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Abstract

Evaluating classifiers with increased confidence can
significantly impact the success of many machine learn-
ing applications. However, traditional machine learning
evaluation measures fail to provide any levels of con-
fidence in their results. In this paper, we motivate the
need for confidence in classifier evaluation at a level
suitable for medical studies. We draw a parallel be-
tween case-control medical studies and classification in
machine learning. We propose the use of Tango’s bio-
statistical test to compute consistent confidence inter-
vals on the difference in classification errors on both
classes. Our experiments compare Tango’s confidence
intervals to accuracy, recall, precision, and the F mea-
sure. Our results show that Tango’s test provides a sta-
tistically sound notion of confidence and is more con-
sistent and reliable than the above measures.

Introduction
In machine learning, a classifier is trained on data exam-
ples and is used to predict class labels for unseen examples.
The learning is supervised if examples are mapped to the
positive or negative negative class. Comparing predictions
made by the classifier to class labels of examples produces
the confusion matrix shown in table 1. Classifier evalua-
tion involves applying one or more evaluation metrics to the
confusion matrix. Commonly used metrics, shown in ta-
ble 2, produce a single scalar value. Other measures, such
as ROC or Cost Curves require further analysis of perfor-
mance. In general, these measures are perceived, by the
machine learning community, to be appropriate and suffi-
cient. Ideally, a suitable evaluation measure is sensitive to
changes in particular properties of interest in the problem
domain. In more specific communities, such as biostatistics
and medicine, researchers use specially designed tests that
measure particular properties with confidence, and signifi-
cance (Motulsky 1995). Evaluating classifier performance
with increased confidence significantly impacts its success
or failure in many applications. An effective application of
learning algorithms in laboratory tests or in clinical trials can
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Table 1: A standard confusion matrix.
Predicted + Predicted - total

Label + a b a+b
Label - c d c+d
total a+c b+d n

Table 2: Standard evaluation metrics used in ML.

Accuracy a+d
n

True Positive Rate (Recall) a
a+b

False Positive Rate c
c+d

Precision a
a+c

F score 2×Recall×Precision
Recall+Precision

reduce financial overhead, human involvement, turn-around
time, and can increase productivity. However, traditional
machine learning metrics fail to provide confidence in their
results at the same level as those used in biostatistics or in
medicine. Consequently, the usefulness of some learning
algorithms becomes inadequately documented and uncon-
vincingly demonstrated.

In this paper, we show that evaluating classifier perfor-
mance can be exposed to anomalies that may not be captured
by a single metric. Although this situation may be corrected
by using a combination of metrics, the choice of such met-
rics requires expertise in evaluation and does not guarantee
confidence in the results. Alternatively, we recommend the
use of a biostatistical test, the Tango test, to provide a notion
of confidence in the evaluation results. Our experimental re-
sults will show that Tango’s test is capable of capturing such
anomalies and remains consistent in distinguishing between
classifiers based on their performance while providing con-
fidence and significance. In the long term, our research
aims at developing a novel and reliable evaluation measures
capable of evaluating classifiers with improved quality and
confidence. Such quality has long been utilized in medi-
cal domains. Our approach is to adopt these methods into
machine learning. This paper presents an initial step to-
wards a novel notion of confident evaluation. We address
the need for confidence in classifier performance by apply-



ing a confidence test. Experimentally, we show that Tango’s
test (Tango 1998) is capable, reliable and consistent in com-
parison to accuracy, recall, precision, and F scores. In future
work we plan to compare our evaluation method to more so-
phisticated evaluation measure, such as ROC curves, AUC,
and Cost curves. After the introduction, we review work
related to classifier evaluation and draw a parallel between
case-control studies and classification. In subsequent sec-
tions, we present the experimental results and a discussion
followed by conclusions and future work.

