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Abstract 
This paper presents a technique for evaluating the 
degree of correctness of structural models produced by 
Bayesian network learning algorithms. In this method, 
(1) Bayesian networks are generated pseudo-randomly 
using a chosen model distribution; (2) data sets of 
various sizes are produced using the generated 
networks; (3) the data sets are passed to learning 
algorithms; and (4) the network structures output by 
the learning algorithms are compared to the original 
networks. In the past, similar methods have used 
individually hand-selected networks rather than 
generating large families of networks and have focused 
on data sets with a large number of cases. 
 Sample results on several search-and-score 
algorithms are shown, and we discuss the use of 
domain-specific simulators for generating data which 
may be used to better evaluate the causal learning. 

Introduction 
Machine learning algorithms can be applied for either 
explanatory or predictive use. A predictive use of 
machine learning is an attempt to fill in unknown 
values in data. An explanatory use is an attempt to 
construct a model which can give a user insight into 
previously unknown relationships that are manifested 
in the data. Machine learning algorithms are 
commonly evaluated on their predictive power, as 
prediction accuracy can be unambiguously defined 
and measured. (For instance, (Cheng and Greiner 
1999) and (Friedman, Geiger, and Goldszmidt 1997) 
take this approach.) However, predictive power is not 
necessarily an indicator of explanatory value. 
 This paper presents a framework for the evaluation 
of explanatory value of a particular subset of machine 
learning algorithms: those that learn Bayesian 
networks (BNs). In particular, we will look at a 
framework for evaluating the ability of BN learning 
systems to learn network structure. Background 
information regarding Bayesian networks is presented 
in (Cooper and Herskovits 1992). To briefly 
summarize, a BN is a directed acyclic graph in which 
each node corresponds to a variable. The value of each 
variable in a BN “depends” (in a loose sense) on the 

values of its parents and is conditionally independent 
from the rest of its non-descendants given its parents. 
 A property of Bayesian networks which is desirable 
for explanatory use, but does not necessarily follow 
from their definition, is that the value of each attribute 
is a direct effect of the values of the attribute’s parents 
and a direct cause of the values of the attribute’s 
children. In practice, learning such causality from 
observational data requires many assumptions to hold 
(Spirtes, Glymour, and Scheines 2001, chapter 3), and 
in a typical interesting domain it is normal for many of 
these assumptions to fail. For example, while it has 
been shown that correct partial modeling of causality 
can still occur in the presence of unmeasured 
confounding variables (Spirtes, Glymour, and 
Scheines 2001, chapter 6), it must be known in 
advance that those confounding variables exist and the 
overall nature of their effects must be known. 
 Even though a Bayesian network may be unlikely to 
or even mathematically unable to model the true 
causality of a domain, a network which is partially 
incorrect may still provide valuable explanatory 
information. For example, even if the directionality of 
edges output by a learning algorithm is essentially 
random, it may still be the case that “nearby” nodes 
are more related than “distant” ones, and that an edge 
or short undirected path between two nodes signifies 
the existence, though not the true direction, of some 
close causal relationship. 
 A BN which provides a meaningful approximation 
of causality is a powerful and convenient view of 
interrelationships in the data. The degree to which the 
graph models the causality of the underlying process 
which generated the data can be considered the 
explanatory value of the network. This is distinct from 
its predictive power: it is possible that two different 
graphs will produce the same predictions of 
probability in all cases, yet one may still be a better 
depiction of the causal processes at work than the 
other.  
 To determine the degree to which a learned graph 
matches the relationships underlying the data, it is 
necessary that those actual relationships be known. 
Additionally, to thoroughly test an algorithm’s ability 



to learn graphs, it is necessary that many different 
known relationships be used. The supply of real-world 
domains in which all relationships are known is 
limited and arguably nonexistent, so rather than use 
real data it is necessary to artificially generate 
relationships and to produce artificial data conforming 
to them. The relationships found by a learning 
algorithm can then be compared to those used in 
generating the data; this comparison evaluates the 
learning algorithm’s ability to produce correct 
explanations over domains in which relationships 
resemble those from which the data were generated.  
 An approximation of the domain is thus used to 
measure the power of a method to find 
approximations, providing measures of the method’s 
correctness which are themselves approximate. This 
uncertainty is unavoidable; the only true yardstick to 
evaluate explanatory learning is a correct explanation, 
and if we have a correct explanation for a domain then 
we have no need to learn an explanation 
algorithmically. 
 In this paper, we present a process for performing 
this evaluation and some example results from 
applying the process to a small selection of fast, 
readily available BN learning algorithms. 

