobile robots
with constrained processing power.

For the 3D Gaussian model with independent channels,
the apriori probability density functions (color w € [0, N —
1]) are given by:
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where, ¢; € [C;, .. =0,C; . = 255] represents the value
at a pixel along a color channel C; while pc, and o¢, repre-
sent the corresponding means and standard deviations.

Assuming equal priors (no assumptions on specific colors
being confined to specific regions in the color space), each
color’s aposteriori probability is then given by:

max
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The Gaussian model for color distributions works perfectly
inside the lab, and it generalizes well with limited samples
when the color distributions are actually unimodal; it is able
to handle minor illumination changes. But in settings out-
side the lab, factors such as shadows and larger illumination
changes cause the color distributions to be multi-modal; the
robot is now unable to model colors properly using Gaus-
sians.

Color histograms provide an excellent alternative
when colors have multi-modal distributions in the color
space (Swain & Ballard 1991). Here, the possible color
values (0-255 along each channel) are discretized into a
specific number of bins that store the count of pixels that
map into that bin. The 3D histogram of a color can be
normalized (values in the bins sum to 1) to provide the
equivalent of the probability density function (Equation 2):

Hz’stw (bl, bg, b3)
SumHistVals

where by, by, bs represent the histogram bin indices cor-
responding to the color channel values c;, ca, c3, and
SumHistVals is the sum of the values in all the bins of
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the histogram for that color. The aposteriori probabilities
for each color are then given by Equation 3.

But histograms do not generalize well with limited train-
ing data, especially for samples not observed in the training
set, such as with minor illumination changes; constrained
computational and memory resources prevent the imple-
mentation of operations more sophisticated than smoothing.
Also, they require more storage, which would be wasteful
for colors that can be modeled as Gaussians. In this pa-
per, we propose to combine the two representations such that
they complement each other: colors for which a 3D Gaus-
sian is not a good fit are modeled using 3D histograms. The
decision is made online by the robot, for each color, based
on image pixel samples.

Samples for which a 3D Gaussian is a bad fit can still be
modeled analytically using other distributions (e.g. mixture
of Gaussians, Weibull) using methods such as Expectation-
Maximization (EM). But most of these models/methods do
not offer an efficient parameter estimation scheme that can
be implemented to work in real-time on mobile robots.
Hence, we use a hybrid representation with Gaussians and
histograms.

Experimental Platform

The SONY Aibo, ERS-7, is a four legged robot whose pri-
mary sensor is a CMOS camera located at the tip of its
nose, providing the robot with a limited view (56.9° (hor),
45.2° (ver)) of its environment. The images, captured in
the YCbCr format at 30H z with a resolution of 208 x 160
pixels, possess common defects such as noise and distortion.
The robot has 20 degrees-of-freedom (dof), three in each leg,
three in its head, and a total of five in its tail, mouth, and ears.
It has noisy touch sensors, IR sensors, and wireless LAN
for inter-robot communication. The legged (as opposed to
wheeled) locomotion results in jerky camera motion.

The RoboCup Legged League is a research initiative in
which teams of four robots play a competitive game of soc-
cer on an indoor field of size ~ 4m x 6m (see Figure 1).

Figure 1: An Image of the Aibo and the field.

Visual processing on the robot typically begins with an off-
board training phase that generates the (color) map from the



space of 128 x 128 x 128 possible pixel values! to one of the
9 different colors that appear in its environment (pink, yel-
low, blue, orange, red, dark blue, white, green, and black).
Almost all known approaches in this scenario (see related
work section) produce the color map by hand-labeling sev-
eral (= 20—30) images over a period of at least an hour. This
map is used to segment the images and construct connected
constant-colored regions out of the segmented images. The
regions are used to detect useful objects (e.g. markers and
the ball). The robot uses the markers to localize itself on
the field and coordinates with its team-mates to score goals
on the opponent. All processing, for vision, localization, lo-
comotion, and action-selection, is performed on board the
robots, using a 576MHz processor. Currently, games are
played under constant and reasonably uniform lighting con-
ditions but the goal of RoboCup is to create a team of hu-
manoid robots that can beat the human soccer champions by
the year 2050 on a real, outdoor soccer field (Kitano et al.
1998). This puts added emphasis on learning and adapting
the color map in a short period of time.

