
Parallel Breadth-First Heuristic Search on a Shared-Memory Architecture

Yang Zhang and Eric A. Hansen
Dept. of Computer Science and Engineering

Mississippi State University
Mississippi State, MS 39762

fz15, hansen @cse.msstate.edu

Abstract

We consider a breadth-first approach to memory-efficient
graph search and discuss how to parallelize it on a shared-
memory architecture that uses multithreading to achieve par-
allelism. The approach we develop for parallelizing breadth-
first search uses layer synchronization, in which threads ex-
pand all nodes in one layer of the breadth-first search graph
before considering any nodes in the next layer. We show that
this allows simple and effective techniques for termination
detection, dynamic load balancing, and concurrent access to
shared data structures. The Fifteen Puzzle is used as an initial
test domain.

Introduction
Parallel formulations of state space search algorithms have
been extensively studied for decades (Rao & Kumar 1987;
Kumar & Rao 1987; Kumar, Ramesh, & Rao 1988; Grama
& Kumar 1999; Grama et al. 2003). Most work has fo-
cused on parallelization of depth-first search and best-first
search. There has been comparatively little work on paral-
lelization of breadth-first search. In large part, this is be-
cause the memory requirements of breadth-first search are
traditionally greater than for its alternatives, and often im-
practical. However recent work shows that a breadth-first
search strategy can be implemented in a memory-efficient
way by using a divide-and-conquer method of solution re-
covery that only requires storing nodes that are on the search
frontier (Korf et al. 2005). If lower and upper bounds are
used to limit the size of the frontier, as in branch-and-bound
search, a breadth-first frontier can be smaller than a best-
first frontier, and breadth-first heuristic search requires less
memory than A* in solving search problems with unit edge
costs (Zhou & Hansen 2006).

In this paper, we consider how to parallelize breadth-first
search. We consider search in implicit graphs with uni-
form edge costs, and describe a general approach to par-
allelization that applies to both blind breadth-first search
and breadth-first heuristic search. We show that the layered
structure of a breadth-first search graph allows a simple and
effective approach to parallelization, especially on a shared-
memory architecture using multithreading. The key idea of
this approach, which we call layer synchronization, is for
threads to expand all nodes in one layer before considering

any nodes in the next layer. We show that layer synchroniza-
tion leads to simple and effective approaches to several key
designs in parallel graph search, including distributed ter-
mination detection, dynamic load balancing, and concurrent
access to shared data structures.

Parallel processing offers two advantages. First, it can re-
duce running time. Second, parallel systems often provide
significantly more physical memory. Focus on the second
advantage is more often associated with distributed-memory
parallelism, however. On a shared-memory architecture,
even a sequential program can utilize any additional phys-
ical memory, and the primary focus of parallelization is to
reduce running time. Since we consider a shared-memory
parallel architecture in this paper, we focus on using paral-
lelization to reduce search time rather than to increase avail-
able memory.

The paper begins with a brief review of previous work on
breadth-first search and its parallelization. Layer synchro-
nization is then introduced as an approach to parallelizing
breadth-first search. This is followed by discussion of how
to design a Closed list that allows concurrent access and an
Open list that allows effective load balancing. Several other
issues, including termination detection, are also discussed,
and experimental results for the Fifteen Puzzle are reported.

Background
We begin with brief reviews of a breadth-first approach
to heuristic search, previous approaches to parallelizing
breadth-first search, and shared-memory parallelization.

Breadth-first heuristic search
Frontier search is a memory-efficient approach to graph
search that only stores the Open list, and saves memory by
not storing the Closed list (Korf et al. 2005). It uses spe-
cial techniques to prevent regeneration of previously closed
nodes that are no longer in memory. Because the traditional
traceback method of solution recovery requires all closed
nodes to be in memory, it also uses a divide-and-conquer
method of solution recovery. In divide-and-conquer solution
recovery, each search node keeps track of an intermediate
node along the best path that leads to it. When the goal node
is selected for expansion, the intermediate node associated
with it must be on an optimal solution path. This interme-
diate node is used to divide the original search problem into

two subproblems — the problem of finding an optimal path
from the start node to the intermediate node, and the prob-
lem of finding an optimal path from the intermediate node
to the goal node. These subproblems are then solved recur-
sively by the same search algorithm until all nodes along an
optimal solution path for the original problem are identified.