Method

Evaluation Method 
There are two major steps to the evaluation method. 
The first step is the generation of artificial data sets 
with known causal explanations. The second step is 
the comparison of these known explanations to the 
models produced by BN learning algorithms from the 
data sets. These two steps are automated and repeated 
many times to reach confident conclusions concerning 
the degree of correctness of the explanations produced 
by the algorithms, that is, the degree to which the 
learned model matches the model from which the data 
were generated. 
 The model space from which a data set is generated 
is the same model space which Bayesian network 
learning algorithms search: directed acyclic graphs 
(DAGs) embodying dependence relations and 
conditional probability tables (CPTs) parameterizing 
the specific relationships. 
 The results produced from the evaluation are 
dependent on the distribution from which the DAGs 
and CPTs used to generate the data are drawn. In 
order to evaluate learning algorithms for a specific 
real-world domain, it is logical to use a distribution 
which is believed similar to the distribution of causal 
relationships existing in actual data. This calls for 
using domain-specific simulators which embody 
domain knowledge to generate data for evaluating 
causal learning. Fortunately, many domains already 

have suitable simulators, e.g. the Gene Expression 
Simulation Project at the University of Pittsburgh for 
gene expression data (http://bioinformatics.upmc.edu/ 
GE2/index.html) and OPNET for computer 
networking data (http://www.opnet.com). The flow of 
causality between variables in data generated by these 
simulators can be easily determined for an appropriate 
featurization, and the data can be easily passed to 
learning algorithms. Thus, the algorithms can be 
evaluated for the degree to which their output network 
structure matches the causality believed to be present 
in the domain, without having to deal with the 
unidentified confounders present in real experiments 
or the cost of performing such experiments. 
 With a data set thus produced, learning algorithms 
are invoked to infer Bayesian networks from the data 
set. The DAG of each network (referred to afterward 
as the “learned DAG”) is compared with the DAG 
used in generating the data (referred to afterward as 
the “source DAG”) to produce numerous measures 
which can be compared between learning algorithms 
to evaluate their explanatory power. 
 For each pair of learned and source DAGs, various 
counts are computed, such as: 
• Edge true positive count (TPedge): The number of 

edges which exist in both the learned DAG and 
source DAG. 

• Edge flip count (Flipedge): The number of edges 
which would be true positives if they were pointing 
the other way. That is, the edge exists in the 
undirected version of the learned and source DAGs, 
but the direction of the edge is not consistent 
between the two. 

• Edge false positive count (FPedge): The number of 
edges which exist in the learned DAG but are not 
found in the source DAG in either forward or 
reversed form. 

• Edge true negative count (TNedge): The number of 
unordered pairs of distinct nodes which have no 
edge between them in either direction in either the 
learned or source DAG. If there are N nodes and no 
edges in either DAG, this count has its maximum 
value of (N² – N)/2. 

• Edge false negative count (FNedge): The number of 
edges which exist in the source DAG but are not 
found in the learned DAG in either forward or 
reversed form.

• Forward path count (Fpath): The number of pairs 
(A, B) such that a directed path exists from A to B 
in the source dag and a directed path from A to B 
exists in the learned DAG.  

After summing these counts over multiple 
experiments (in our case 100) to reduce random 
variance and build statistical confidence, metrics are 
computed, such as the following (all of which range 
from 0 to 1): 



• Directed edge sensitivity: [TPedge / (TPedge +
Flipedge + FNedge)]. This measures how well the 
algorithm can detect directed edges which should 
exist. The ideal value is 1. 

• Undirected edge sensitivity: [(TPedge +
Flipedge) / (TPedge + Flipedge + FNedge)]. 
This measures how well the algorithm can detect 
edges, forgiving errors which are purely of 
direction. The ideal value is 1. 

