
ITSA*: Iterative Tunneling Search with A*

David A. Furcy
University of Wisconsin

Computer Science Department
800 Algoma Boulevard

Oshkosh, WI 54901-8643
furcyd@uwosh.edu

Abstract

This paper describes a new approach to anytime heuristic
search based on local search in the space of solution paths.
This work makes two contributions. First, we introduce a
new local optimization algorithm called Iterative Tunneling
Search with A* (ITSA*) that explores the neighborhood of
a given solution path in order to find shortcuts and thus a
shorter overall path. Second, we introduce a new anytime
heuristic search algorithm called ABULB that performs a
full-fledged local (or neighborhood) search with restarts. AB-
ULB uses a variant of beam search called BULB to gener-
ate an initial path and ITSA* to locally optimize this path.
When a minimum is reached, ABULB restarts BULB to ob-
tain the next path to optimize, etc. The successive paths out-
put by BULB and ABULB have smaller and smaller costs.
We present empirical results with this new anytime algorithm
in two standard benchmark domains.

Introduction
Local or neighborhood search is a popular approach for solv-
ing combinatorial optimization problems in both the Oper-
ations Research (OR) and Artificial Intelligence (AI) com-
munities (Russell & Norvig 1995; Aarts & Lenstra 1997;
Papadimitriou & Steiglitz 1998; Voss et al. 1999; Ribeiro &
Hansen 2001). However, local search methods are typically
not applied to the shortest-path problem in a graph. One
reason is that, unlike in typical optimization problems such
as the Traveling Salesperson Problem or TSP (Lawler et al.
1985), finding any solution (even a high-cost solution) to
a shortest-path problem may be expensive since it requires
search. Second, the solution space contains structured el-
ements namely paths, not states, like in standard heuristic
search. As a result, it is not trivial to define a good neigh-
borhood structure on paths (namely one that induces a sur-
face with few local optima) that can be searched efficiently.
Third, since building a starting solution (any solution) to the
shortest-path problem is computationally expensive, it is an
open issue how to efficiently identify additional restarting
solutions to get the search agent out of local optima.

In this paper, we describe a new anytime heuristic search
algorithm called ABULB (for Anytime BULB). It is a lo-

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

cal search algorithm1 in the space of solution paths that ad-
dresses the three aforementioned issues. In (Furcy 2004),
we introduced BULB, a variant of beam search with back-
tracking and showed that it efficiently finds sub-optimal so-
lutions to large heuristic search problems. First, ABULB
uses BULB to generate an initial solution.

Second, we define a neighborhood structure on the set of
solution paths. The neighborhood of a path is limited by the
amount of available memory and contains the set of nodes
that are close to the path found by BULB, where the close-
ness of two paths is defined in terms of the smallest number
of edges connecting the states on one path to the states on
the other path. This neighborhood is built up and searched
by an algorithm called Iterative-Tunneling Search with A*
(or ITSA*, pronounced It’s a star!). In the local optimiza-
tion loop, ITSA* is repeatedly executed to find better and
better paths.

Third, when a local optimum is reached, ABULB restarts
BULB in order to find a new solution path to start from.
This path is then locally optimized with ITSA*, and the
process repeats until time runs out.

The two main contributions of this work are the local
optimization algorithm called ITSA* and the anytime
extensions of the BULB algorithm. We also combined
both approaches into a local search algorithm with restarts
called ABULB. Both ITSA* and ABULB are anytime
algorithms, which means that they find a first, possibly
sub-optimal path quickly and then keep searching for and
output solution paths with lower and lower costs until
time runs out (Dean & Boddy 1988; Boddy & Dean 1989;
Boddy 1991).

In the rest of the paper, we first give an overview of the
BULB algorithm. Then, we introduce the idea of iterative
tunneling and describe its implementation in the ITSA* al-
gorithm. In the following section, we report on empirical
results with two variants of ITSA*. Next, we discuss sev-

1Note that local or neighborhood search algorithms are some-
times called meta-heuristics, e.g., (Voss et al. 1999; Ribeiro &
Hansen 2001), where the word heuristics refers to approximation
algorithms. In contrast, heuristic search algorithms like A* (Hart,
Nilsson, & Raphael 1968) find optimal solutions using heuristic
functions.

eral ways of transforming BULB into an anytime heuristic
search algorithm, namely by 1) simply letting it run after
it finds a solution path, 2) restarting it with a different pa-
rameter setting, or 3) interleaving its execution with ITSA*.
Finally, we discuss related and future work, and conclude.

