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Abstract

The scalability of graph-search algorithms can be greatly
extended by using external memory, such as disk, to store
generated nodes. We consider structured duplicate detec-
tion, an approach to external-memory graph search that limits
the number of slow disk I/O operations needed to access
search nodes stored on disk by using an abstract represen-
tation of the graph to localize memory references. For graphs
with sufficient locality, structured duplicate detection outper-
forms other approaches to external-memory graph search. We
develop an automatic method for creating an abstract repre-
sentation that reveals the local structure of a graph. We then
integrate this approach into a domain-independent STRIPS
planner and show that it dramatically improves scalability for
a wide range of planning problems. The success of this ap-
proach strongly suggests that similar local structure can be
found in many other graph-search problems.

Introduction
The scalability of graph-search algorithms such as breadth-
first search, Dijkstra’s algorithm, and A*, is limited by the
memory needed to store generated nodes in the Open and
Closed lists, primarily for use in detecting duplicate nodes
that represent the same state. Although depth-first search of
a graph uses much less memory, its inability to detect du-
plicates leads to an exponential increase in time complex-
ity that makes it ineffective for many graph-search prob-
lems. Recent work shows that the scalability of breadth-
first and best-first search algorithms can be significantly
improved without sacrificing duplicate detection by storing
only the frontier nodes, using special techniques to prevent
regeneration of closed nodes, and recovering the solution
path by a divide-and-conquer technique (Korf et al. 2005;
Zhou & Hansen 2006). But even with this approach, the
amount of memory needed to store the search frontier even-
tually exceeds available internal memory. This has led
to growing interest in external-memory graph-search algo-
rithms that use disk to store the nodes that are needed for
duplicate detection.

Because duplicate detection potentially requires compar-
ing each newly-generated node to all stored nodes, it can
lead to crippling disk I/O if the nodes stored on disk are
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accessed randomly. Two different approaches to perform-
ing duplicate detection efficiently in external-memory graph
search have been proposed. Delayed duplicate detection
(DDD) expands a set of nodes (e.g., the nodes on the
frontier) without checking for duplicates, stores the gen-
erated nodes (including duplicates) in one or more disk
files, and eventually remove duplicates by either sorting or
hashing (Korf 2004; Edelkamp, Jabbar, & Schrödl 2004;
Korf & Schultze 2005). The overhead for generating du-
plicates and removing them later is avoided in an approach
called structured duplicate detection (SDD). It leverages lo-
cal structure in a graph to partition stored nodes between
internal memory and disk in such a way that duplicate detec-
tion can be performed immediately, during node expansion,
and no duplicates are ever generated (Zhou & Hansen 2004).
Although SDD is more efficient than DDD, it requires the
search graph to have appropriate local structure.

In this paper, we develop an automatic approach for un-
covering the local structure in a graph that can be lever-
aged by SDD. We integrate this approach into a domain-
independent STRIPS planner, and show that, for a wide
range of planning domains, it improves the scalability of the
graph-search algorithm that solves the planning problems,
often dramatically. We analyze the reasons for the success
of this approach, and argue that similar local structure can
be found in many other graph-search problems.

Memory-efficient graph search
Before reviewing approaches to external-memory graph
search, we briefly review approaches to graph search that
use internal memory as efficiently as possible. Since meth-
ods for duplicate detection in external-memory graph search
are built on top of an underlying graph-search algorithm, the
more efficiently the underlying search algorithm uses inter-
nal memory, the less it needs to access disk, and the more
efficient the overall search.

Frontier search, introduced by Korf et al. (2005), is a
memory-efficient approach to graph search that only stores
nodes that are on the search frontier, uses special techniques
to prevent regeneration of closed nodes, and recovers the so-
lution path by a divide-and-conquer technique. It is a general
approach to reducing memory requirements in graph search
that can be used with A*, Dijkstra’s algorithm, breadth-first
search, and other search algorithms.