Related Work
Classifier performance is measured by estimating the accu-
racy of the learned hypothesis. Estimating hypothesis ac-
curacy with the presence of plentiful data is simple, how-
ever, evaluating a hypothesis for future data with the pres-
ence of limited data is faced with two challenges defined
as Bias and Variance (Mitchell 1997). The objective is
to estimate the accuracy with which a classifier will clas-
sify future instances while computing the probable error of
this accuracy estimate. In theory, Mitchell (Mitchell 1997)
presents methods to evaluate a learned hypothesis, to com-
pare the accuracy of two hypothesis, and to compare the ac-
curacy of two learning algorithms in the presence of lim-
ited data. The model is based on basic principles from
statistics and sampling theory. In practice, the predictive
ability of a classifier is measured by its predictive accu-
racy (or the error rate) computed on the testing examples
(Ling, Huang, & Zang 2003) which, in many cases, has been
shown to be insufficient (Ling, Huang, & Zang 2003) or in-
appropriate (Provost & Fawcett 1997). Performance met-
rics, in table 2, are commonly used to produce a ranking
of classifiers. Alternatively, the ROC (Receiver Operating
Characteristics) analysis (Cohen, Schapire, & Singer 1999;
Provost & Fawcett 1997; Swets 1988) are used to visual-
ize relative classifier performance to determine the “best”
classifier based on comparing the rate of correctly classified
positive examples to the rate of incorrectly classified pos-
itive examples for a particular class. The AUC (Area un-
der the ROC Curve) (Ling, Huang, & Zang 2003; Caruana
& Niculescu-Mizil 2004) produces a single scalar measure
to rank classifiers based on how they dominate each other.
The ROC curves are shown to be insensitive to the cost of
classification (the penalty of miss-classification), therefore,
Cost Curves were proposed in (Drummond & Holte 2000;
2004) to introduce costs as a factor in comparing the perfor-
mance of classifiers.

The above measures fail to answer the question, addressed
in (Goutte & Gaussier 2005): given a classifier and its re-
sults on a particular collection of data, how confident are
we on the computed precision, recall, or F-score? The
work in (Goutte & Gaussier 2005) presents a probabilis-
tic interpretation of precision, recall, and F-score to com-
pare performance scores produced by two information re-
trieval systems. In this case, such work remains proba-
bilistic and makes several assumptions of probability dis-
tributions. (Yeh 2000) reports; when comparing differences
in values of metrics like Recall, Precision, or balanced F-
score, many commonly used statistical significance tests un-

Table 3: Marijuana users/non-users and matched controls
with (+) or without (-) sleeping difficulties.

user (+) user (-) total

non-user (+) 4 9 13
non-user (-) 3 16 19

total 7 25 32

derestimate the differences of their results. (Drummond &
Holte 2004) derived confidence intervals to show statisti-
cal significance on cost curves by means of sampling and
re-sampling. The method is data driven without making
any parametric assumptions, e.g. probability distribution as-
sumptions. The sampling method in (Margineantu & Di-
etterich 2000) use bootstrap methods (Efron & Tibshirani
1993) to generate confidence intervals for classification cost
values. These methods may produce confidence level for the
evaluation, however, computing confidence intervals that are
narrow, reliable and robust is not a simple task (Motulsky
1995). (Newcombe 1998a) shows that the underlying sta-
tistical method of Tango’s produces more reliable and con-
sistent confidence intervals with good coverage probability.
Thus, we expect Tango to out perform any bootstrapping
methods (Newcombe 1998a). Comparing these with Tango
remains a future work item. In this work, we use the Tango’s
test to detect if a classifier that produces confident results or
not, rather than compute confidence intervals on the results.

Case-control Studies and Classification
A case-control study is a medical study to measure the re-
lationship between the exposure to a specific risk factor and
the development of a particular disease. The approach is
to compare the distributions of patient groups who do de-
velop the disease to those who do not. Such studies can
be conducted by clinical trials where groups of patients are
exposed to the risk factor and their development of the dis-
ease is monitored. However, clinical trials are costly, they
are difficult to design, and their resulting distributions of
disease development are based on exposure. Alternatively,
a case-control study examines exposure history of patients
who do or do not develop the disease. Supposedly, patients
in the control group are similar to those in the cases group
with the absence of the diseases, i.e. individual cases of
the disease are matched with individual controls based on
a set of attributes, e.g. age, gender, location, etc. (Mo-
tulsky 1995). The study becomes stronger when the anal-
ysis takes into consideration this paired matching. For
example, consider the control-case study in (Tango 1998;
Karacan, Fernandez, & Coggins 1976; Altman 1991) of 32
marijuana users matched with 32 controls with respect to
their sleeping difficulties shown in table 3. The subjects
are matched based on a set of relevant variables (age, lo-
cation, etc.) Each entry in table 3 is a number of pairs
(control and case pairs) where 4 matched pairs of marijuana
users and controls experienced sleeping difficulties, 9 con-
trols experienced sleeping difficulties while their matched
marijuana users did not experience sleeping difficulties, 3



controls did not experience sleeping difficulties while their
matching marijuana users did, and 16 pairs of marijuana
users and control subjects (non-users) did not experience
sleeping difficulties.