• Undirected edge precision: [(TPedge +
Flipedge) / (TPedge + Flipedge + FPedge)]. 
This measures how confident one can be that edges 
are genuine, forgiving errors of direction. The ideal 
value is 1. 

• Edge false positive rate: [FPedge / (TNedge +
FPedge)]. This measures how likely the algorithm 
is to detect an edge where none exists. The ideal 
value is 0. 

• Edge direction ratio: [TPedge / (TPedge +
Flipedge)]. This measures how well the algorithm 
determines the direction of an edge, given that it has 
correctly found the existence of one. The ideal 
value is 1. 

Much of this method is similar to the approach used in 
(Spirtes, Glymour, and Scheines 2001, chapter 5) to 
argue the relative merits of the PC, IG and SGS 
algorithms; we  introduce some metrics not present in 
that analysis. The evaluation method used in (Acid 
and de Campos 2003) is also similar to this method, 
but they generated data only from a few hand-picked 
models. In contrast, our method involves a larger 
number of models, generated to a given model 
distribution.  

Selected Learning Algorithms 
This method is applicable to any learning algorithm 
which produces a BN structure from a data set. Here 
we demonstrate it on a selection of algorithms of the 
search-and-score variety. These algorithms perform 
an incremental search over the space of possible 
DAGs to maximize a scoring function which 
approximates the fitness of the DAG with respect to 
the data. We examined three search methods and three 
scoring functions, yielding nine search-and-score 
combinations. We used the implementations of these 
algorithms that are found in the WEKA software 
package (Witten and Frank 1999).  
 The search methods we examined are basic hill-
climbing search, repeated hill-climbing search, and the 
classic greedy search method named K2 (Cooper and 
Herskovits 1992). 
 Hill-climbing search begins at some start state (in 
our case, a “naïve Bayes” graph in which one node is 
arbitrarily a parent of all others). It adds and removes 
edges one at a time such that each action taken 
maintains acyclicity and increases the score of the 

graph as much as possible, stopping when a graph is 
reached for which no single add or remove operation 
will further increase the score. 
 Repeated hill-climbing search executes multiple 
independent hill-climbing searches, each using a 
different random graph as a starting point, and returns 
the highest-scoring graph of those found. 
 K2 takes as an extra input an ordering of attributes. 
It iterates over the attributes in that order, considering 
only sets of preceding attributes as possible parents 
and adding the edges for the best-scoring set of 
parents. Thus, it only considers a subset of DAGs for 
which the given ordering is a valid topological sort. 
This is a substantially smaller space than the set of all 
possible DAGs, giving K2 a shorter computation time 
to find a good local maximum within that space. In 
our case, the ordering passed to K2 was random and 
independent of the ordering used in generating the 
causal DAG. 
 The three score functions we examined are BDeu, 
the “Bayesian metric” found in WEKA, and MDL. 
 BDeu (an abbreviation for “Bayesian Direchlet 
equivalent with uniform priors”) is the scoring 
function originally proposed in conjunction with K2 
(Cooper and Herskovits 1992). The theoretical basis is 
this: starting from the assumption that each possible 
structure has an equal prior probability of being 
correct regardless of how simple or complex it is, 
assign a score to a structure based on its probability of 
being correct given the data. There are more complex 
structures than simple ones, so a search using BDeu as 
its scoring function will tend toward relative 
complexity, adding more edges than the same search 
method using one of the other fitness functions 
considered. 
 WEKA’s Bayesian scoring function is similar to 
BDeu, but where BDeu assumes equal prior structure 
probabilities, WEKA BAYES also makes a substantial 
assumption concerning the distribution of probabilities 
in the CPTs. In particular, it acts as though in addition 
to the data presented it, there are extra cases 
containing equal proportions of every possible 
combination of values. The attributes thus appear 
more independent. The extra cases are given less 
weight than the real ones, but as our results show the 
difference they make in the learned graph is 
substantial. WEKA’s Bayesian scoring function adds 
fewer edges than BDeu but more edges than MDL.  
 MDL (an abbreviation for “Minimum Description 
Length”) is a scoring principle used in many contexts 
which rewards model simplicity (Rissanen 1978). The 
theoretical basis is minimization of the information-
theoretic bits needed to encode both the model and the 
deviation of the data from the model. Thus, simpler 
models and models that better fit the data are both 
rewarded, with a tradeoff between the two conditions. 
As a search algorithm for BNs, the restrictive 



tendency of MDL results in graphs with relatively few 
edges. 