The BULB Algorithm
An initial solution on which to perform local optimization is
needed. In the shortest-path problem, we must expend some
effort searching for an initial solution, as opposed to say, in
the TSP, where any permutation of the cities is a valid initial
solution. To quickly find an initial solution path, we may
use any one of a number of approximation algorithms. The
most well-known approximation heuristic search algorithms
are Weighted A* or WA* (Pohl 1970; 1973; Gaschnig 1979;
Pearl 1985) and beam search (Bisiani 1987; Winston 1992;
Zhou & Hansen 2004). In (Furcy 2004), we showed that
beam search scales up to larger problems and finds better
solution paths than improved variants of WA* described in
(Furcy & Koenig 2005b). We thus choose beam search. In
(Furcy & Koenig 2005a), we transformed beam search into
a complete algorithm called BULB and showed that it scales
up to larger problems than beam search. In this work, we use
BULB to generate the initial solution path to be optimized.

BULB makes beam search complete by adding backtrack-
ing. One way to define beam search is to modify breadth-
first search so that it only keeps at most a constant num-
ber B of nodes at each level of its search tree. B is called
the beam width. One iteration of beam search expands all
the nodes at the current level. The set of B nodes with the
smallest heuristic values among the successors make up the
beam at the next level down in the search tree. Since there
are at most B nodes at each level in the tree, the memory
consumption of beam search is linear in the search depth.
But because it prunes all but the best B nodes at each level,
beam search may prune all the paths to the goal. When
this happens, beam search will terminate without finding a
solution path because either the next level of the tree be-
comes empty (all the successors are already in memory) or
the memory is full. In either case, misleading heuristic val-
ues led beam search astray. To remedy this problem, BULB
adds backtracking to beam search. Since heuristic values
are typically less informed at the top of the tree (which is
far from a goal state) and chronological backtracking (like
in depth-first search) takes a long time to backtrack all the
way to the top, BULB uses a different backtracking strat-
egy based on limited-discrepancy search (Harvey & Gins-
berg 1995), which backtracks to the top of the tree much
faster than depth-first search. In short, BULB generalizes
beam search to beam search with backtracking and limited
discrepancy search to beam widths larger than one. For ad-
ditional details on BULB, the reader is referred to (Furcy &
Koenig 2005a).

Iterative Tunneling
In this section, we first motivate our use of local optimiza-
tion. Then we describe the idea of iterative tunneling and the
associated neighborhood structure it imposes on the space of

Figure 1: Solutions found (unbroken line) and missed
(dashed line) by WA* with f = g + 5 × h in a grid-world
problem.

solution paths. Finally, we describe one implementation of
iterative tunneling which we call ITSA*.

Motivation
Approximation algorithms sacrifice solution quality for re-
duced memory consumption and run-time. For example,
WA* and beam search (and thus BULB as well) rely heavily
on the heuristic function since they delay the expansion of
nodes with the highest heuristic values (in the case of WA*)
or even prune them altogether (in the case of beam search
and BULB). All these approximation algorithms thus have
a strong greedy flavor. While greedy search with perfect in-
formation leads straight to the goal, it likely leads the search
astray when combined with imperfect heuristic values. Nev-
ertheless, WA*, beam search, and BULB are often able to
eventually reach the goal. But these two characteristics of
approximation algorithms together imply that the solution
path they find is often convoluted.

It is therefore possible that approximation algorithms
overlook shorter solutions that are actually close (in the
space of solution paths) to the area of the search space that
they have explored. This possibility is confirmed empiri-
cally. For example, Figure 1 depicts a concrete example of
this situation for WA* with the Manhattan distance heuristic
in a grid-world domain, whose two-dimensional structure
enables a direct visualization of its search frontier. Obsta-
cles are black, expanded states are light gray, and the start
and goal states are dark gray (with the goal on top). The fig-
ure illustrates how the convoluted path found is longer (fifty
steps) than but close to the optimal path (thirty steps). Such
patterns are also common for beam search and BULB as our
empirical evaluation of local optimization demonstrates (see
below).