In this study, the interest lies in the statistical significance
for the difference in proportions experiencing sleeping dif-
ficulties. The two diagonal entries in Table 3 (entries a and
d in table 1), medically and statistically, provide no infor-
mation with respect to the difference between sleeping diffi-
culties and exposure to marijuana (Newcombe 1998a). The
results of sleeping difficulty in both entries are the same for
both users and non-users of marijuana. However, the two
off-diagonal entries (exposed controls that are not cases of
sleeping difficulties and non-exposed controls that are cases
of sleeping difficulties – entries b and c of table 1) are rele-
vant to the association between sleeping difficulties and the
exposure to marijuana. (Tango 1998) computes the 1-α con-
fidence intervals for this normalized difference b−c

n
in these

proportions (n is the total number of cases and controls). For
the above example, Tango’s produces the 95%-confidence
interval of [−0.02709, 0.38970]. By definition, the confi-
dence intervals produce the plausible values of the differ-
ence in proportions. Since the value 0 is inside the confi-
dence interval, then with 95% confidence it can be stated
that the difference b−c

n
may have a plausible value of zero

and that the two groups (users and non-users of marijuana)
exhibit sleeping difficulties with no statistically significant
difference. Therefore in the above example, the observed
difference is 9−3

32 = 18.75% is insignificant. Tango’s test is
presented in (Tango 1998) and is described in more details
in appendix A.

At this point, it is important to draw a parallel to clas-
sification in machine learning where a classifier is trained
on labeled examples and is tested on unseen labeled exam-
ples. Classifier evaluation involves estimating to what ex-
tent, if any, the resulting classifier is capable of predicting
the class labels of the unseen instances. In the context of
the above control-studies, the issue is measuring the differ-
ence between distributions of classifier predictions and class
labels. On way to assess this ability is to measure the differ-
ence in error proportions between instance labels and classi-
fier predictions by using Tango’s test. In other words, when
taking the case-control approach to classification, testing ex-
amples undergo two classifications, labels and predictions.
The two classifications may produce identical labels (true
positives or true negatives) and/or different labels (false pos-
itives and false negatives). The issue of evaluation becomes:
at a particular level of confidence (95%), is there a statis-
tically significant difference between the error proportions
of classifications. This is parallel to analyzing the error dif-
ference of exhibiting sleeping difficulties between users and
non-users of marijuana. In this context, this method can
evaluate binary classifiers where the positive class is a pos-
itive indication of the presence of a particular disease or a
particular condition.

Experimental results
This section presents our experimental design with a brief
review of our data sets followed by a discussion of our ex-

Table 4: UCI datasets used and their class distributions.

# Dataset Attr. Train +/- Test +/-
1 WPBC 34 151/47 c. valid.10
2 WBCD 11 458/241 c. valid.10
3 Pima Diabetes 9 500/268 c. valid.10
4 Echocardiogram 13 50/24 c. valid.10
5 Hepatitis 20 32/123 c. valid.10
6 Hypothyroid 26 151/3012 c. valid.10
7 WDBC 31 212/357 c. valid.10
8 Thyroid (euthy.) 26 293/2870 c. valid.10
9 Thyroid (dis) 30 45/2755 13/959
10 Thyroid (sick) 30 171/2629 60/912
11 SPECT 23 40/40 15/172
12 SPECTF 45 40/40 55/214

perimental results. The objective is to compare the perfor-
mance of four classifiers reported by accuracy, recall (true
positive rate), false positive rate, precision, and F measures
to that reported by Tango. We use Tango’s confidence in-
tervals to measure the significance of the difference in error
fractions b−c

