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Abstract

This paper presents and empirically compares two solutions
to the problem of vision and self-localization on a mobile
robot. In the commonly used particle filtering approach, the
robot identifies regions in each image that correspond to land-
marks in the environment. These landmarks are then used
to update a probability distribution over the robot’s possible
poses. In the expectation-based approach, an expected view
of the world is first constructed based on a prior camera pose
estimate. This view is compared to the actual camera im-
age to determine a corrected pose. This paper compares the
accuracies of the two approaches on a test-bed domain, find-
ing that the expectation-based approach yields a significantly
higher overall localization accuracy than a state-of-the-art im-
plementation of the particle filtering approach. This paper’s
contributions are an exposition of two competing approaches
to vision and localization on a mobile robot, an empirical
comparison of the two methods, and a discussion of the rela-
tive advantages of each method.

Introduction
This paper presents and empirically compares two solutions
to the problem of vision and self-localization on a mobile
robot in a known, fixed environment. Specifically, given a
series of visual images produced by a camera on-board the
robot, how can the robot effectively use those images to de-
termine its position and orientation (pose) over time? This
paper discusses two contrasting approaches to this prob-
lem, which we denote the particle filtering approach and
the expectation-based approach. Although the particle fil-
tering approach has been commonly used on mobile robots,
we demonstrate that the expectation-based approach yields
higher localization accuracy on a representative task.

The particle filtering approach, also known as Monte-
Carlo localization, represents a probability distribution over
the robot’s pose with a set of sample poses, or parti-
cles (Dellaert et al. 1999). This distribution is contin-
ually updated by a series of motion updates, which take
the robot’s motion into account, and observation updates,
which update the pose and relative importance of each par-
ticle depending on the robot’s observations. Much work
has been done in particle filtering on vision-based robots.
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This includes work in vision-based legged robots (Lenser
& Veloso 2000; Kwok & Fox 2004; Rofer & Jungel 2003;
Sridharan, Kuhlmann, & Stone 2005; Hoffman et al. 2006)
and wheeled robots (Stachniss, Burgard, & Behnke 2006;
Thrun et al. 2001). The particle filtering algorithm is de-
scribed in the following section.

In vision-based robots, the particle filtering approach in-
volves recognizing a number of discrete objects in the envi-
ronment, or landmarks, each of which has a known location,
shape, and appearance. The robot scans each incoming im-
age to determine if any area of the image matches the appear-
ance of any of the objects in the environment. When matches
are found, they are used to determine the robot’s relative an-
gle and distance to the corresponding object. These land-
mark observations comprise the observation update used by
particle filtering.

Instead of using discrete objects, the expectation-based
approach starts with a line model of the environment. This
model represents the three-dimensional locations and ori-
entations of the edges in the environment. Additional in-
formation may include colors or textures appearing on ei-
ther side of any given edge. Furthermore, in analyzing
each image, the expectation-based approach makes use of
its prior knowledge about the robot’s pose in the environ-
ment. Specifically, it combines a running estimate of the
three-dimensional pose of the camera with its line model of
the environment to compute an expected view for each im-
age frame. The expected view is constructed by projecting
each edge in the world model onto the image plane.

Once the expected view is found, the camera image is an-
alyzed by first applying an edge detector, such as (Canny
1986), and then collecting consecutive, collinear edge points
into line segments (Forsyth & Ponce 2003). The resulting
line segments are collected as potential matches to the edges
in the expected view. For each pair of an observed edge and
an expected edge, if they are close enough in position and
orientation, they are identified with each other. These line
segment identifications are then used to update the robot’s
camera pose estimate, based on the robot’s model mapping
line segment positions to a pose. This process is repeated
until the camera pose stabilizes. Between each image frame
and the next, the robot’s pose is updated in accordance with
its odometry estimate. This method is described in full detail
in the Expectation-Based Approach section.



Although this paper considers the expectation-based ap-
proach from the point of view of the vision and localiza-
tion problem, the methodology used is based on work orig-
inally developed in the context of a fixed camera tracking
a moving object. In particular, the implementation used in
the experiments reported in this paper is based in part on the
algorithm presented by Lowe (Lowe 1991). In the context
of mobile robot self-localization, the expectation-based ap-
proach has been previously employed on a wheeled robot by
Kosaka and Pan (Kosaka & Pan 1995) and on a legged robot
by Gasteratos et al. (Gasteratos et al. 2002).