Local Optimization with Iterative Tunneling
This observed behavior of approximation algorithms led us
to consider the following approach. In order to avoid leav-
ing some interspersed regions of the state space unexplored,
we propose to search systematically the neighborhood of a
given solution path P , find a minimum-cost path P ′ in this

Iterations of
Iterative Tunneling

Minimum−Cost Path
Found After the

Third

First,

Second, and

G

S

S

G

States Newly

Third

First,

Second, and

Expanded During the

Iterations of
Iterative Tunneling

Start State

Goal State

Other State

Figure 2: Iterative tunneling defines the neighborhood of a
path.

neighborhood, then compute and search the neighborhood
centered around P ′, and repeat the process until a local min-
imum is found. The size of each neighborhood region is
equal to the maximum number of nodes that fit in memory.
Each neighborhood is built incrementally by including all
nodes that can be reached in one step from any node already
in the neighborhood, starting with the initial neighborhood
containing the set of nodes on the current solution path P .
In other words, the neighborhood of a path P may be built
using a breadth-first search seeded with all the states on P .
The analogy we use to describe this process is that of itera-
tive tunneling: If the solution path from start S to goal G is
seen as a narrow tunnel dug through the search space, then
each iteration enlarges the diameter of the tunnel until there
is no available space to heap any additional evacuated debris,
assuming memory is viewed as a container for debris/nodes
(see Figure 2).

ITSA*

Given the neighborhood of a solution path P , we want to
locally optimize P by finding the shortest path from start
to goal entirely contained in its neighborhood. We could
first identify the set of states that make up the neighborhood
with a breadth-first search seeded with all the states on P
and that terminates when memory is full, and then search
this neighborhood with A*. However, this approach has two
drawbacks. First, it requires two full explorations of the
neighborhood, one with breadth-first search and one with
A*. Second, because A* delays the expansion of states with
large heuristic values, some states in the neighborhood may
never be visited by A* and therefore need not be stored in
the neighborhood at all. Unfortunately, these states cannot
be identified during the initial breadth-first search.

To address both problems, we propose to interleave the
building of the neighborhood with its search in order to take
advantage of the pruning power of A* during construction

and thus have the neighborhood contain as many promising
states as possible. We call the resulting algorithm ITSA* for
Iterative Tunneling Search with A* (pronounced It’s a star!).
ITSA* iteratively performs modified A* searches from the
start to the goal. ITSA* assigns each generated state s an
iteration number. This number corresponds to the distance
from the initial path P to s computed as the smallest number
of edges on a path from any state on P to s. Once assigned
to s when it is first generated, this number never changes.
Before the call to ITSA*, all states on P (and their other
successors, respectively) are stored in memory with an iter-
ation number equal to zero (one, respectively). Then A* is
run repeatedly with an increasing iteration number (starting
at one) until memory runs out. At the beginning of each it-
eration, the OPEN list is initialized with the start state. A*
proceeds as usual except that 1) it only inserts into the OPEN
list states whose number is less than or equal to the itera-
tion number, and 2) each newly generated state is assigned
a number equal to one more than the number of its parent
in the search tree. Each iteration ends when A* is about to
expand the goal state (except possibly for the last iteration,
which ends when the memory is full).

Instead of performing a full exploration of a pre-existing
neighborhood built with breadth-first search, ITSA* per-
forms several A* searches over a region of the search space
that grows around P in a layered fashion. Only the last it-
eration of ITSA* is a complete A* search over the entire
neighborhood.

Empirical Evaluation of ITSA*
We evaluated the performance of ITSA* as a local optimiza-
tion algorithm in two standard benchmark domains, namely
the 48-Puzzle with the Manhattan distance heuristic and the
Rubik’s Cube with the PDB heuristic used in (Korf 1997).
We ran ITSA* on solution paths found by BULB in 50 ran-
dom instances for each domain2. We report the solution
quality output by ITSA* and its run-time, which we com-
pare to that of BULB (see Tables 1 through 4).