n
between predictions made by the four classi-

fiers and class labels at the 95%-confidence level. Thus, a
classifier is considered 95%-confident (✔) when its corre-
sponding Tango’s 95%-confidence interval includes the zero
value. Otherwise, the observed difference is deemed statisti-
cally insignificant. Using the Weka 3.4.6 software (Wit-
ten & Frank 2005) on our datasets, we build four classifiers;
a decision stump (S), a decision tree (T), a random forest (F),
and a Naive Bayes (B). The rationale is to build classifiers
for which we can expect a ranking of their relative perfor-
mance. A decision stump built without boosting is a decision
tree with one test at the root (only 2 leaf nodes) and is ex-
pected to perform particularly worse than the decision tree.
Relatively, a decision tree is a stronger classifier because its
tree is more developed and has more leaf nodes which cover
the training examples. In theory, multiple tests on the data
should produce a classifier better than performing a single
test. The random forest classifier is a reliable classifier and
is expected to outperform a single decision tree. Finally, the
naive Bayes tends to minimize classification error and is ex-
pected to perform well when trained on balanced data.

Our data sets, listed in table 4, are selected from the UCI
Machine Learning repository (Newman et al. 1998). The
data consists of records that describe characteristics of a
class in a two class problem (positive and negative). The
data sets are grouped into three groups based on their class
distributions of positive and negative examples. The first
two groups have no testing examples, therefore, we use
cross-validation test method of 10 folds. The third group
of data sets has test sets that are severely imbalanced. The
experimental results are presented in two tables. Table 5
presents the performance of our classifiers on our data sets
as evaluated by the Accuracy (Acc.), Recall (Rec.) or true
positive rate, Precision (Prec.), and F score. The table also
shows which classifiers are found to be confident by Tango
(indicated by ✔). Table 6 shows the performance evaluation



of the same classifiers on the same data sets as measured
by Tango’s 95%-confidence intervals. The table also shows
the entries to each of the confusion matrices (a, b, c, d as de-
scribed in table 1) along with the observed b−c

n
.

Consider the evaluation results in both tables for data set
#1. We observe that (S) shows very good performance val-
ues in table 5. This is contradicted by Tango in table 6 where
(S) shows the widest confidence intervals with a significant
observed difference. We examine the corresponding confu-
sion matrix (a, b, c, d entries in table 6) to see that (S) pre-
dicts a positive class for all examples (b = d = 0). This
is a situation that cannot be captured from table 5, unless,
one considers the FP rate because it is related to the a poor
performance on the negative class. On the same data set, (B)
shows a much less FP rate with significantly lower scores in
table 5. This is due to its error on both classes (both b and
c are higher). Alternatively, Tango, in table 6, indicates that
(T) is the confident classifier. When we consider the con-
fusion matrices shown in table 6, we see that Tango’s test
detects significant increases in classification errors on either
one of the two classes (when either b or c is significantly
higher). In fact, Tango’s test is designed to favor those clas-
sifiers that have lower classification errors in both classes.
This criteria imposes accuracy constraints that prevents clas-
sifiers such as (S) from obtaining high evaluation ranks.

For data sets #5 and #9, consider the confusion matrices
(entries a, b, c, d in table 6) of all four classifiers. If we com-
pare their corresponding a

a+b
and d

c+d
, we see that all clas-

sifiers perform significantly better on the negative class than
on the positive class. In table 5, their accuracies remains
high. Their FP rates, recall, precision, and F scores are rel-
atively low. Accuracy, in this case, is inappropriate due to
the significantly higher number of negative examples while
recall, precision, and F scores are computed for the positive
class only. In fact, Tango finds that (B) on set #5 and (T)
on set # 9 produce reliable classifiers that have the least ob-
served b−c

n
difference. Their corresponding F scores are the

highest on each set respectively. Furthermore, accuracy can
be inappropriate in other circumstances. For instance, con-
sider data set #9. The performance of classifier (S) is vary
poor in table 5, yet its accuracy remains high. When looking
at the same row in table 6, we see that (S) classified all in-
stances in the negative class but due to the severe imbalance,
the accuracy on the negative class becomes sufficient for (S)
to obtain a high accuracy score.