Both approaches to the vision and localization problem
are implemented on a Sony Aibo ERS-7 and evaluated in
a test-bed domain. Experimental results demonstrate that
the expectation-based method achieves a significantly higher
average localization performance while the robot walks to a
series of points.

The remainder of this paper is organized as follows.
The following two sections present the two competing ap-
proaches to vision and localization on a mobile robot: the
particle filtering approach and the expectation-based ap-
proach. The next section introduces the test-bed domain and
presents the adaptations of the two methods to this domain.
Finally, there are experimental results, a discussion of the
relative advantages of each method, and a concluding sec-
tion.

The Particle Filtering Approach
This section presents the particle filtering approach to the
problem of vision and localization. Particle filtering local-
ization addresses the question of how to represent the robot’s
uncertainty in its own pose. For instance, an alternative
approach, Kalman filtering (Kalman 1960), represents the
probability distribution explicitly, as a functional multivari-
ate normal distribution. By contrast, particle filtering rep-
resents the distribution as a collection of sample poses, or
particles. Each particle has a possible pose, (x, y, θ), and a
relative probability, p. The collection of particles is main-
tained by a series of updates: the motion update, the obser-
vation update, resampling, and reseeding. The remainder of
this section describes these processes.

In the motion update, each particle’s pose is updated ac-
cording to the robot’s odometry estimate. Note that, for ex-
ample, if the robot believes it has walked straight forward,
this may move all of the particles in slightly different direc-
tions from each other due to the differences in the particles’
orientations. The update is applied to each particle accord-
ing to its own orientation. Furthermore, to model random
noise in the motion model, a random perturbation is added
to each particle’s position and orientation.

An observation update happens for every landmark obser-
vation that is registered by vision. An observation consists of
a landmark identity and its distance and relative angle to the
robot. For each observation, every particle’s probability p is
updated according to an observation likelihood. This quan-
tity is the likelihood that the given observation would occur,
assuming the particle’s pose. This likelihood is computed
by predicting what the landmark’s distance and angle would

be if the particle’s pose were correct. The difference be-
tween these predicted values and the observed values is con-
verted to a likelihood in accordance with a Gaussian model
of the observation noise. To temper the effects of false ob-
servations, the change in the particle’s probability towards
the computed likelihood is limited by a constant.

After every vision frame, the particles are resampled ac-
cording to their probabilities. That is, multiple copies are
made of the highest probability particles, and the lowest
ones are deleted. The purpose of this resampling is to con-
centrate the processing performed by the localization algo-
rithm on the most likely areas of the state space. The number
of copies made of each particle is roughly proportional to its
probability.

Additionally, a small number of reseeding particles are
added, replacing low-probability particles, in accordance
with completely new estimates of the robot’s pose derived
from the current observations (e.g., by triangulation). This
process is based on the idea of Sensor Resetting (Lenser &
Veloso 2000). Reseeding enables the robot to recover from
large, unmodeled movements, also known as the kidnapped
robot problem (Engelson & McDermott 1992). Without re-
seeding, there can easily be no particles in the area of the
robot’s new actual pose, in which case it is very difficult for
the particles to recover.

One potential enhancement to reseeding, which is used in
the experiments reported in this paper, is landmark histories.
A landmark history is an account of all of the recent sight-
ings of a given landmark. The histories are updated in ac-
cordance with the robot’s odometry. Then, at any time, all of
the recent observations of a given landmark can be averaged
to yield a more accurate estimate of that landmark’s relative
distance and angle. These accumulated estimates enable the
robot to construct reseeding estimates, even when there is
not enough information in any one image to triangulate a po-
sition. Because of the accumulation of errors in the robot’s
odometry, observations are removed from the histories after
enough time has passed or enough movement has occurred.

The particle filtering approach requires visual observa-
tions that provide information about the robot’s location.
As described below, the observations in our test domain
are based on color-coded fixed landmarks. Another ap-
proach is to use scale-invariant features (Stachniss, Burgard,
& Behnke 2006).