Algorithm

Algorithm 1 describes a method by which the robot au-
tonomously plans to learn the colors in its environment us-
ing the known positions of color-coded objects. Underlined
function names are described below.

Our previous algorithm (Sridharan & Stone 2005) (lines
11,12, 17 — 20) had the robot learn colors by moving along
a prespecified motion sequence, and it modeled each color
as a 3D Gaussian. This assumption fails to work outside
the controlled setting of the lab because all the color dis-
tributions can no longer be modeled as Gaussians (they are
sometimes multi-modal). The current algorithm automati-
cally chooses between two different representations for each
color and also automatically generates a motion sequence
suitable for learning colors for any given starting pose and
object configuration in its world.

The robot starts off at a known pose in its world model
with the locations of various color-coded objects known.
It has no initial color information (images are segmented
black). 1t has two lists: the list of colors to be learnt (Col-
ors[]) and an array of structures (Regions||[]) — a list for
each color. Each structure corresponds to an object of a par-
ticular color and stores a set of properties, such as its size
(length and width) and its three-dimensional location (X,y,z)
in the world model. Both the robot’s starting pose and the
object locations can be varied between trials, which causes
the robot to also modify the list of candidate regions for each
color. Though this approach does seem to require a fair
amount of human input, in many applications, particularly
when object locations change less frequently than illumina-
tion, it is more efficient than hand-labeling several images.

Due to the inaccuracy of the motion model and the initial
lack of visual information, geometric constraints on the po-
sition of objects in the robot’s environment are essential to
resolve conflicts that may arise during the learning process.

"Half the normal resolution of 0-255 along each dimension to
reduce memory requirements

Algorithm 1 Planned Autonomous General Color Learning

Require: Known initial pose (can be varied across trials).

Require: Color-coded model of the robot’s world - objects
at known positions, which can change between trials.

Require: Empty Color Map; List of colors to be learnt -
Colors]).

Require: Arrays of colored regions, rectangular shapes in
3D; Regionsl][]. A list for each color, consisting of the
properties (size, shape) of the regions of that color.

Require: Ability to navigate to a target pose (z, y, 6).

1: ¢ =0,N = MaxColors
2: Timey, = CurrTime, Time[] — the maximum time
allowed to learn each color.

3: while: < N do
4. Color = BestColorToLearn( 7 );
5. TargetPose = BestTargetPose( Color );
6:  Motion = RequiredMotion( T'arget Pose )
7. Perform Motion {Monitored using visual input and
localization}
8:  if TargetRegionFound( Color ) then
9: Collect samples from the candidate region,
Observed]][3].
10: if PossibleGaussianFit(Observed) then
11: LearnGaussParams( C'olors][i] )
12: Learn Mean and Variance from samples
13: else { 3D Gaussian not a good fit to samples }
14: LearnHistVals( Colors[i] )
15: Update the color’s 3D histogram using the sam-
ples
16: end if
17: UpdateColorMap()
18: if !Valid( Color ) then
19: RemoveFromMap( C'olor )
20: end if
21:  else
22: Rotate at target position.
23:  endif

24: if CurrTime — Times > Time[Color] or
RotationAngle > Ang,,, then

25: 1=14+1
26: Timeg = CurrTime
27:  endif

28: end while
29: Write out the color statistics and the Color Map.

These heuristic constraints depend on the problem domain.
We need to make two decisions in our problem domain: the
order in which the colors are to be learnt and then the best
candidate object for learning a particular color. The algo-
rithm currently makes these decisions greedily and heuris-
tically, i.e. it makes these choices one step at a time with-
out actually planning for the subsequent steps. Note that
the details of the algorithm and the corresponding heuris-
tics are presented primarily for the replicability of our work.
Our main aim is to demonstrate that such autonomous color
learning can be accomplished in a setting where it is typi-
cally done manually.



In our task domain, the factors that influence these choices
are:
1. The amount of motion (distance) that is required to
place the robot in a location suitable to learn the color.
2. The size of the candidate region the color can be
learnt from.
3. The existence of a region that can be used to learn
that color independent of the knowledge of any other (as
of yet) unknown color.
These factors are used by the robot in a set of heuristic func-
tions, to learn the colors with minimal motion and increase
the chances of remaining well-localized. If a color can be
learnt with minimal motion and/or is visible in large quan-
tities around the robot’s current location, it should be learnt
first. If a maximum-sized region (number of pixels) of a
particular color exists, it would be a good candidate for that
color. Sometimes a color does not have a maximum sized
region and can be learnt more reliably by associating it with
another color around it: in our default configuration, pink
has regions of the same size associated with either blue or
yellow. Here, the robot attempts to learn one of those two
colors before it attempts to learn pink. The relative impor-
tance weights assigned to the individual factors are used to
resolve the conflicts, if any, between the factors.