On data sets # 2, 4, 6, 7, 8, and 10, we see that most of
the scores in table 5 are relatively high, in particular, the F
scores. In addition, the highest F scores of classifiers, in
each set in this group, are found to be confident by Tango.
If we consider the confusion matrices for these classifiers on
these sets in table 6, we see that most of them perform well
on both classes and their errors (b and c) are low. We can
see that Tango favors those classifiers that produces lower
values of error on both classes. Furthermore, Tango’s loses
confidence in those classifiers that produce a significant er-
ror on only one of the two classes. This loss of confidence
appears to correspond with lower F scores in table 5. How-
ever, the values of those confident F scores appears to vary
for different data sets. For example, an F score of 80.2% for

(T) on set # 3 is confident but 86.2% F score is not confident
for (F) on data set # 10. In addition, on data set # 2, (T) has a
confident F score of 95.7% while (B) has 98% F score with
no confidence. This is explained by comparing their corre-
sponding b − c values shown in table 6. Tango produces
more confidence for classifier with lower b−c

n
values.

Conclusions and Future work
A conclusive observation is that Tango shows a consistent
confidence with lower values of b−c

n
(in the absolute value)

which favors lower errors on both classes. The accuracy can
possibly be misleading or inappropriate. Recall alone is in-
sufficient and must take into account precision. The FP rate
is helpful when combined with some other metric (e.g. re-
call). However, the question remains: for evaluation, which
metric should one consider? The answer is not necessar-
ily obvious and requires an extensive understanding of the
metric and its shortcomings. The F score alone is not suffi-
cient (data set #1). In this work, we propose using Tango’s
test to assess classification errors on both classes. Our ex-
periments show that standard machine learning evaluation
metrics, namely, accuracy, recall, false positive rate, pre-
cision, and F score are unable to single-handedly provide
confidence in their evaluation results. Tango provides a con-
sistent notion of confidence in the form of statistically sound
confidence intervals on the difference in classification error.
Our subsequent work will extend our comparisons to include
ROC curves and cost curves in search for an improved and
confident evaluation measure for supervised, and possibly
for unsupervised, classification.
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Table 5: Accuracy (Acc.), Recall (Rec.), FP rate, Precision
(Prec.), and F-score for C = decision stump (S), decision
tree (T), random forest (F), or naive Bayes (B) on data sets
# (table 4). Confident classifiers by Tango are ✔.