The Expectation-Based Approach
This section presents the expectation-based approach to the
vision and localization problem. For each input image, the
robot localizes by continually maintaining an accurate esti-
mate of its camera’s three-dimensional pose. This pose is
represented by a six-dimensional state vector X , with three
dimensions for the camera’s position and three for its orien-
tation, the pan, tilt, and roll. Note that in our test-bed do-
main, the robot’s head is actuated with three degrees of free-
dom, so that the robot can control the direction in which the
camera is pointing. However, the method described in this
section is applicable regardless of the degree of the camera’s
mobility with respect to the robot’s body. Since the robot



walks on a two-dimensional surface, it simultaneously main-
tains its two-dimensional body pose, (x, y, θ), along with its
camera pose X .

For each camera image that is captured, the robot starts
with a prior estimate of its camera pose, X0. This pose is
used to generate an expected view, as discussed in the in-
troduction. To construct an expected view, the robot goes
through each of the edges in the three-dimensional line
model.1 Each of these model edges is projected onto the
image plane. If the line segment is behind the image plane
or no part of it falls within the image rectangle, it is ignored.

If a model line does project onto a line segment in the
image rectangle, this segment is compared to each of the
detected edge segments in the image. Four matching cri-
teria are computed between the two line segments: length
of overlap, effective distance, angle difference, and appear-
ance match. The overlap length and effective distance are
depicted in Figure 1. The angle difference is the angle be-
tween the two lines. The appearance match reflects whether
or not model information corresponding to the line matches
the features of the observed line (e.g., such as colors on each
side of the line). If there is an appearance match, any posi-
tive length of overlap, and the angle difference and effective
distance are both sufficiently low, the model line and image
line are considered to be a match.

d1

d2

Observed Line

Overlap Length

Expected Line

Figure 1: For each pair of an expected view line and a line
detected in the image, the robot computes a length of over-
lap, effective distance, and angle difference. The effective
distance is defined as the average of d1 and d2, which are
measured perpendicular to the expected line.

All of the matches between a model line and an observed
line are collected into a list of size n. The next step is to
determine a new camera pose vector X , such that when the
model lines are projected onto the image plane assuming a
camera pose of X , their distances from the corresponding
observed lines are as small as possible. That is, considering
the observed lines to be fixed, each of the distances d1 and
d2 depicted in Figure 1 can be thought of a function of X:
Fi(X

0) = di, where i runs from 1 to 2n and d2k−1 and
d2k are the two distances for the kth line match out of n. If
the fit were perfect, the following 2n equations would all be
satisfied:

Fi(X) = 0, i = 1 to 2n (1)

1Although this paper considers only models with line seg-
ment edges, the methodology is easily extended to curved sur-
faces (Lowe 1991).

This system of equations is nonlinear and frequently
overdetermined. Nevertheless, an approximate solution can
be found by using Newton’s Method and least squares fit-
ting. This process consists of repeatedly linearizing F and
applying least squares. F is linearized by computing the Ja-
cobian J , given by Ji,j = ∂F/∂Xj , taken at X0. The partial
derivatives can be computed either analytically (Lowe 1991)
or by using a direct approximation. The latter approach re-
lies on the approximation Ji,j ≈ (F (X0+εej)−F (X0))/ε,
where ej is the unit vector with all components 0 except for
the jth component of 1, and ε is a small non-zero constant.
Given these partial derivatives, the linear approximation of
Fi at X0 is given by

Fi(X) = di +

6∑

j=1

Ji,j(Xj − X0

j ) (2)

If we define C to be the correction X −X0, then combin-
ing Equations 1 and 2 yields

6∑

j=1

Ji,jCj = −di, i = 1 to 2n (3)

The sum of the squares of the errors in these equations
is minimized by the least squares fit, which can be com-
puted, for example, by the normal equations (Strang 1998).
One potential problem is that if there are not enough line
matches, the system of equations is underdetermined, and
there is no unique least squares fit. Another is that it is pos-
sible for the system to be highly ill-conditioned and there-
fore unstable. To circumvent these problems, six stabilizing
equations, Cj = 0, are added to the system, one for each di-
mension of the state space. Each stabilizing equation should
theoretically be weighted inversely with the standard devi-
ation of the prior estimate of that dimension (Lowe 1991),
and the system is then solved by weighted least squares fit-
ting (Strang 1998). The choice of stabilizing weights used
for the experiments reported in this paper is discussed in the
following section.

Newton’s method consists of repeatedly computing and
solving the linear approximation to the system of equations.
The line matches, partial derivatives, and least squares fit are
computed for each iteration of Newton’s method. Although
it is possible in theory for Newton’s method to diverge, in
practice the authors find that it always converges after few
iterations.