Frontier search is a general strategy for memory-efficient
graph search that can be applied to A*, Dijkstra’s single-
source shortest-path algorithm, and breadth-first search.
Zhou and Hansen (2006) show that frontier breadth-first
branch-and-bound search is more memory-efficient than
frontier A* because a breadth-first frontier is usually smaller
than a best-first frontier. They call this approach breadth-
first heuristic search. They also describe a simple approach
to preventing regeneration of previously closed nodes that
can only be used in breadth-first search. In this approach,
called layered duplicate detection, the Closed list is stored
in layers, one for each -cost, and the shallowest layers
are deleted to recover memory. In undirected graphs, it is
only necessary to keep the single most recent layer of closed
nodes in memory in order to detect all duplicates and prevent
regeneration of already closed nodes. In directed graphs, it
may be necessary to store more than one previous layer of
closed nodes in memory, where the number needed to com-
pletely prevent regeneration of closed nodes depends on the
structure of the graph. Even if only one previous layer of a
directed search graph is stored in memory, Zhou and Hansen
show that the number of times a node can be regenerated is
bounded by the depth of the search, which means there is lit-
tle node regeneration overhead in practice. In the rest of this
paper, we consider how to parallelize breadth-first heuristic
search with layered duplicate detection. But our approach to
parallelization applies to any breadth-first search algorithm.

Parallelization of breadth-first search
One application area in which parallel breadth-first search
has been previously studied is model checking (Lerda &
Sisto 1999; Brim et al. 2001; Heyman et al. 2002; Barnat,
Brim, & Chaloupka 2003). Verification of a model requires
exhaustive search of a state space. Because best-first search
does not have an advantage over breadth-first search in ex-
haustive exploration, breadth-first search is widely used.

Distributed-memory parallel model checking allows
larger models to be verified by making more physical mem-
ory available, as well as by reducing running time. Barnat et
al. (2003) propose a distributed-memory parallel LTL model
checker that uses breadth-first search combined with nested
depth-first search for cycle detection. They use a layer syn-
chronized approach that is similar to the approach we de-
velop, although they do not consider dynamic load balancing
or several other issues discussed in this paper. Distributed-
memory parallelization of breadth-first search has also been
used for symbolic model checking, although without layer
synchronization (Heyman et al. 2002). Memory-efficient
graph search using divide-and-conquer solution recovery,
which we consider in this paper, is not yet used in model
checking. However, for an initial exploration of this idea,
see (Lamborn & Hansen 2006).

Korf and Schultze (2005) use breadth-first frontier search

Figure 1: Shared-Address-Space Concept

with external memory to perform an exhaustive search of the
Fifteen Puzzle state space. They consider disk-based search,
whereas we consider in-memory search, and the issues are
different. They emphasize the advantages of multithreading
for search algorithms with intensive disk I/O.

Parallel breadth-first search has also been studied in areas
such as analysis of explicitly stored graphs (Yoo et al. 2005).
But here, the structure and shape of the graph are known in
advance, and the issues are quite different.

Multithreading Parallelism

The concept of shared-memory parallelism historically
refers to multiple processors that truly share physical mem-
ory. With current hardware, it is probably more accurate
to refer to shared-address-space parallelism (Grama et al.
2003). The term shared-address-space emphasizes a logical
view of the underlying architecture. The physical organiza-
tion may include distributed memory interconnected via a
high-speed network. If the system gives the programmer a
global view of the memory space, and communication over
the interconnection network is invisible to the programmer,
the system is said to be a shared-address-space architecture.
Figure 1 illustrates this concept. If the time it takes a proces-
sor to access any memory location in the system is identical,
the system is referred to as a uniform memory access, or
UMA, architecture. If the time for accessing different mem-
ory locations in the system is not identical, then it is called a
non-uniform memory access, or NUMA, architecture. Many
modern shared-memory machines are NUMA architectures.
On a NUMA architecture, it can be useful for application
programs to enforce data locality because accessing remote
memory may be slower than accessing local memory. In the
rest of this paper, we assume the shared-address-space con-
cept when we refer to shared-memory parallelism.

Threads are the preferred model for programming shared-
address-space machines. A thread is a stream of control flow
inside a process. Threads are much faster to manipulate and
schedule than processes. Threads also have a logical mem-
ory model similar to the shared-address-space architecture.
Each thread has its own private stack space but interacts
with other threads through the memory space of the pro-
cess. Thread interactions within the shared data region re-
quire explicit synchronization. A key to achieving good par-
allel performance is minimizing synchronization overhead
and its frequency.

Layer Synchronization

In this section, we describe the overall approach we adopt
for parallelizing breadth-first heuristic search. In subsequent
sections, we fill in the details.