# C Acc. Rec. FP Rate Prec. F Tango

1 S 76.3 100 100 76.3 86.5
T 75.8 85.4 55.3 83.2 84.3 ✔
F 79.3 96.7 76.6 80.2 87.7
B 67.2 71.5 46.8 83.1 76.9

2 S 88.3 83.0 1.7 99.0 90.3
T 94.4 95.4 7.5 96.0 95.7 ✔
F 96.0 96.5 5.0 97.4 96.9 ✔
B 97.4 96.7 1.2 99.3 98.0

3 S 71.9 79.6 42.5 77.7 78.7 ✔
T 73.8 81.4 40.3 79 80.2 ✔
F 72.5 83.6 48.1 76.4 79.8
B 76.3 84.4 38.8 80.2 82.3 ✔

4 S 94.6 96.0 8.3 96.0 96.0 ✔
T 96.0 98.0 8.3 96.1 97.0 ✔
F 100 100 0.0 100 100 ✔
B 94.6 98.0 12.5 94.2 96.1 ✔

5 S 77.4 6.3 4.1 28.6 10.3
T 83.9 43.8 5.7 66.7 52.8
F 83.2 37.5 4.9 66.7 48.0
B 84.5 68.8 11.4 61.1 64.7 ✔

6 S 97.4 94.7 2.5 65.6 77.5
T 99.2 91.4 0.4 92.6 92.0 ✔
F 99.0 88.7 0.5 90.5 89.6 ✔
B 97.9 77.5 1.1 78.5 78.0 ✔

7 S 88.9 77.8 4.5 91.2 84.0
T 93.2 92.5 6.4 89.5 91.0 ✔
F 95.1 93.4 3.9 93.4 93.4 ✔
B 93.0 89.6 5.0 91.3 90.5 ✔

8 S 94.4 92.2 5.3 63.8 75.4
T 97.9 87.0 1.0 89.8 88.4 ✔
F 97.9 87.7 1.1 89.2 88.5 ✔
B 84.4 89.8 16.2 36.1 51.5

9 S 98.7 0.0 0.0 0.0 0.0
S 98.3 23.1 0.7 30.0 26.1 ✔
F 98.6 7.7 0.2 33.3 12.5
B 94.3 30.8 4.8 8.0 12.7

10 S 96.0 95.0 3.9 61.3 74.5
T 98.8 86.7 0.4 92.9 89.7 ✔
F 98.5 78.3 0.2 95.9 86.2
B 93.5 73.3 5.2 48.4 58.3

11 S 61.5 86.7 40.7 15.7 26.5
T 75.4 73.3 24.4 20.8 32.4
F 76.5 80.0 23.8 22.6 35.3
B 74.9 66.7 24.4 19.2 29.9

12 S 66.9 85.5 37.9 36.7 51.4
T 77.3 85.5 24.8 47.0 60.6
F 78.8 92.7 24.8 49.0 64.2
B 74.0 92.7 30.8 43.6 59.3

Table 6: Tango’s 95%-Confidence Intervals and b−c
n

for C
= decision stump (S), decision tree (T), random forest (F),
or naive Bayes (B) on data sets # (table 4). (a,b,c,d) is a
confusion matrix. Confident classifiers by Tango are ✔.

# C (a,b,c,d) Tango’s CI b−c
n

1 S (151,0,47,0) [-30.1,-18.4] -23.7
T (129,22,26,21) [-9.0,5.0] -2.0 ✔
F (146,5,36,11) [-22.0,-9.9] -15.7
B (108,43,22,25) [ 2.7,18.5] 10.6

2 S (380,78,4,237) [8.3,13.2] 10.6
T (437,21,18,223) [-1.4, 2.3] 0.4 ✔
F (442,16,12,229) [-1.0, 2.2] 0.6 ✔
B (443,15,3,238) [0.6, 3.1] 1.7

3 S (398,102,114,154) [-5.3, 2.2] -1.6 ✔
T (407,93,108,160) [-5.6, 1.7] -2.0 ✔
F (418,82,129,139) [-9.8,-2.4] -6.1
B (422,78,104,164) [-6.9, 0.1] -3.4 ✔

4 S (48,2,2,22) [ -7.1,7.1] 0.0 ✔
T (49,1,2,22) [ -8.2,4.9] -1.4 ✔
F (50,0,0,24) [ -4.9,4.9] 0.0 ✔
B (49,1,3,21) [-10.1,3.8] -2.7 ✔

5 S (2,30,5,118) [ 9.3,23.6] 16.1
T (14,18,7,116) [ 0.8,13.8] 7.1
F (12,20,6,117) [ 2.8,15.9] 9.0
B (22,10,14,109) [-9.2, 3.8] -2.6 ✔

6 S (143,8,75,2937) [-2.7,-1.6] -2.1
T (138,13,11,3001) [-0.3, 0.4] 0.1 ✔
F (134,17,14,2998) [-0.3, 0.5] 0.1 ✔
B (117,34,32,2980) [-0.5, 0.6] 0.1 ✔

7 S (165,47,16,341) [ 2.8,8.3] 5.5
T (196,16,23,334) [-3.5,1.0] -1.2 ✔
F (198,14,14,343) [-1.9,1.9] 0.0 ✔
B (190,22,18,339) [-1.5,3.0] 0.7 ✔

8 S (270,23,153,2717) [ -5.0, -3.3] -4.1
T (255,38,29,2841) [ -0.2, 0.8] 0.3 ✔
F (257,36,31,2839) [ -0.4, 0.7] 0.2 ✔
B (263,30,465,2405) [-15.1,-12.5] -13.8

9 S (0,13,0,959) [ 0.8, 2.3] 1.3
S (3,10,7,952) [-0.6, 1.3] 0.3 ✔
F (1,12,2,957) [ 0.3, 2.0] 1.0
B (4,9,46,913) [-5.4,-2.4] -3.8

10 S (57,3,36,876) [-4.8,-2.3] -3.4
T (52,8,4,908) [-0.3, 1.3] 0.4 ✔
F (47,13,2,910) [ 0.4, 2.1] 1.1
B (44,16,47,865) [-4.9,-1.6] -3.2