When frontier search or one of its variants is adopted,
we previously showed that breadth-first branch-and-bound
search can be more memory-efficient than A* in solving
search problems with unit edge costs (Zhou & Hansen
2006). The reason for this is that a breadth-first frontier is
typically smaller than a best-first frontier. We introduced the
phrase breadth-first heuristic search to refer to this memory-
efficient approach to breadth-first branch-and-bound search
and a breadth-first iterative-deepening A* algorithm that is
based on it. We adopt breadth-first heuristic search as the un-
derlying search algorithm for the external-memory STRIPS
planner developed in this paper, although we note that SDD
and the automatic approach to abstraction that we develop
can be used with other search strategies too.

External-memory graph search
In this section, we review structured duplicate detection and
compare it to other approaches to duplicate detection in
external-memory graph search.

Sorting-based delayed duplicate detection
The first algorithms for external-memory graph search used
delayed duplicate detection (Stern & Dill 1998; Munagala
& Ranade 1999; Korf 2004; Edelkamp, Jabbar, & Schrödl
2004). In its original and simplest form, delayed dupli-
cate detection takes a file of nodes on the search frontier,
(e.g., the nodes in the frontier layer of a breadth-first search
graph), generates their successors and writes them to another
file without checking for duplicates, sorts the file of gener-
ated nodes by the state representation so that all duplicate
nodes are adjacent to each other, and scans the file to re-
move duplicates. The I/O complexity of this approach is
dominated by the I/O complexity of external sorting, and
experiments confirm that external sorting is its bottleneck.

Structured duplicate detection
Sorting a disk file in order to remove duplicates is only nec-
essary if duplicate detection is delayed. Structured duplicate
detection (Zhou & Hansen 2004) detects duplicates as soon
as they are generated by leveraging the local structure of a
search graph. As long as SDD is applicable, it has been
proved to have better I/O complexity than DDD. Moreover,
the more duplicates are generated by DDD in the course of
searching in a graph, the greater the relative advantage of
SDD.

To identify the local structure in a graph that is needed for
SDD, a state-space projection function is used to create an
abstract state space in which each abstract state corresponds
to a set of states in the original state space. Typically, the
method of projection corresponds to a partial specification
of the state. For example, if the state is defined by an as-
signment of values to state variables, an abstract state cor-
responds to an assignment of values to a subset of the state
variables. In the abstract state-space graph created by the
projection function, an abstract node y′ is a successor of an
abstract node y if and only if there exist two states x′ and x
in the original state space, such that (1) x′ is a successor of
x, and (2) x′ and x map to y′ and y, respectively, under the

projection function. The abstract state-space graph captures
local structure in the problem if the maximum number of
successors of any abstract node is small relative to the total
number of abstract nodes. We refer to this ratio as the lo-
cality of the graph. The duplicate-detection scope of a node
in the original search graph is defined as all stored nodes
that map to the successors of the abstract node that is the
image of the node under the projection function. The impor-
tance of this concept is that the search algorithm only needs
to check for duplicates in the duplicate-detection scope of
the node being expanded. Given sufficient locality, this is
a small fraction of all stored nodes. An external-memory
graph search algorithm uses RAM to store nodes within the
current duplicate-detection scope, and can use disk to store
nodes that fall outside the duplicate detection scope, when
RAM is full.

Structured duplicate detection is designed to be used with
a search algorithm that expands a set of nodes at a time,
like breadth-first search, where the order in which nodes
in the set are expanded can be adjusted to minimize disk
I/O. Stored nodes are partitioned into “buckets,” where each
bucket corresponds to a set of nodes in the original search
graph that map to the same abstract node. Because nodes
in the same bucket have the same duplicate-detection scope,
expanding them at the same time means that no disk I/O
needs to be performed while they are being expanded. When
a new bucket of nodes is expanded, nodes stored on disk are
swapped into RAM if they are part of the duplicate-detection
scope of the new bucket, and buckets outside the current
duplicate-detection scope can be flushed to disk when RAM
is full. The general approach to minimizing disk I/O is to or-
der node expansions so that changes of duplicate-detection
scope occur as infrequently as possible, and, when they oc-
cur, they involve change of as few buckets as possible. That
is, expanding buckets with overlapping duplicate-detection
scopes consecutively also tends to minimize disk I/O.