The robot therefore computes three weights for each
object-color combination (¢, ) in its world:

wy = fa(d(c,i))
wWwo = fb( 3(07 L) )
w3 = fu(o(c,i)) (5)

where the functions d(c, 1), s(c,i) and o(c, i) represent the
distance, size and object description for each color-object
combination in the robot’s world. The function fy( d(c, ) )
assigns a smaller weight to distances that are large, while
fs( s(e,4) ) assigns larger weights to larger candidate ob-
jects. The function f,,( o(c,4) ) assigns larger weights iff
the particular object (i) for a particular color (c) is unique -
it can be used to learn the color without having to wait for
any other color to be learnt.

The best color to learn (BestColorToLearn—Iline 4) is
chosen as:

e
arg fél[f},}é]( ie[mf_u( fa(d(e,i))

+ fs(dle,i) ) + fulo(e,i) ) ) ) (6)

where the robot parses through the different objects avail-
able for each color (/N.) and calculates the weights. For
each color the object that provides the maximum weight is
determined. Then, the color that results in the largest value
among these values is chosen to be learnt first. The functions
are currently experimentally determined based on the rela-
tive importance of each factor, though once estimated they
work across different environments. One future research di-
rection is to estimate these functions automatically as well.
Once a color is chosen, the robot determines the best-
candidate-region for the color, using the minimum motion

and maximum size constraints, based on:
max (fd( d(c,1))

€[0,N.—1]
+ fo(d(c, i) ) + fu(olc,i)) ) (D)

For a chosen color, the best candidate object is the one that
provides the maximum weight for the given heuristic func-
tions.

Next, the robot calculates the pose best suited to detect
this candidate region — BestTargetPose() (line 5). Specifi-
cally it attempts to move to a position where the entire can-
didate object would be in its field of view; based on the
known world model. Using its navigation function — Re-
quiredMotion() (line 6) — the robot determines and executes
the motion sequence to place it at the target position. The
current knowledge of colors is used to recognize objects, lo-
calize (we use Particle Filtering - see (Sridharan, Kuhlmann,
& Stone 2005) for complete details) and provide visual feed-
back for the motion.

Once it gets close to the target location, the robot
searches for image regions that satisfy the heuristic shape
and size constraints for the candidate region. The structure
Regions[Color][best-candidate-region] provides the actual
world model definitions — the (X,y,z) location, width and
height, which are dynamically modified by the robot, based
on its pose and geometric principles, to arrive at suitable
constraints. The robot stops when either an image region sat-
isfying the constraints is found (TargetRegionFound(), line
8) or its pose estimate corresponds to the target position.

If the candidate region is not found, it is attributed to slip-
page and the robot turns in place, searching for the candidate
region. Geometric sanity checks, based on the known loca-
tions of the objects in the robot’s environment, are used to
resolve conflicts with other regions that satisfy the heuristic
constraints - the candidate region should satisfy the geomet-
ric checks with other known objects in its field of view.

If such a region is found, the robot stops with the region at
the center of its visual field, and uses the pixel values (each
pixel being a vector with three elements corresponding to
the three color channels) in the region as verification sam-
ples, Observed[][3] to check if a 3D Gaussian is a good fit
for this color (PossibleGaussianFit() — line 10). We use the
statistical bootstrap technique with KL-divergence (Johnson
et al. 2001) as the distance measure, as described in Algo-
rithm 2.

If the 3D Gaussian is a good fit, the robot executes Learn-
GaussParams() (line 11). Each pixel of the candidate region
(currently black) that is sufficiently distant from the means
of the other known color distributions is selected and the
mean and variance of these pixel values represent the den-
sity function of the color under consideration. If the 3D
Gaussian is not a good fit for the samples, the robot mod-
els the color as a 3D histogram, the same candidate pixels
now being used to populate the histogram (LearnHistVals()
— line 14). To suppress the inherent image noise, the robot
repeatedly extracts information from several images at the
same target pose.