After a camera pose X has been extracted from the image,
the robot computes its body pose, (x, y, θ), updates that pose
according to the robot’s odometry estimate, and then esti-
mates its camera pose again from the resulting body pose.
This final camera pose, is used as the starting point, X0, for
the following frame.

The body position, (x, y), is defined as the center of the
robot’s body, and the orientation, θ represents the direc-
tion the body is pointing. The relationship between the
body pose and the camera pose is represented by a ho-
mogeneous transformation matrix from the robot’s camera-
centered coordinate system to its body-centered coordinate
system. This transformation, denoted as T cam

body , is a function



of the robot’s body tilt and roll, and any joint angles con-
necting the camera to the head. The transformation matrix
T cam

body can be computed as the product of a series of DH-
transformations over the joints from the body to the camera,
as described by Schilling (Schilling 2000).

The translational component of T cam
body , in particular the

horizontal components, are used to determine the horizon-
tal displacement between the camera and body centers. This
displacement is subtracted from the horizontal translational
components of the camera pose, X , to yield the robot’s body
position. A horizontal overall pan angle is also extracted
from the transformation matrix, and subtracts from the cam-
era pose pan angle to yield the body orientation. After the
odometry update is applied to the body pose, the entire trans-
formation matrix is used to compute the new starting esti-
mate for the camera pose, X0. This process is performed in
between every two consecutive image frames. Pseudocode
for the entire expectation-based method is presented in Al-
gorithm 1. The algorithm is executed once for each incom-
ing camera image.

Algorithm 1 The expectation-based method.

Given: X0, camera image, 3-D line model,
numIterations
Perform edge detection on camera image
Collect consecutive, collinear edge pixels into line seg-
ments
for k = 1 to numIterations do

equationList ← ∅

for each model line do
Project line onto image plane, for camera pose X0.
if part of the line projects onto the image rectangle
then

for each observed line do
if observed and model lines match then

Compute Jacobian of distances
with respect to X .
Add two equations to equationList,
one for each distance.

end if
end for

end if
end for
Add stabilizing equations to equationList.
X ← least squares fit of equationList.
X0 ← X

end for
Compute transformation matrix, T cam

body .
Compute body pose, (x, y, θ) from final X .
Update body pose according to robot odometry.
Compute next starting camera pose, X0, from body pose.

Test-Bed Domain
The methods described in this paper are implemented on a
Sony Aibo ERS-7.2 The robot is roughly 280mm tall and

2http://www.aibo.com

320mm long. It has 20 degrees of freedom: three in each
of four legs, three in the neck, and five more in its ears,
mouth, and tail. At the tip of its nose there is a CMOS
color camera that captures images at 30 frames per sec-
ond in YCbCr format. The images are 208 × 160 pixels
giving the robot a field of view of 56.9◦ horizontally and
45.2◦ vertically. The robot’s processing is performed en-
tirely on-board on a 576 MHz processor. Notably, legged
robots, while generally more robust than wheeled robots to
locomotion in various terrains (Wettergreen & Thorpe 1996;
Saranli, Buehler, & Koditschek 2001), pose an additional
challenge for vision, as the jagged motion caused by walk-
ing leads to unusually sharp motion in the camera image.

The robot’s environment is a color-coded rectangular field
measuring 4.4 × 2.9 meters, whose components are geo-
metrical shapes: two colored goals composed of rectangu-
lar panes, four color-coded cylindrical beacons, and inclined
walls surrounding the field. These components are distin-
guished primarily by their color; every part of the field is
one of five discrete colors: green, white, blue, yellow, and
pink. The two goals are blue or yellow, respectively, on the
inside, and white on the outside. The cylindrical beacons are
each composed of white, pink, and blue or yellow. Whether
the third color is blue or yellow, and the relative positions of
the colors on the cylinder, correspond to which corner of the
field the beacon is in. Additionally, the field is surrounded
by a white inclined border that is 10 cm high, and there are
2.5 cm thick white field lines on the green field surface. The
robot and its environment are depicted in Figure 2.

Figure 2: The Aibo robot and its environment. Noise in the
robot’s joints and a relatively low resolution camera make
accurate localization a difficult task.