Hash-based delayed duplicate detection
Hash-based delayed duplicate detection (Korf & Schultze
2005) is a more efficient form of delayed duplicate detec-
tion. To avoid the time complexity of sorting in DDD, it
uses two orthogonal hash functions. During node expan-
sion, successor nodes are written to different files based on
the value of the first hash function, and all duplicates are
mapped to the same file. Once a file of successor nodes has
been generated, duplicates can be removed. To avoid the
time complexity of sorting to remove duplicates, a second
hash function is used that maps all duplicates to the same
location of a hash table. Since the hash table correspond-
ing to the second hash function must fit in internal memory,
this approach requires some care in designing the hash func-
tions (which are problem-specific) to achieve efficiency. As
a further enhancement, the amount of disk space needed for
hash-based DDD can be reduced by interleaving expansion
and duplicate removal. But interestingly, this is only possi-
ble if the successor nodes written to a file are generated from
a small subset of the files being expanded; that is, its possi-
bility depends on the same kind of local structure leveraged
by SDD.



Korf and Schultze (2005) give some reasons for prefer-
ring hash-based DDD to SDD. Their observation that “hash-
based DDD only reads and writes each node at most twice”
applies to duplicate nodes of the same states, and since hash-
based DDD allows many duplicates to be generated, it does
not actually bound the number of reads and writes per state.
Their observation that hash-based DDD does not require
the same local structure as SDD is an important difference
(even though we noticed that some of the techniques used by
hash-based DDD to improve efficiency over sorting-based
DDD exploit similar local structure). They also point out
that SDD has a minimum memory requirement that corre-
sponds to the largest duplicate-detection scope. However,
the minimum memory requirement of SDD can usually be
controlled by changing the granularity of the state-space
projection function. Given appropriate local structure, a
finer-grained state-space projection function creates smaller
duplicate-detection scopes, and thus, lower internal-memory
requirements. In the end, whether a search graph has appro-
priate local structure for SDD is the crucial question, and we
address this in the rest of the paper.

An advantage of SDD worth mentioning is that it can be
used to create external-memory pattern databases (Zhou &
Hansen 2005). Because a heuristic estimate is needed as
soon as a node is generated, the delayed approach of DDD
cannot be used for this. But the most important advantage of
SDD is that, when applicable, it is always more efficient than
hash-based DDD. The reason for this is that even though
hash-based DDD significantly reduces the overhead of re-
moving duplicates compared to sorting-based DDD, it still
incurs overhead for generating and removing duplicates, and
this overhead is completely avoided by SDD.

Domain-independent abstraction
We have seen that SDD is preferable to DDD when it is ap-
plicable. To show that it is widely applicable, we introduce
the main contribution of this paper: an algorithm that auto-
matically creates an abstract representation of the state space
that captures the local structure needed for SDD. We show
how to do this for a search graph that is implicitly repre-
sented in a STRIPS planning language. But the approach is
general enough to apply to other graph-search problems.

We begin by introducing some notation related to domain-
independent STRIPS planning and state abstraction.

STRIPS planning and abstraction
A STRIPS planning problem is a tuple 〈A,O, I,G〉, where
A is a set of atoms, O is a set of grounded operators, and
I ⊆ A and G ⊆ A describe the initial and goal situations,
respectively. Each operator o ∈ O has a precondition list
Prec(o) ⊆ A, an add list Add(o) ⊆ A, and a delete list
Del(o) ⊆ A. The STRIPS problem defines a state space
〈S, s0,SG , T 〉, where S ⊆ 2A is the set of states, s0 is the
start state, SG is the set of goal states, and T is a set of
transitions that transform one state s into another state s′. In
progression planning, the transition set is defined as T =
{(s, s′) ∈ T |∃o ∈ O, P rec(o) ⊆ s ∧ s′ = s \ Del(o) ∪
Add(o)}. In regression planning, which involves searching

backwards from the goal to the start state, the transition set
is defined as T = {(s, s′) ∈ T |∃o ∈ O, Add(o) ∩ s 
= ∅ ∧
Del(o)∩s = ∅ ∧ s′ = s\Add(o)∪Prec(o)}. A sequential
plan is a sequence of operators that transform the start state
into one of the goal states. Since STRIPS operators have
unit costs, an optimal sequential plan is also a shortest plan.