First, we discuss the performance of one-step ITSA* (see
Tables 1 & 2), where ITSA* is applied only once to the path
found by BULB. In each domain, the absolute run-time of
ITSA* remains approximately constant (always under ten
seconds) when compared to the run-time of BULB. Since
ITSA* searches a neighborhood whose size (i.e., its number
of states) is fixed by the available memory, its run-time is es-
sentially determined by the time it takes A* to search it. We
speculate that the differences in run-times for various values
of B result at least in part from the fact that ITSA* per-
forms varying numbers of iterations of A* depending on the
length (or equivalently the cost) of the starting solution path.
This effect is more prominent in the Rubik’s Cube domain,
but in either case, the relation between initial solution length
and run-time is not monotonic. Other factors influencing
run-times include the overhead of node generation and the
branching factor of the search space (both of which are
larger in the Rubik’s Cube than in the 48-Puzzle). The ap-
proximately constant run-time of one-step ITSA*, together

2Details of the empirical setup can be found in (Furcy 2004).

with the increasing run-time of BULB, explains why the rel-
ative increase in run-time of one-step ITSA* gets smaller as
B increases (i.e., as the starting solution cost decreases).

Similarly, the relative improvement in solution cost
achieved by ITSA* decreases as B increases. This trend
is explained by the fact that, as the initial path length de-
creases, the path itself becomes less convoluted. Conse-
quently, ITSA* has fewer opportunities to find shortcuts
within the neighborhood. In other words, high-quality so-
lutions are more likely to be (closer in solution quality to)
local optima in the space of solution paths and, not surpris-
ingly, ITSA* has a harder time improving on higher quality
solutions (ceiling effect).3

Second, we discuss the performance of multi-step ITSA*
(see Tables 3 & 4), where we apply ITSA* iteratively, first
to the path found by BULB, and then repeatedly to the best
path found during the previous execution of ITSA*. Multi-
step ITSA* can stop as soon as ITSA* returns its starting
path which is then a local minimum in the space of paths.
For efficiency reasons, instead of checking the path itself, we
only check its length. So we stop multi-step ITSA* when the
solution cost it returns is equal to that of its starting solution.

In both domains, the absolute run-time of multi-step
ITSA* tends to decrease as B increases. As the initial path
cost decreases, it is harder for local search to improve it and
ITSA* is called fewer times before it reaches a local min-
imum. In addition, since the run-time of BULB increases
with B, the relative increase in run-time of multi-step ITSA*
decreases as B increases. Finally, both the absolute and
relative improvements in solution quality decrease as B in-
creases because again, better solutions are harder to improve
on.

Local Search with Restarts
To get out of local minima, we need to find other solutions
to restart from. We modified BULB so that it outputs a se-
quence of paths whose costs get smaller and smaller. We call
the resulting algorithm Anytime BULB or ABULB. We in-
vestigated several anytime search schemes. The first version
of ABULB simply runs BULB until the first path is found
and then continues running with decreasing depth cutoffs
since every time it finds a new solution path P , ABULB
can prune all paths whose cost is larger than that of P . The
second version of ABULB stops BULB every time it finds
the first solution path with length say, L, and restarts it from
scratch with a new, larger beam width equal to M/L, where
M is the maximum number of nodes that can be stored in
memory. If all edges have uniform costs, then the length
of a path is the same as its cost and ABULB not only finds
shorter and shorter paths, it is also guaranteed to eventually

3The case B = 10 stands out in Table 2. With such a narrow
beam width, BULB reaches deeply into the search space and the
cost of the solution is over 100,000. Given that 1) the branching
factor of the Rubik’s Cube is approximately equal to 13 and 2)
the available memory can store up to 3 million nodes, ITSA* can
only perform one complete iteration of A* before memory runs out.
The neighborhood only extends as far as layer one and the relative
improvement in solution quality is thus low. Similarly, because
BULB is so slow in this case, ITSA*’s relative increase in run-time
is small.