Because this domain has been used in the four-legged
league of the annual RoboCup robot soccer competi-
tions (Stone, Balch, & Kraetszchmar 2001), many re-
searchers have addressed the problem of vision and local-
ization on the Aibo robot on this field. Nevertheless, we are
not aware of any that have taken the expectation-based ap-
proach.

In a color-coded domain such as this one, a common



first step of the visual processing is color segmentation.
Color segmentation is carried out via a color table, a three-
dimensional array with a color label for each possible com-
bination of Y, Cb, and Cr values. The color table is created
off-line, by manually labeling a large suite of training data
and using a Nearest Neighbor learning algorithm to learn the
best label for each YCbCr combination. The full details of
our color segmenting algorithm are presented in (Stone et al.
2004).

After the image has been segmented, the remaining pro-
cessing depends on which approach to vision and localiza-
tion is being used. The adaptations of these two approaches
to a four-legged robot in a color-coded domain are described
in the following two subsections.

Adapting the Particle Filtering Approach

Our group has previously adapted the particle filtering ap-
proach to vision and localization to this domain. Our im-
plementation has been highly optimized, and it incorpo-
rates recent research contributions (Sridharan & Stone 2005;
Sridharan, Kuhlmann, & Stone 2005).

In applying particle filtering to the test-bed domain, the
observations consist of a visual identification of a landmark
in the environment. When a landmark is observed, its dis-
tance and horizontal angle are computed from its size and
position in the image. These quantities are the inputs to par-
ticle filtering.

As discussed above, the landmarks are recognized by a
process of object detection. This process relies on the fact
that, after segmentation, the goals and beacons have distinct,
and relatively consistent, appearances in the image. For ex-
ample, a goal usually appears as a blue or yellow rectangle,
and a beacon will appears as a pair of squares, one directly
above the other, one pink and the other blue or yellow, de-
pending on which beacon it is.

The object recognition used in the experiments reported
in this paper starts by segmenting every pixel in the image
into a color category. As all of the pixels are segmented, ad-
jacent pixels of the same color are combined into a bound-
ing box, a rectangular structure consisting of the rectangle’s
coordinates and the color inside. Heuristics are used to de-
termine if some adjacent boxes should not be merged, and
also if some boxes should be deleted because they contain a
density of the desired color that is too low. These bounding
boxes are then used to determine which objects are present
in the image.

The robot first attempts to detect goals in the image, be-
cause they are generally the largest objects found. Thus the
blue and yellow bounding boxes are sorted from largest to
smallest, and tested for being the goal in that order. The goal
tests consist of heuristics to ensure that the bounding box in
question is close enough to the right height to width ratio,
and that there is a high enough density of the desired color
inside the bounding box for a goal, as well as other heuris-
tics. To find the beacons, the robot finds bounding boxes
of pink and blue or yellow that satisfy appropriate beacon
heuristics, and then combines them into beacon bounding
boxes, labeled by which beacon is inside. The resulting goal

and beacon bounding boxes are converted into observations
for particle filtering.

Additionally, the lines on the field can provide useful
information for localization, but they do not form useful
bounding boxes, so they are recognized by a separate pro-
cess. Following the approach of Rofer and Jungel (Rofer
& Jungel 2003), we examine a series of vertical scan lines,
testing for green/white transitions. These transitions repre-
sent field line pixels, and nearby collinear line pixels are col-
lected into image lines. If the image contains two lines that
meet at right angles when projected onto the field, their in-
tersection is matched to a field line intersection and used as
an observation input to particle filtering. Full details of our
implementation of the particle filtering approach to vision
and localization are presented in (Stone et al. 2004).

Adapting the Expectation-Based Approach
This section describes our adaptation of the expectation-
based approach to the test-bed domain, which is new to this
paper. For this approach, the model of the world is repre-
sented as a collection of three-dimensional line segments.
These segments are each associated with two colors, one on
each side. For line segments that border the edge of the envi-
ronment, like the top of the goal, one of the two colors is left
unspecified, as it is not known a priori what color the back-
ground will be. Additionally, some edges are surrounded by
different colors depending on the robot’s position. In these
cases, the robot’s estimated position is used to assign the
edge colors.

As described in the Expectation-Based Approach section,
the expectation-based method matches observed and model
lines based on four criteria: length of overlap, effective dis-
tance, angle difference, and appearance match. In a color-
coded domain, the two lines have an appearance match if the
two colors around the observed line are the same as the two
colors in the expected line. An unspecified (background)
color is allowed to match any observed color.