A state-space abstraction of a planning problem is a pro-
jection of the state space into a smaller abstract state space.
The projection is created by selecting a subset of the atoms
P ⊆ A. The projection function φP : 2A → 2P is de-
fined so that the projected state is the intersection of s and
P , and the projected or abstract state space is defined as
φP(S) = {sP |s ∈ S ∧ sP = s ∩ P}; for convenience,
we write φP(S) as SP . The projected operators are simi-
larly defined by intersecting the subset of atoms P with the
precondition, add, and delete lists of each operator.

Locality-preserving abstraction
The number of possible abstractions is huge – exponential
in the number of atoms. For SDD, we need to find an ab-
straction that has appropriate local structure. Recall that we
defined the locality of an abstract state space graph as the
maximum number of successors of any abstract node com-
pared to the overall number of abstract nodes. The smaller
this ratio, the more effective SDD can be in leveraging ex-
ternal memory.

To see why this is so, first assume that the abstract nodes
evenly partition the stored nodes in the original graph. Al-
though this is never more than approximately true, it is a
reasonable assumption to make for our analysis. Next, re-
call that the duplicate-detection scope of any node s ∈ S in
the original search graph is defined as all stored nodes that
map to the successors of the abstract node that is the image
of the node under the projection function φP . The largest
duplicate-detection scope determines the minimal memory
requirement of SDD, since it is the largest number of nodes
that need to be stored in RAM at one time in order to per-
form duplicate detection. From the assumption that the ab-
stract nodes evenly partition the stored nodes in the original
graph, it follows that the locality of the abstract state-space
graph determines the largest duplicate-detection scope.

To measure the degree of the local structure captured by a
state-space projection function φP , we define the maximum
duplicate-detection scope ratio, δ, as follows,

δ(P) = max
sP∈SP

|Successors(sP)|
|SP |

.

Essentially, δ is the maximum fraction of abstract nodes
in the abstract state-space graph that belong to a single
duplicate-detection scope. The smaller the ratio, the smaller
the percentage of nodes that need to be stored in RAM for
duplicate detection, compared to the total number of stored
nodes. Reducing this ratio allows SDD to leverage more of
external memory to improve scalability. Thus, we propose
searching for an abstraction that minimizes this ratio as a
way of finding a good abstraction for SDD.

In our experience, however, this ratio can almost always
be reduced by increasing the resolution of the abstraction,
that is, by adding atoms to the projection function. But we



don’t want to increase the resolution too much, for a couple
of reasons. First, the size of the abstract graph can increase
exponentially in the number of atoms used in the projec-
tion, and, naturally, we don’t want the abstract graph to be-
come so large that it doesn’t fit comfortably in RAM. Sec-
ond, and more importantly, increasing the size of the ab-
stract graph decreases the average number of nodes from
the original state-space graph that are assigned to the same
abstract node. If the same number of nodes are divided
into too many buckets, this can increase the frequency with
which the duplicate-detection scope changes during node
expansion, which has the potential to increase the amount
of disk I/O. In effect, there is a tradeoff between reducing
the size of the largest duplicate-detection scope, which re-
duces the minimum internal memory requirement, and in-
creasing the frequency with which the duplicate-detection
scope changes, which potentially increases the amount of
disk I/O. The tradeoff between these two factors is compli-
cated and problem-dependent, and we do not yet try to opti-
mize it. Instead, we search for an abstraction that minimizes
δ subject to a bound on the maximum size of the abstract
graph. That is, we define the best abstraction for SDD as

P∗ = arg min
P

{δ(P)|M ≥ |SP |}, (1)

where M is a parameter that bounds the size of the abstract
graph.

In our experiments, we create the abstract graph before
the search begins and don’t change it. An alternative is to in-
crease the granularity of the abstraction on the fly, as needed.
The algorithm starts with a very coarse abstraction, if any. If
it can solve the problem without running out of RAM, there
is no need for a more fine-grained abstraction. If not, the
algorithm refines its abstraction function to the next level of
granularity, and resumes the search. The search continues in
this way until the problem is solved or some upper bound M
on the size of the abstract graph is exceeded.