Results on Selected Algorithms 
In order to explore and demonstrate this method, we 
tested each of the nine search/score combinations with 
60 groups of 100 small data sets each. Each group of 
100 was generated from a different combination of 
number-of-cases, number-of-attributes, and DAG 
distribution. An arbitrary distribution of models is 
explored here rather than a domain-specific one, as 
our intent here is to demonstrate the method itself and 
means of drawing results from it more so than any 
actual result. 
 The number of cases in each data set was varied 
among 5, 10, 25, 50, and 100. The number of 
attributes was varied among 5, 10, 25, and 50, with all 
attributes discrete and having three values. The 
distribution of BNs was varied among: 
• DAGs containing no edges (and thus all attributes 

independent of each other). Most of the metrics are 
undefined or constant in this case, but false positive 
rate is meaningful. 

• Sparse arbitrary DAGs limited to two parents per 
node. 

• Denser arbitrary DAGs limited to three parents per 
node. 

 The same arbitrary CPT construction algorithm was 
used for each distribution. All data generated were 
passed to the learning algorithms; no variables were 
kept hidden for this experiment. 
 For each of the 60 groups, we invoked 9 search-
and-score combinations (3 search methods × 3 score 
functions). We invoked each search method with the 
constraint that it assign no greater than 3 parents to 
any node, as the search time and memory usage are 
potentially exponential in the number of parents. The 
restrictions in the DAG distribution parameters 
ensured that this restriction would not place the 
correct model outside the constrained search space. 
The ordering passed to K2 was generated randomly, 
independently from the ordering used in the DAG 
generation. Repeated hill-climbing search was 
invoked to perform 10 iterations. The computation 
time for the experiment was dominated by the many 
runs of the learning algorithms; all other computation 
was negligible. 
 As the distribution of models was arbitrary, no 
significant conclusions regarding any specific domain 
can be drawn from this experiment. However, some 
statements about the relative character of the 
algorithms can be made, with the caveat that these 
observations may, in a given domain, vary.  
 The most essential observation to be drawn from 
the results is that the choice of scoring function is 
much more important to the results than the search 
method used to maximize that score. MDL achieved 
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Figure 1. Undirected edge precision and sensitivity, with 
trials marked by scoring heuristic. Note that each scoring 
heuristic has a distinct sensitivity/precision relationship. 
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Figure 2. Undirected edge precision and sensitivity, with 
trials marked by search method. Note the generally 

similar performance of the search methods. 



high precision at the expense of sensitivity, while 
BDeu made a tradeoff in the opposite direction. 
WEKA’s Bayesian scoring function provides both 
sensitivity and precision which lie between the other 
score algorithms. These characteristics are visible in 
Figure 1. As there are many reasons to create a BN, 
the scoring algorithm should be selected with an eye 
to one’s motivations in doing so. Depending on the 
objectives of the process, one’s preferences regarding 
the relative importance of sensitivity and precision 
will vary. 
 The choice of search method plays a smaller role. 
Counter to what might be expected, K2 performed 
relatively well despite the order of its search having 
been randomly constrained. We believe that this is due 
to the relatively thorough manner in which it examines 
its search space. Despite the extra work performed by 
WEKA’s repeated hill-climbing search, it did no 
better than single hill-climbing and frequently did 
worse. We believe that this is due to the randomness 
of the start states, as a random graph generated with 
no regard for prior DAG distribution is likely to be far 
from the correct (fairly sparse) model and thus likely 
to give the search many chances to hit a poor local 
maximum. The magnitude of all of these differences 
is, however, quite small compared to the differences 
introduced by the choice of scoring function. Figure 2 
plots sensitivity and precision by search. 
 As one would expect, the false positive rate and 
sensitivity of edge learning are related; if more edges 
are learned in total, more true edges will be learned 
and more false edges will be learned. Figure 3 shows 
the relationship between false positive rate and 
sensitivity by scoring heuristic. From this figure, it can 
be seen that undirected edge sensitivity [(true + 
flipped edges) / total edges in source DAG] is 
approximately bounded below by edge false positive 
rate [false positive edges / total non-edges in source 
DAG] but often exceeds the false positive rate. 
 Over the arbitrary distribution we chose and the 
search-and-score algorithms examined, it can be noted 
that the learning of direction appears consistently 
poor. Our edge direction ratio [true edges / (true + 
flipped edges)] never exceeded 0.77, and that was an 
outlier with the next-highest result being below 0.69. 
As the causality of our original model space was 
wholly arbitrary, these results are themselves arbitrary 
and serve solely to demonstrate the use of the metrics. 
If the model space were generated from a domain 
simulator, then this metric would indicate the degree 
to which edge directions output by the learning 
algorithm could be expected to model actual causality 
in that domain. 