Once the color has been learnt, the function UpdateCol-
orMap() (line 17) takes the learnt distributions and gener-
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Algorithm 2 Verify goodness-of-fit

1: Determine Maximum-likelihood estimate of Gaussian
parameters from samples, Observed.
Draw N samples from Gaussian — E'stimated, N = size
of Observed.
Dist = K LDist(Observed, Estimated).
Mix Observed and Estimated — Data, 2N items.
for i =1to NumTrials do
Sample N items with replacement from Data — Setq,
remaining items — Sets.
Dist; = KLDist(Sety, Sets)
end for
9: Goodness-of-fit by p-value: where Dist lies in the dis-
tribution of Dist;.

AN

ates the mapping from the pixel values to color labels, the
Color Map. The assignment of color labels to each cell in
the 128 x 128 x 128 map, the most computationally intensive
part of the learning process, is performed only once every
five seconds or so. The histograms are normalized (Equa-
tion 4) to make them correspond to the Gaussian density
functions. Each cell in the color map is assigned a label
corresponding to the color which has the largest aposteriori
probability (Equation 3) for that set of pixel values.

By definition, Gaussians have a non-zero value through-
out the color space. During the learning process, the robot
could classify all the color map cells into one of the colors
currently included in the map, resulting in no candidate re-
gions for the other colors. So, a cell is assigned a particular
color label iff its distance from the mean of the correspond-
ing color lies within an integral multiple of the color’s stan-
dard deviation. Histograms do not have this problem.

The updated map is used to segment subsequent images
and detect objects. This helps validate the learnt parameters,
Valid() (line 18) — if a suitable object is not found, the color’s
statistics (Gaussian/Histogram) are deleted and it is removed
from the map (RemoveFromMap() — line 19), and helps the
robot localize and move to suitable locations to learn the
other colors. Our learning algorithm essentially bootstraps,
the knowledge available at any given instant being exploited
to plan and execute the subsequent tasks efficiently.

If the robot has rotated in place (searching for a candidate)
for more than a threshold angle (Ang;, = 360°) and/or
has spent more than a threshold amount of time on a color
(Time[Color] == 20sec), it transitions to the next color
in the list. We prefer to let the robot turn a complete cir-
cle rather than turn a certain angle in each direction to avoid
abrupt transitions. The process continues until the robot has
attempted to learn all the colors. Then, it saves the color map
and the statistics. A video of the color learning process and
images at various intermediate stages can be viewed online:
www.cs.utexas.edu/users/AustinVilla/?p=research/auto_vis.

Note that we are not entirely removing the human input;
instead of providing a color map and/or the motion sequence
each time the environment or the illumination conditions
change, we now just provide the positions of various objects
in the robot’s world and have it plan its motion sequence and

learn colors autonomously. The robot can be deployed a lot
faster, especially in domains where object locations change
less frequently than illumination conditions.

Experimental Setup and Results

We are concerned with both the color learning and the plan-
ning components of the algorithm. We hypothesized that
the hybrid color learning scheme should allow the robot to
automatically choose the best representation for each color
and learn colors efficiently both inside and outside the lab.
Our goal is for the hybrid representation to work outside the
lab while not resulting in a reduction in accuracy in the con-
trolled lab setting. We proceeded to test that as follows.

We first compared the two color representations, Gaus-
sians (A/lGauss) and Histograms (AllHist), for all the col-
ors, inside the controlled setting of the lab. Qualitatively,
both representations produced similar results (see Figure 2).
We then quantitatively compared the two color maps with
the labels provided by a human observer, over ~ 15 im-
ages. Since most objects of interest are on or slightly above
the ground (objects above the horizon are automatically dis-
carded), only suitable image regions were hand-labeled (on
average 6000 of the total 33280 pixels). The average classifi-
cation accuracies for Al[Hist and AllGauss were 96.7 +0.85
and 97.1 £+ 1.01 while the corresponding storage require-
ments were 3000Kb and 0.15Kb. Note that AllHist per-
forms as well as AllGauss but requires more storage.

@ (h) )
(a)-(c) Original, (d)-(f)

Figure 2: Images inside the lab.
AllGauss, (g)-(1) AllHist.