11 S (13,2,70,102) [-43.7,-29.3] -36.4
T (11,4,42,130) [-27.2,-14.1] -20.3
F (12,3,41,131) [-27.1,-14.3] -20.3
B (10,5,42,130) [-26.7,-13.4] -19.8

12 S (47,8,81,133) [-33.3,-21.2] -27.1
T (47,8,53,161) [-22.3,-11.6] -16.7
F (51,4,53,161) [-23.6,-13.4] -18.2
B (51,4,66,148) [-28.8,-17.8] -23.1
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Appendix A: Tango’s Confidence Intervals
Clinical trials, case-control studies, and sensitivity compar-
isons of two laboratory tests are examples of medical studies
that deal with the difference of two proportions in a paired
design. (Tango 1998) builds a model to derive a one-sided
test for equivalence of two proportions. Medical equivalence
is defined as no more than 100Δ percent inferior, where
Δ(> 0) is a pre-specified acceptable difference. Tango’s
test also derives a score-based confidence interval for the dif-
ference of binomial proportions in paired data. Statisticians

have long been concerned with the limitations of hypothesis
testing used to summarize data (Newcombe 1998b). Medi-
cal statisticians prefer the use of confidence intervals rather
than p-values to present results. Confidence intervals have
the advantage of being close to the data and on the same
scale of measurement, whereas p-values are a probabilistic
abstraction. Confidence intervals are usually interpreted as
margin of errors because they provide magnitude and preci-
sion. A method deriving confidence intervals must be a pri-
ori reasonable (justified derivation and coverage probability)
with respect to the data (Newcombe 1998b).

The McNemar test is introduced in (Everitt 1992) and has
been used to rank the performance of classifiers in (Diet-
terich 1998). Although inconclusive, the study showed that
the McNemar test has low Type I error with high power (the
ability to detect algorithm differences when they do exist).
For algorithms that can be executed only once, the McNemar
test is the only test that produced an acceptable Type I error
(Dietterich 1998). Despite Tango’s test being an equivalence
test, setting the minimum acceptable difference Δ to zero
produces an identical test to the McNemar test with strong
power and coverage probability (Tango 1998). In this work,
we use Tango’s test to compute confidence intervals on the
difference in classification errors in both classes with a min-
imum acceptable difference Δ = 0 at the (1-α) confidence
level. Tango must make few assumptions. (1) the data points
are representative of the class. (2) The predictions are rea-
sonably correlated with class labels. This means that the
misclassified positives and negatives are relatively smaller
than the correctly classified positives and negatives respec-
tively. In other words, the classifier does reasonable well on
both classes, rather than performing a random classification.

Entries a and d (in table 1) are the informative or the dis-
cordant pairs indicating the agreement portion (q11 + q22),
while b and c are the uninformative or concordant pairs rep-
resenting the proportion of disagreement (q12 + q21) (New-
combe 1998a). The magnitude of the difference δ in classifi-
cations errors can be measured by testing the null hypothesis
H0 : δ = q12 − q21 = 0. This magnitude is conditional on
the observed split of b and c (Newcombe 1998a). The null
hypothesis H0 is tested against the alternative H1 : δ �= 0.
Tango’s test derives a simple asymptotic (1-α)-confidence
interval for the difference δ and is shown to have good
power and coverage probability. Tango’s confidence inter-
vals can be computed by: b−c−nδ√

n(2 ˆq21+δ(1−δ))
= ±Zα

2
where

Zα

2
denotes the upper α

2 -quantile of the normal distribution.
In addition, ˆq21 can be estimated by the maximum likeli-

hood estimator for q21: ˆq21 =

√
W 2

−8n(−cδ(1−δ))−W

4n
where

W = −b − c + (2n − b + c)δ. Statistical hypothesis test-
ing begins with a null hypothesis and searches for sufficient
evidence to reject that null hypothesis. The null hypothesis
states that there is no difference (δ = 0). By definition, a
confidence interval includes plausible values of the null hy-
pothesis. Thus, if zero is not in the interval, then δ = 0 is
rejected. If zero is in the interval, then there is no sufficient
evidence to reject δ = 0, and the conclusion is that the dif-
ference can be of any value within the confidence interval at
the specified level of confidence (1-α).
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