Discussion
A Bayesian network is not solely a classification tool. 
A good Bayesian network can elicit relationships 

within the data that indicate correlation or suggest 
causality. Measuring the value of a Bayesian network 
for this purpose is not an easy task, and using 
classification accuracy of a target as the sole metric 
for the quality of a learning algorithm overlooks much 
of the actual worth of Bayesian network methodology. 
 We have outlined a method for evaluating Bayesian 
networks for their explanatory usefulness. The utility 
of an explanation is expressed in terms of the degree 
to which the learning algorithm’s output matches the 
causal processes underlying the data source. In order 
to use this method, an appropriate data source must be 
used; generally this data source would be derived 
using a simulator rather than real experiments, as only 
in a simulated environment can the underlying 
causality be fully known. Simulators which embody a 
great deal of domain knowledge already exist for 
many domains and can be exploited for evaluating 
learning over those domains. 
 Depending on the purpose of one’s experimentation 
and the type of explanatory information one seeks, it 
may be more important that the network contain many 
edges of potential relevance or that those edges within 
the network are very likely to be relevant. This 
tradeoff between sensitivity and precision in edge 
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Figure 3. Undirected edge sensitivity and false positive 
rate, with trials marked by scoring heuristic. Each 

scoring heuristic has distinct behavior. The four bands 
of BDeu correspond to the number of attributes in the 
network, with the highest band corresponding to the 

smallest number of attributes (5). 



learning is an essential characteristic to be considered 
in choosing algorithms, and the method here described 
can aid in that selection. 
 Another dimension of explanatory utility exists in 
the process used to explore the network after it is 
constructed. A graph which provides a sufficiently 
accurate model may still fail as an explanation if the 
tools used to visualize that graph fail to express it 
clearly; we hold such considerations outside the scope 
of this paper, except to briefly note that graphs with 
fewer edges are often easier to visualize well. 
 In the presented experiment we used data sets with 
a small number of cases, in contrast to much research 
which considers asymptotically large data [for 
instance, (Cheng, Bell, and Liu 1997) and most of the 
theorems of (Spirtes, Glymour, and Scheines 2001)]. 
Our method can explore the behavior of learning 
algorithms over a wide continuum of data set sizes. 
Similarly, while we revealed all variables of all data 
points to the learning algorithms here, variables could 
be just as easily hidden, allowing systematic 
exploration of the behavior of learning algorithms in 
the presence of unmeasured confounders. 
 This experiment only considered algorithms which 
use a search and score approach to output a single 
fully directed graph. These algorithms are easy to 
apply and computationally fast, but they are not a 
complete picture of Bayesian network structure 
learning. Other approaches can also be explored using 
the presented methodology by varying a different 
selection of parameters to the algorithms and slightly 
modifying some metrics. Such approaches include 
algorithms which search for families of graphs (Pearl 
and Verma 1991) and algorithms which search 
explicitly over conditional independence statements 
(Cheng, Bell, and Liu 1997). It may be that in some 
important domains search-and-score algorithms are 
particularly strong or weak compared to others, and it 
is almost certainly the case that learning algorithms 
incorporating domain-specific knowledge have the 
potential to outperform general-purpose ones within 
their domain. By harnessing domain-specific 
simulators, this too can be tested. 
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