A main goal of this work is to make it applicable to less-
controlled settings. We next tested the robot in two indoor
corridors, where the natural setting consisted of a series of
overhead fluorescent lamps placed a constant distance apart,
resulting in non-uniform illumination conditions and a lot of
highlights/shadows on the objects and the floor. In the first
corridor, the floor was non-carpeted and of a similar color
as the walls. The robot was provided with a world model
with color-coded objects of interest, but because of the non-
uniform illumination the textured floor and the walls had



multi-modal color distributions. As a result AllGauss could
not determine a suitable representation for the ground/walls,
causing problems with finding candidates for the other col-
ors (see Figure 3).

@ (b © @

Figure 3: Segmentation using: (a)-(b) 3D Gaussians, (c)-(d) 3D
Histograms.

With the hybrid color representation, GaussHist, the robot,
based on the statistical tests, ended up modeling one color
(wall and ground) as histogram and the other colors as Gaus-
sians. Figure 4 compares AllHist with GaussHist.

Figure 4: Images outside the lab - walls and floors similar. (a)-(c)
Original, (d)-(f) AllHist, (g)-(i) GaussHist.

The AllHist model does solve the problem of modeling
ground color better. But, while Gaussians are robust to slight
illumination changes, histograms, in addition to requiring
more storage, do not generalize well to such situations (er-
rors row 2 of Figure 4). This inability to generalize well also
causes problems in resolving conflicts between overlapping
colors. For example, when the robot attempts to learn red
(opponent’s uniform color) after learning other colors, it is
unable to identify a suitable candidate region. As seen in
Figure 5, this leads to false positives and bad performance
over other colors ((d),(e)).

With Gaussians, the robot has the option of varying the
spread of the known overlapping colors, such as orange and
pink. Hence GaussHist lets the robot successfully learn the
total set of colors using the good features of both models.

Next, we ran the color learning algorithm in a different
corridor, where the floor had a patterned carpet with varying
shades and the illumination resulted in multi-modal distri-
butions for the ground and the walls. Once again, AllGauss
did not model the multi-modal color distributions well while

@
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Figure 5: Images with opponent color in map: (a)-(c) Original,
(d)-(e) AllHist, (f) GaussHist.

AllHist had problems when faced with minor illumination
conditions (inevitable) during testing. But GaussHist is able
to exploit the advantages of both systems and the robot suc-

cessfully learns the desired colors.

[ Type [ Accuracy (%) | (KB) |
AllHist — 1 89.53 +4.19 | 3000
GaussHist —1 | 97.13+1.99 | 440
AllHist — 2 91.29 4+ 3.83 | 3000
GaussHist —2 | 96.57 +2.47 | 880

Table 1: Accuracies and storage requirements of models in two
different indoor corridors.

Table 1 documents the numerical results for the
two situations - the results are statistically signifi-
cant. The storage requirements reflect the number
of colors that were represented as histograms instead
of Gaussians. Sample images for this setting can be seen
online:www.cs.utexas.edu/~AustinVilla/?p=research/auto_vis.
We also provide images to show that the planned color
learning scheme can be applied to different illumination
conditions and can handle re-paintings - changing all yellow
objects to white and vice versa poses no problem.

One challenge in experimental methodology was to mea-
sure the robot’s planning capabilities in qualitatively difficult
setups (objects configurations and robot’s initial position).
We described our algorithm to seven graduate students with
experience working with the robots and asked them to pick a
few test configurations each, subject to the constraints listed
earlier, which they thought would challenge the algorithm.
For each configuration, we measured the number of success-
ful learning attempts: an attempt is deemed a success if all
the (five) colors needed for localization are learnt.

Config | Success (%) Localization Error
X (cm) Y (cm) 0 (deg)
Worst 70 17 20 20
Best 100 3 5 0
avg 90+10.7 [ 86+3.7 ] 13.1£53|9+7.7

Table 2: Successful Planning and Localization Accuracy.

Table 2 tabulates the performance of the robot in its plan-




ning task over 15 configurations, with 10 trials for each
configuration. It also shows the localization accuracy of
the robot using the learnt color map. We observe that the
robot is able to plan its color learning task and execute it
successfully in most of the configurations (designed to be
adversarial) and the corresponding localization accuracy is
comparable to that obtained with the hand-labeled color map
(= 6cm, 8cm, 4deg in X, Y, and 0).
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Figure 6: Sample Configuration where robot performs worst.