40

50

60

70

80

90

100

0 200 400 600 800 1000

C
os

t D
ec

re
as

e
R

el
at

iv
e

to
 In

iti
al

 S
ol

ut
io

n
(p

er
ce

nt
)

Time in Seconds

ABULB 2.0
ABULB 2.1
ABULB 2.2

Figure 3: Combining ITSA* with ABULB version 2 in the
48-Puzzle (with 6 million nodes and B=5)

find the optimal path when given enough time. More de-
tails on these two variants of ABULB are available in (Furcy
2004) where we showed that the second variant of ABULB
decreases solution cost faster than the first variant. We thus
use ABULB version 2 from now on.

Up to this point, ABULB (version 2.0) does not use
ITSA*. One obvious way to combine ABULB with ITSA*
is to use ITSA* to locally optimize each solution produced
by ABULB. Since ABULB 2.0 restarts BULB from scratch
after each path is found, we can prune the current beam from
memory (except for the path itself) and thus make full use
of memory to store the neighborhood searched by ITSA*.
We refer to the combination of ABULB 2.0 with one-step
and multi-step ITSA* by the names ABULB 2.1 and 2.2,
respectively. ABULB 2.0 refers to plain vanilla ABULB.

Figure 3 contains the performance profiles of all three ver-
sions of ABULB in the 48-puzzle. Both versions of AB-
ULB using ITSA* outperform plain vanilla ABULB since
both decrease solution cost faster than ABULB 2.0. AB-
ULB 2.2 converges to lower-cost solutions than the other
two versions. Furthermore, in about 7 minutes and using
only the Manhattan distance heuristic, it finds solutions with
an average cost of 481, which is little more than twice the
estimated optimal cost. More detailed results and analyses
are available in (Furcy 2004).

Related and Future Work
The closest algorithms to ITSA* are LPA* and Joint (Ratner
& Pohl 1986), two local optimization algorithms that break
down a path into segments and optimize each segment with
a full A* search. Unlike ITSA*, these algorithms take two
parameters and are not memory-bounded. One approach left
for future work would use LPA* before ITSA* when BULB
outputs such a long solution that ITSA* cannot shorten it,
like when B = 10 in Table 2.

There exist only a few anytime heuristic search algorithms
to date. The most relevant ones are two variants of WA*.
First, Anytime A* (ATA*) (Hansen & Zilberstein 1996;
Hansen, Zilberstein, & Danilchenko 1997) is a variant of
WA* that does not stop after a solution is found. There-
fore, ATA* is to WA* as ABULB 1 is to BULB. Sec-

B BULB BULB + one-step ITSA*

time cost time (seconds) cost

(seconds) value increase over BULB value decrease over BULB

absolute relative absolute relative

5 0.1 11,737 5.7 5.6 5,600% 3,140 8,597 73%

10 0.9 36,282 6.7 5.8 644% 3,233 33,049 91%

100 6.1 14,354 12.2 6.1 100% 2,052 12,302 86%

1,000 7.3 1,409 12.8 5.5 75% 746 663 47%

10,000 21.7 440 27.7 6.0 28% 428 12 3%

Table 1: Performance of one-step ITSA* on paths found by BULB in the 48-Puzzle (with 6 million nodes in memory)

B BULB BULB + one-step ITSA*

time cost time (seconds) cost

(seconds) value increase over BULB value decrease over BULB

absolute relative absolute relative

10 96.9 108,804.8 100.7 3.8 4% 94,346.6 14,458.2 13%

100 5.1 1,893.9 7.9 2.8 56% 679.0 1,214.9 64%

1,000 7.4 275.8 10.2 2.8 38% 178.5 97.3 35%

10,000 13.8 53.6 18.5 4.7 34% 47.3 6.3 12%

50,000 39.2 31.2 46.0 6.8 17% 30.6 0.6 2%

70,000 51.1 30.0 57.3 6.2 12% 28.7 1.3 4%

100,000 74.8 28.1 81.3 6.5 9% 27.6 0.5 2%

120,000 127.2 26.0 134.8 7.6 6% 25.7 0.3 1%

Table 2: Performance of one-step ITSA* on paths found by BULB in the Rubik’s Cube (with 3 million nodes in memory)

ond, ARA* (Likhachev, Gordon, & Thrun 2004) repeat-
edly calls WA* with a different parameter setting. There-
fore, ARA* is to WA* as ABULB 2 is to BULB4 The
main limitation of these variants of WA* is that, unlike
ABULB, they are not memory-bounded. Therefore, both
algorithms can only solve problems that WA* can solve,
not including the 48-puzzle. All other anytime heuristic
search algorithms known to us are variants of depth-first
search, for example (Lawler & Wood 1966; Kumar 1990;
Zhang 1998), which do not scale well to general graph-
search problems with many transpositions and short cycles
like our benchmark domains.