The white field lines in the test-bed environment, which
have a thickness of one inch, are represented in the model
as pairs of lines, one inch apart. If the robot is too far away
from these lines, they become invisible because they are too
thin. In these cases, it is dangerous to include them in the
expected view, because they are more likely to match in-
correct lines than correct lines. Therefore, while computing
the expected view, the robot computes the expected width of
these field lines. If it is lower than a threshold width (given
in Table 1), it is not included in the expected view.

One other aspect of the expectation-based approach that
is dependent on the robotic platform is the computation of
the coordinate transform from the robot’s body to its cam-
era. This depends on the head and neck joint angles, as well
as the body’s tilt, roll, and height off the ground. For the
experiments reported in this paper, body tilt, roll, and height
are relatively constant over the range of walking motions
performed. They are therefore treated as constants and esti-
mated manually beforehand.

The implementation of the expectation-based approach
requires choosing values for a few constants, presented in
Table 1. The first, numIterations, is the number of iter-



ations of Newton’s Method that are executed each vision
frame. A few smaller numbers were tried first, but it was
found that the method did not always converge in so few tri-
als. For the line width threshold, the value of four pixels was
the only value tried. The remaining constants are the weights
of the stabilizing equations added to the least squares fit, one
for each of the six dimensions of the state vector (measured
in millimeters and radians). As mentioned above, the weight
for each dimension should be inversely proportional to its
standard deviation. These values were chosen with that rule
of thumb in mind, but each of the three values had to be ad-
justed a few times (generally by multiplying or dividing by
a factor of 10) based on preliminary experimentation. If the
occasional false matches caused a given component of X
to fluctuate wildly, the corresponding weight needed to be
increased. If correct matches were unable to move a compo-
nent, its weight needed to be decreased.

Constant Value
numIterations 7
Line width threshold 4 pixels
x and y weight 0.002
z weight 0.01
Orientation weight 6

Table 1: Constants used by the expectation-based method.

The expectation-based method is depicted in Figures 3
and 4. Figure 3 shows the edges in the expected view. After
Newton’s method has been applied, the robot’s new cam-
era pose estimate is updated so that the lines are projected
into the correct locations. This final situation is depicted in
Figure 4. A video of the robot walking with superimposed
model lines is available anonymously online.3

Figure 3: The white lines depict the expected view.

3www.cspapers.com/expectation-vision/

Figure 4: The white lines depict the final line placements.

Experimental Results
Both of the approaches to the vision and localization prob-
lem described above have been implemented and evaluated
in our test-bed domain. The goal of both approaches is for
the robot to be able to move freely throughout its environ-
ment and continually maintain an accurate estimate of its
two-dimensional pose: (x, y, θ). This ability is tested by
having the robot slowly walk to a series of poses in its en-
vironment. For each pose, the robot walks towards it, and
stops when its location estimate is within a threshold dis-
tance (2 cm) of the desired position. It then rotates in place,
until its orientation estimate is within a threshold distance
(10◦) of its intended orientation. It then stops moving and
suspends vision and localization processing so that its po-
sition and orientation accuracy can be measured manually.
These measurements are performed with a tape measure and
a protractor, and have an estimated average measurement er-
ror of one centimeter and one degree respectively.

As the robot walks from each pose to the next, its head
scans from left to right, to increase the diversity of visual in-
formation the robot receives over time. The two approaches
being tested were developed for different head scan speeds,
and therefore each method is evaluated with the scan speed
for which it has been optimized. The expectation-based ap-
proach uses a significantly slower head scan than the par-
ticle filtering approach. This difference was based on the
intuition that the particle filtering approach would be less
effective with a slower head scan, because the observations
in the landmark histories would grow stale before they could
be used for reseeding. On the other hand, the expectation-
based method performs better with the slower head scan,
because it is less prone to error when consecutive image
frames are as similar to each other as possible. An infor-
mal comparison confirmed that the particle filtering method
worked at least as well with the faster head scan as it did
with the slow one. Aside from this difference, the testing
scenario is identical between the two vision and localization
methods. The walking module used in the experiments re-



ported in this paper has been developed previously as part of
a larger project (Stone et al. 2004).