Exploiting state constraints
As we have seen, adding atoms to the projection function
increases locality in the abstract graph, but it also increases
the size of the abstract graph, and we don’t want to make
the abstract graph too big. A useful way to add atoms to
the projection function without increasing the size of the ab-
stract graph too much is by exploiting state constraints. State
constraints are invariants or laws that hold in every state that
can be reached from the initial state. Although not specified
in the description of a planning domain, they can be dis-
covered using a domain analysis tool (Gerevini & Schubert
1998). With such constraints, the value of one atom limits
the possible values of other atoms, and this can be exploited
to limit the reachable state space.

Our approach to creating an abstraction of the state space
exploits XOR constraints to limit the size of the abstract
graph as a function of the number of atoms. XOR con-
straints are state constraints that specify that only one atom
in a group of atoms can be true in any complete state.
An example of an XOR-constraint in the blocks domain is
(XOR (on x y) (clear y)), stating that any object y is either

clear or has some x on it, but not both. To discover these
constraints, we use an algorithm described by Edelkamp and
Helmert (1999), who refer to the process of discovering XOR
constraints as merging predicates. We note that their tech-
nique can find n-ary (for n > 2) XOR constraints, which are
common in recent planning benchmark domains.

We define an XOR group P as a set of atoms
{p1, p2, · · · , pn} ⊆ A such that (XOR p1 p2 · · · pn) holds,
i.e., one and only one atom must be true. An example of an
XOR group in the logistics domain is the set of atoms that de-
note the location of a vehicle. There are usually many XOR
groups in a domain. For example, each truck or airplane in
logistics can be associated with an XOR group that encodes
the location of the vehicle. Note also that the XOR groups do
not have to be disjoint from one another. By selecting XOR
groups of atoms for the projection function, we include the
state constraints in the abstract state space and limit the size
of the abstract graph. To see how this works, consider an
abstraction created by selecting ten atoms. If there are no
state constraints, the abstract graph has 210 = 1024 nodes.
But if the ten atoms consist of two XOR groups of five atoms
each, the abstract graph has only 52 = 25 nodes.

Greedy abstraction algorithm
We use a greedy algorithm to try to find a projection function
that minimizes Equation (1). Let P1, P2, · · · , Pm be the XOR
groups in a domain. Instead of attempting to minimize δ(P)
for all possible combinations of all XOR groups, a greedy
algorithm adds one XOR group to P at a time. The algorithm
starts with P = ∅. Then it tries every single XOR group Pi ∈
{P1, P2, · · · , Pm} by computing the corresponding δ(Pi),
finds the best XOR group P ∗

i that minimizes δ(Pi) for all
i ∈ {1, 2, · · · ,m}, and adds P ∗

i to P . Suppose the best XOR
group added is P1. The greedy algorithm then picks the best
remaining XOR group that minimizes δ(P1∪Pi) for all i 
= 1,
and adds it to P . The process repeats until either (a) the size
of the abstract graph exceeds the upper bound (M ) on the
size of abstract graphs, or (b) there is no XOR group left.
Typically, we don’t run out of XOR groups before exceeding
the size bound. If we did, we could continue to add single
atoms to try to improve the abstraction.

Example
We use an example in the logistics domain to illustrate the
algorithm. The goal in logistics is to deliver a number of
packages to their destinations by using trucks to move them
within a city, or airplanes to move them between cities.
Consider a simple example in which there are two pack-
ages {pkg1, pkg2}, two locations {loc1, loc2}, two airports
{airport1, airport2}, two trucks {truck1, truck2}, and one
airplane {plane1}. A domain constraint analysis discovers
several XOR groups, and uses these XOR groups to construct
several candidate abstract state-space graphs, two of which
are shown in Figure 1. An oval represents an abstract state
and the label inside an oval shows the atom(s) in that ab-
stract state. An arrow represents a projected operator that
transforms one abstract state into another. Figure 1(a) shows
an abstract state-space graph created by using a projection
function based on the 7 possible locations of pkg1. Note



Figure 1: Abstract state-space graphs (with self loops omit-
ted) for logistics. Panel (a) shows an abstract state-space
graph based on the location of pkg1. Panel (b) shows another
abstract state-space graph based on the location of truck1.