Conclusion
In this paper, we describe a new approach to anytime heuris-
tic search based on local search in the space of solution
paths. The two main contributions are 1) a new local opti-
mization algorithm called ITSA* that explores the neighbor-
hood of a given solution path in order to find shortcuts and
2) a new anytime heuristic search algorithm called ABULB
that performs a neighborhood search with restarts. ABULB
uses a variant of beam search called BULB to generate an
initial path and ITSA* to locally optimize this path. When a
minimum is reached, ABULB repeatedly restarts BULB to
obtain the next path to optimize. Our empirical study shows
that this new anytime algorithm quickly and significantly re-
duces the solution cost in two standard benchmark domains.
For example, it solves the 48-Puzzle using only the Manhat-

4One difference between ARA* and ABULB 2 is that ARA*
reuses some of the search effort of the previous WA* search to
speed up the current iteration. Combining ideas in incremental
search with ABULB is an interesting direction for future research.

tan distance heuristic in a matter of minutes, with solution
costs that are no worse than twice the optimal cost.

References
Aarts, E., and Lenstra, J. 1997. Local Search in Combinatorial
Optimization. West Sussex, England: John Wiley & Sons.

Bisiani, R. 1987. Beam search. In Shapiro, S., ed., Encyclopedia
of Artificial Intelligence. New York : Wiley & Sons. 56–58.

Boddy, M., and Dean, T. 1989. Solving time-dependent planning
problems. In Proceedings of the International Joint Conference
on Artificial Intelligence, 979–984.

Boddy, M. 1991. Anytime problem solving using dynamic pro-
gramming. In Proceedings of the National Conference on Artifi-
cial Intelligence, 738–743.

Dean, T., and Boddy, M. 1988. An analysis of time-dependent
planning. In Proceedings of the National Conference on Artificial
Intelligence, 49–54.

Furcy, D., and Koenig, S. 2005a. Limited discrepancy beam
search. In Proceedings of the International Joint Conference on
Artificial Intelligence, 125–131.

Furcy, D., and Koenig, S. 2005b. Scaling up WA* with com-
mitment and diversity. In Proceedings of the International Joint
Conference on Artificial Intelligence, 1521–1522.

Furcy, D. 2004. Speeding up the convergence of online heuris-
tic search and scaling up offline heuristic search. Ph.D. thesis,
College of Computing, Georgia Institute of Technology, Atlanta
(Georgia). Available as Technical Report GIT-COGSCI-2004/04.

Gaschnig, J. 1979. Performance measurement and analysis of
certain search algorithms. Technical Report CMU-CS-79-124,
Computer Science Department, Carnegie-Mellon University. Ph.
D. Thesis.

Hansen, E., and Zilberstein, S. 1996. Anytime heuristic search:
Preliminary report. In Proceedings of the AAAI Fall Symposium

B BULB BULB + multi-step ITSA*

time cost time (seconds) cost

(seconds) value increase over BULB value decrease over BULB

absolute relative absolute relative

5 0.1 11,737 50.3 50.2 50,200% 2,562 9,175 78%

10 0.9 36,282 53.0 52.1 5,789% 1,808 34,474 95%

100 6.1 14,354 55.2 49.1 805% 1,159 13,195 92%

1,000 7.3 1,409 36.7 29.4 409% 674 735 52%

10,000 21.7 440 42.4 20.7 95% 426 14 3%

Table 3: Performance of multi-step ITSA* on paths found by BULB in the 48-Puzzle (with 6 million nodes in memory)