One configuration where the robot performs worst is
shown in Figure 6. Here, it is forced to move a large distance
to obtain its first color-learning opportunity (from position
1 to 2). This sometimes leads the robot into positions quite
far away from its target location (position 2) and it is then
unable to find any candidate image region that satisfies the
constraints for the yellow goal. Currently, failure in this ini-
tial stage strands the robot without any chance of recovery:
a suitable recovery mechanism using additional geometric
constraints is an important area for future work. Note that
the failure is largely due to external factors such as slippage:
the color-learning plan generated by the robot is quite
reasonable. A video of the robot using a learnt color map to
localize to points in an indoor corridor can be viewed online:

www.cs.utexas.edu/users/AustinVilla/?p=research/gen_color.

Related Work

Color segmentation is a well-researched field in computer
vision with several effective algorithms (Comaniciu & Meer
2002; Sumengen, Manjunath, & Kenney 2003). Attempts
to learn colors or make them independent to illumination
changes have produced reasonable success (Lauziere, Gin-
gras, & Ferrie 1999; Gevers & Smeulders 1999). But these
approaches either involve computations infeasible to per-
form on mobile robots which typically have constrained
resources and/or require the knowledge of the spectral re-
flectances of the objects under consideration.

On Aibos, the standard approaches for creating mappings
from the YCbCr values to the color labels (Uther et al. 2001;
Chen et al. 2002; Cohen et al. 2004) require hand-labeling
of several images (= 30) over an hour or more. Attempts to
automatically learn the color map on the Aibos/robots have
rarely been successful. In one approach, edges are detected,
closed figures are constructed corresponding to known en-
vironmental features and the color information from these

regions is used to build color classifiers (Cameron & Barnes
2003). This approach is time consuming even with the use
of offline processing and requires human supervision. In an-
other approach, a color map is learnt using three layers of
color maps, with increasing precision levels; colors being
represented as cuboids (Jungel 2004). The generated map is
not as accurate as the hand-labeled one and additional higher
level constraints during the object recognition phase are re-
quired to disambiguate the colors. Schulz and Fox (Schulz
& Fox 2004) estimate colors using a hierarchical Bayesian
model with Gaussian priors and a joint posterior on robot
position and environmental illumination. Ulrich and Nour-
bakhsh (Ulrich & Nourbakhsh 2000) recognize obstacles by
modeling the ground using color histograms and assuming
non-ground regions to represent obstacles.

Our prior work (Sridharan & Stone 2005) enabled the
robot to autonomously learn the color map, modeling colors
as Gaussians. Here, we present a novel approach that uses a
hybrid representation for color, works online with no prior
knowledge of color by planning a suitable motion sequence,
and enables the robot to learn colors and localize both inside
the lab and in uncontrolled settings outside it.

Conclusions

Color segmentation is a challenging problem, even more so
on mobile robots that typically have constrained process-
ing and memory resources. In our prior work (Sridharan &
Stone 2005) we had presented an algorithm to learn colors
autonomously (within 5 minutes) in the controlled setting of
the lab, modeling colors as 3D Gaussians. Our hybrid rep-
resentation for color distributions enables the robot to au-
tonomously learn colors and localize in uncontrolled indoor
settings, while maintaining the efficiency in the constrained
lab environment. We have also provided a scheme for the
robot to autonomously generate the appropriate motion se-
quence based on the world model so that it simultaneously
learns colors and localizes. The color map provides segmen-
tation and localization accuracy comparable to that obtained
by previous approaches. The algorithm is dependent only on
the structure inherent in the environment and can be quickly
repeated if a substantial variation in illumination is noticed.
The robot could automatically detect the changes in illumi-
nation and adapt to them without human intervention. We
are also working on making the robot learn the colors from
any unknown location in its environment.

The results indicate that the robot should be able to learn
the colors even in a natural outdoor setting as long as rea-
sonable illumination is available. We use colors as the
distinctive features. But in environments where features
aren’t constant-colored, other representations (for example
SIFT (Lowe 2004)) could be used. As long as the locations
of the features are as indicated in the world model, the robot
can robustly re-learn how to detect them. This flexibility
could be exploited in applications such as surveillance where
multiple robots patrol the corridors. Ultimately, we aim to
develop efficient algorithms for a mobile robot to function
autonomously under completely uncontrolled natural light-
ing conditions.
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