that all the atoms shown in Figure 1(a) belong to a single XOR
group. Figure 1(b) shows another abstract state-space graph
based on the location of truck1. For each candidate abstract
graph, the algorithm computes its corresponding δ. For the
abstract graph in Figure 1(a), δ = 3

7 , since the maximum
number of successors of any abstract node is 3 (note that self
loops are omitted) and the graph has a total of 7 nodes. For
the abstract graph in Figure 1(b), δ = 2

2 = 1, which means
it has no locality at all. Thus, the abstract graph shown in
Figure 1(a) is preferred, since it has a smaller δ value.

Of course, a δ of 3
7 may still be too large. The algorithm

can decrease δ by increasing the granularity of the abstract
graph. It does so by adding another XOR group to P . Sup-
pose it adds a new XOR group that is based on the location
of pkg2. Since pkg2 also has 7 possible locations, the num-
ber of combinations for the locations of these two packages
is 7 × 7 = 49, the size of the new abstract graph. But the
maximum number of successors of any abstract node only
increases from 3 to 5. Thus, the new δ is 5

49 . In the more
general case where there are n packages, δ can be made as
small as 1+2n

7n , a number close to zero even for small n’s.

Implementation
An important implementation detail in external-memory
graph search is how to represent pointers that are used to
keep track of ancestor nodes along a least-cost path. One
possibility is to use conventional pointers for referencing
nodes stored in RAM and a separate type of pointer for ref-
erencing nodes stored on disk. A drawback of this approach
is that every time a node is swapped between RAM and disk,
its successors along a least-cost path (including those stored
on disk) must change the type of their ancestor pointer, and
this can introduce substantial time and space overhead .

In our implementation of external-memory breadth-first
heuristic search, a pointer to a node at a given depth contains
two pieces of information; (a) the abstract node to which the
node maps, and (b) the order in which the node appears in
the bucket of nodes of the same depth that map to the same
abstract node. It can be shown that these two pieces of infor-
mation about a node do not change after it is generated by a

breadth-first search algorithm. Thus, in our implementation,
the same pointer is always valid, whether the node it points
to is stored in RAM or on disk.

Results
We implemented our abstraction-finding algorithm in a
domain-independent STRIPS planner that uses breadth-first
heuristic search (BFHS) with SDD to find optimal sequen-
tial plans. We used regression planning. As an admissible
heuristic, we used the max-pair heuristic (Haslum & Geffner
2000). We tested the planner in eight different domains from
the biennial planning competition. Experiments were per-
formed on an AMD Operton 2.4 GHz processor with 4 GB
of RAM and 1 MB of L2 cache.

The first eight rows of the Table 1 compare the perfor-
mance of BFHS with and without SDD. The eight problems
are the largest that BFHS can solve without external mem-
ory in each of the eight planning domains. The slight dif-
ference in the total number of node expansions for the two
algorithms is due to differences in tie breaking.

The results shows several interesting things. First, they
shows how much less RAM is needed when using SDD.
Second, the ratio of the peak number of nodes stored on
disk to the peak number of nodes stored in RAM shows how
much improvement in scalability is possible. Although the
ratio varies from domain to domain, there is improvement in
every domain (and more can be achieved by increasing the
resolution of the abstraction). The extra time taken by the
external-memory algorithm includes the time taken by the
abstraction-finding algorithm. The greedy algorithm took
no more than 25 seconds for any of the eight problems, and
less than a second for some. (Its running time depends on
the number of XOR groups in each domain as well as the size
of the abstract state-space graph.) The rest of the extra time
is for disk I/O, and this is relatively modest. The last column
shows the maximum duplicate-detection scope ratio, where
the numerator is the maximum number of successors of any
node in the abstract graph and the denominator is the total
number of abstract nodes. The next to last column shows the
number of atoms, |P|, used in the projection function that
creates the abstract graph. Comparing 2|P| to the number
of nodes in the abstract graph shows how effective the state
constraints are in limiting the size of the abstract graph.