B BULB BULB + multi-step ITSA*

time cost time (seconds) cost

(seconds) value increase over BULB value decrease over BULB

absolute relative absolute relative

10 96.9 108,804.8 111.3 14.4 15% 94,346.6 14,458.2 13%

100 5.1 1,893.9 23.2 18.1 356% 578.5 1,315.4 69%

1,000 7.4 275.8 22.1 14.7 199% 156.8 119.0 43%

10,000 13.8 53.6 28.1 14.3 104% 45.3 8.3 15%

50,000 39.2 31.2 49.8 10.6 27% 30.4 0.8 3%

70,000 51.1 30.0 62.4 11.3 22% 28.7 1.3 4%

100,000 74.8 28.1 86.1 11.3 15% 27.5 0.6 2%

120,000 127.2 26.0 137.4 10.2 8% 25.7 0.3 1%

Table 4: Performance of multi-step ITSA* on paths found by BULB in the Rubik’s Cube (with 3 million nodes in memory)

on Flexible Computation in Intelligent Systems; Results, Issues
and Opportunities, 55–59.

Hansen, E.; Zilberstein, S.; and Danilchenko, V. 1997. Anytime
heuristic search: First results. Technical Report CMPSCI 97–50,
Department of Computer Science, University of Massachusetts,
Amherst (Massachusetts).

Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal basis for
the heuristic determination of minimum cost paths. IEEE Trans-
actions on Systems Science and Cybernetics SSC-4(2):100–107.

Harvey, W., and Ginsberg, M. 1995. Limited discrepancy search.
In Proceedings of the International Joint Conference on Artificial
Intelligence, 607–615.

Korf, R. 1997. Finding optimal solutions to Rubik’s cube using
pattern databases. In Proceedings of the National Conference on
Artificial Intelligence, 700–705.

Kumar, V. 1990. Branch-and-bound search. In Shapiro, S. C.,
ed., Encyclopedia of Artificial Intelligence. New York : Wiley,
2nd edition. 1000–1004.

Lawler, E., and Wood, D. 1966. Branch-and-bound methods: A
survey. Operations Research 14(4):699–719.

Lawler, E.; Lenstra, J.; Kan, A. R.; and Shmoys, D., eds. 1985.
The Traveling Salesman Problem. John Wiley and sons.

Likhachev, M.; Gordon, G.; and Thrun, S. 2004. ARA*: Anytime
A* with provable bounds on sub-optimality. In Proceedings of
Advances in Neural Information Processing Systems 16 (NIPS).

Papadimitriou, C., and Steiglitz, K. 1998. Combinatorial Op-
timization: Algorithms and Complexity. Mineola, New York:
Dover Publications.

Pearl, J. 1985. Heuristics: Intelligent Search Strategies for Com-
puter Problem Solving. Addison-Wesley.

Pohl, I. 1970. First results on the effect of error in heuristic
search. In Meltzer, B., and Michie, D., eds., Machine Intelligence,
volume 5. American Elsevier, New York. 219–236.

Pohl, I. 1973. The avoidance of (relative) catastrophe, heuris-
tic competence, genuine dynamic weighting and computational
issues in heuristic problem solving. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence, 20–23.

Ratner, D., and Pohl, I. 1986. Joint and LPA*: Combination of
approximation and search. In Proceedings of the National Con-
ference on Artificial Intelligence, 173–177.

Ribeiro, C., and Hansen, P., eds. 2001. Essays and Surveys in
Metaheuristics. Kluwer Academic Publishers.

Russell, S., and Norvig, P. 1995. Artificial Intelligence – A Mod-
ern Approach. Prentice Hall, first edition.

Voss, S.; Martello, S.; Osman, I.; and Roucairol, C., eds.
1999. Meta-Heuristics: Advances and Trends in Local Search
Paradigms for Optimization. Kluwer Academic.

Winston, P. 1992. Artificial Intelligence. Addison-Wesley, Read-
ing, MA, third edition.

Zhang, W. 1998. Complete anytime beam search. In Proceedings
of the National Conference on Artificial Intelligence, 425–430.

Zhou, R., and Hansen, E. 2004. Breadth-first heuristic search. In
Proceedings of the International Conference on Automated Plan-
ning and Scheduling, 92–100.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 2
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