For each pose that the robot attempts to visit, its position
error and angle error are recorded. In each trial, the robot at-
tempts to visit a pre-set series of 14 poses on the field. Each
trial begins with the robot’s pose estimate being as accurate
possible. The poses visited are depicted in Figure 5. The
sequence of poses is designed to cover a wide range of diffi-
culties for vision and localization. The average position and
angle errors for a given trial are considered as one data point.
Each approach was evaluated over ten trials. The means and
standard deviations of the average errors are presented in Ta-
ble 2.
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Figure 5: The series of poses traversed by the robot.

Method Particle Filtering Expectation-Based
Position Error 11.81 ± 0.82 cm 7.55 ± 0.63 cm
Angle Error 6.49 ± 1.61 degrees 7.18 ± 2.22 degrees

Table 2: Comparison of the particle filtering and
expectation-based methods.

The position errors attained by the particle filtering ap-
proach were, on average, 56% more than those attained by
the expectation-based approach. This difference is statisti-
cally significant in a one-tailed t-test, with a p-value of less
than 10−9. Although the particle filtering approach achieved
a lower average angle error, this difference was not statisti-
cally significant, with a p-value of 0.44 for a two-tailed t-
test.

Discussion
The experiments reported in the previous section indicate
that the expectation-based method is able to maintain a more
accurate estimate of its pose, compared to particle filtering,
as the robot walks to a series of points. Nevertheless, there
are advantages to each method that are not reflected in this
test.

An important difference between the two algorithms is
their robustness. Particle filtering is robust to the jagged
camera motions caused by walking and scanning the head
quickly, large unmodeled movements, and collisions (Srid-
haran, Kuhlmann, & Stone 2005). By contrast, the

expectation-based method, as described above, is relatively
brittle. If the robot’s pose estimate becomes sufficiently in-
accurate, the computed expectation views will not be close
to the observed line segments. Because the line matching
process assumes that the expected positions of model lines
are close to the corresponding actual lines in the image, if
this assumption is violated, it is difficult for the algorithm to
infer useful information about the robot’s pose from the ob-
served image. In this case, the algorithm may not be able to
recover. An interesting problem for future research is to aug-
ment the expectation-based method with a recovery method
that would enable it to be simultaneously highly accurate
and robust.

On the other hand, one potential advantage to the
expectation-based method is the ease with which it could
be extended to different environments. For example, con-
sider the task of implementing the two approaches in a dif-
ferent domain with color-coded geometrical shapes. For
the expectation-based approach, all that is needed is a line
model of the new domain. By contrast, the particle filtering
approach relies on object detection, which employs differ-
ent algorithms in identifying differently shaped objects. For
example, in the adaptation to the test-bed domain described
above, three different algorithms are used to recognize goals,
beacons, and lines. In a new domain with objects with dif-
ferent appearances, new algorithms would need to be devel-
oped to recognize those objects.

In this paper, we restrict our attention to a robot localiz-
ing in a known, fixed environment. One common approach
to localizing in an unknown environment is (vision-based)
Simultaneous Localization and Mapping (SLAM) (Sim et
al. 2005), which frequently incorporates a particle filtering
localization algorithm. One challenge for future research is
to similarly extend the expectation-based approach to have
simultaneous mapping capabilities.

Both the particle filtering and expectation-based ap-
proaches are adaptable, to some extent, to a partially dy-
namic environment. For example, if we add a moving ball
to our test-bed domain, the state space can be represented as
a concatenation of the robot’s pose and the ball’s location. In
particle filtering, the particles might represent a joint distri-
bution over the ball and the robot, while in the expectation-
based method, the ball would be added to the expected view
based on the prior estimate of its location. Further empiri-
cal tests are required to determine if the two methods would
continue to be effective under these conditions.

Conclusion
This paper presents and compares two competing ap-
proaches to the problem of vision and self-localization on a
mobile robot, the commonly used particle filtering approach,
and the expectation-based approach. The approaches are im-
plemented and tested on a Sony Aibo ERS-7 robot, localiz-
ing as it walks through a test-bed domain. Each method’s
localization accuracy was measured over a series of trials.
In these tests, the expectation-based method achieved a sig-
nificantly lower average distance error than the particle fil-
tering method, and no significant difference was found in the
methods’ average orientation errors.



Aside from the methods’ performances on the experimen-
tal tests presented here, each method has further relative ad-
vantages, discussed in the previous section. It is a continuing
focus of research to develop a method for vision and local-
ization that simultaneously achieves the advantages of both
approaches.
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