The last four rows of Table 1 show the performance of the
planner in solving some particularly difficult problems that
cannot be solved without external memory. As far as we
know, this is the first time that optimal solutions have been
found for these problems. It is interesting to note that the
ratio of the peak number of nodes stored on disk to the peak
number of nodes stored in RAM is greater for these more
difficult problems. This suggests that the effectiveness of
SDD tends to increase with the size of the problem, an ap-
pealing property for a technique that is designed for solving
large problems.

Conclusion
For search graphs with sufficient local structure, SDD
outperforms other approaches to external-memory graph



No external memory External memory
Problem Len RAM Exp Secs RAM Disk Exp Secs |P| δ
logistics-6 25 151,960 338,916 2 1,725 165,418 339,112 89 28 9/4096
satellite-6 20 2,364,696 3,483,817 106 51,584 2,315,307 3,484,031 359 33 31/1728
freecell-3 18 3,662,111 5,900,780 221 1,069,901 2,764,364 5,900,828 302 22 81/1764
elevator-12 40 4,068,538 12,808,717 256 172,797 3,898,692 12,829,226 349 33 25/1600
depots-7 21 10,766,726 16,794,797 270 2,662,253 9,524,314 16,801,412 342 42 4/2150
blocks-16 52 7,031,949 18,075,779 290 3,194,703 5,527,227 18,075,779 387 54 43/4906
driverlog-11 19 15,159,114 18,606,835 274 742,988 15,002,445 18,606,485 507 49 15/3848
gripper-8 53 15,709,123 81,516,471 606 619,157 15,165,293 81,516,471 1,192 29 37/4212
freecell-4 26 - - - 11,447,191 114,224,688 208,743,830 15,056 22 81/1764
elevator-15 46 - - - 1,540,657 126,194,100 430,804,933 17,087 42 32/7936
logistics-9 36 - - - 5,159,767 540,438,586 1,138,753,911 41,028 40 13/14641
driverlog-13 26 - - - 49,533,873 2,147,482,093 2,766,380,501 145,296 92 25/21814

Table 1: Comparison of breadth-first heuristic search with and without using domain-independent structured duplicate detection
on STRIPS planning problems. Columns show solution length (Len), peak number of nodes stored in RAM (RAM), peak num-
ber of nodes stored on disk (Disk), number of node expansions (Exp), running time in CPU seconds (Secs), size of projection
atom set (|P|), and maximum duplicate-detection scope ratio (δ). A ‘-’ symbol indicates that the algorithm cannot solve the
problem without storing more than 64 million nodes in RAM.

search. In this paper, we have addressed two important
questions about the applicability of SDD: how common is
this kind of local structure in AI graph-search problems,
and is it possible to identify it in an automatic and domain-
independent way.

Previous work shows that the local structure needed for
SDD is present in the sliding-tile puzzle, four-peg Towers of
Hanoi, and multiple sequence alignment problems (Zhou &
Hansen 2004; 2005). The empirical results presented in this
paper show that it can be found in a wide range of STRIPS
planning problems. Although it is no guarantee, this encour-
ages us to believe that similar structure can also be found in
many other graph-search problems.

In previous work, the abstractions of the state space that
capture this local structure were hand-crafted. An advan-
tage of automating this process is that locality-preserving
abstractions may not be obvious to a human designer, espe-
cially in domains with hundreds of variables and complex
state constraints. In addition, automating this process makes
it possible to search systematically for the best abstraction,
which even a knowledgable human designer may not find.

Many further improvement of this approach are possible.
In the near future, we will explore ways to improve the al-
gorithm for identifying locality-preserving abstractions and
test it on additional problems. We will also consider whether
SDD can leverage other forms of abstraction. So far, we
have used state abstraction to partition the nodes of a graph
in order to create an abstract state-space graph that reveals
local structure. For problems where state abstraction (node
partitioning) does not reveal enough local structure, opera-
tor abstraction (edge partitioning) may provide another way
of creating an abstract state-space graph that reveals useful
local structure. Given that most AI search graphs are gen-
erated from a relatively small set of rules, we believe they
are likely to contain local structure of one form or another
that can be leveraged for SDD. Finally, we believe the local
structure used for SDD can eventually be leveraged in par-
allel graph search as well as external-memory graph search.
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