In our approach, a graph is searched in parallel by sev-
eral threads using a distributed Open list and a single shared
Closed list. The part of the Open list belonging to each
thread is a private copy that is only accessed by that thread.
All generated nodes, whether open or closed, are stored in
a Closed list that is shared among all threads. Duplicate de-
tection is performed by threads concurrently querying and
updating this shared Closed list.

A key aspect of our approach is that the Open and Closed
lists are indexed by layer, and the search is layer synchro-
nized. By layer synchronization, we mean that the threads
must expand all nodes in one layer before expanding any
nodes in the next layer. Layer synchronization is neces-
sary in the memory-efficient approach to search we adopt,
in which previous layers of the search graph can be deleted
to recover memory. If the graph being searched is undi-
rected, for example, a layer of the Closed list can be deleted
as soon as all of the nodes in its successor layer have been
expanded. If we were to allow the threads to simultaneously
expand nodes in many different layers, all of these layers of
the Closed list would need to be kept in memory.1

We use a single control thread to initiate the search
and coordinate the activities of the other threads, which
are called working threads. The control thread begins the
breadth-first search. As soon as the number of open nodes
in a layer exceeds a threshold that is equal to or greater than
the number of working threads available, the open nodes in
the layer are evenly partitioned among the working threads,
which continue the search in parallel. Once a working thread
finishes expanding the nodes in the current layer of its Open
list, it is not allowed to expand nodes in the next layer until
all of the other working threads are finished expanding nodes
in the current layer. If one thread finishes much sooner than
others, dynamic load balancing can be used to redistribute
the open nodes in the layer so that a thread does not remain
idle too long. This is discussed in a later section.

After the control thread spawns the working threads, it
goes to sleep until awoken by a working thread that no
longer has open nodes to expand. When the control thread
sees that all working threads have no more open nodes in the
current layer to expand, it signals all the working threads to
proceed to the next layer. Before expanding the next layer,
a previous layer of the breadth-first graph is deleted in order
to recover memory.

When breadth-first search with layer synchronization is
used, distributed termination detection becomes straightfor-
ward. The first solution found by any thread is guaranteed
to be optimal. Once a solution is found, the search is termi-
nated and divide-and-conquer solution recovery proceeds in
the usual way.

1Indexing the Closed list by layer also saves memory by allow-
ing a smaller node data structure that does not include -cost, since
all nodes in the same layer share the same -cost.

Concurrent Closed List
In graph search, the Closed list is usually implemented as
a hash table. In parallel graph search, the hash table must
support concurrent access and allow synchronization. We
consider some alternative designs and show how layer syn-
chronization can simplify design of a concurrent hash table.

An obvious way to design a concurrent hash table is to use
multiple locks to synchronize access. This has several draw-
backs, however. First, locks take space, and guarding each
entry with a (composite) lock can increase space overhead
substantially. Second, use of so many locks can make it dif-
ficult or even prohibitive to resize a hash table since doing so
requires obtaining all locks in the table. Third, read opera-
tions occur more frequently than other hash table operations,
and using a composite read/write lock, a read request cannot
be granted when a thread is adding or removing an entry’s
contents. Given that read operations occur so frequently, a
non-blocking “read” would be more useful.

A state-of-the-art concurrent hash table is Doug Lea’s
concurrent hash map data structure for the Java concurrency
package (Lea 2006). In Lea’s design, the hash table is par-
titioned into multiple internal segments. Each segment is a
complete hash table of its own that is guarded by a mutex
lock. This design makes the space overhead for locks in-
significant. It also allows individual segments to be resized
instead of having to resize the entire hash table. Note that
each segment can also be viewed as a coarsened hash entry
in a traditional hash table. An item is first hashed to a seg-
ment and then it is hashed to a segment entry. Since differ-
ent items are hashed into different segments under a uniform
hash function, different threads can usually operate on dif-
ferent segments without blocking each other. The number of
segments can be adjusted to maximize thread concurrency.
Also, by cleverly arranging and cloning segment entries, the
“read/add,” “read/remove,” and “read/resize” operations can
be performed at the same time by different threads even on
the same segment.2 Thus, this design allows a completely
non-blocking “read” operation.

Our concurrent hash table design adopts the same inter-
nal segment approach used by Lea. By utilizing the lay-
ered search structure, however, we are able to produce a
non-blocking “read” operation more easily (without the need
to have garbage collection or to manage complex mem-
ory regions). Concurrent execution of “read/add” opera-
tions is allowed the same way as in Lea’s design. Concur-
rent “read/remove” operations can be addressed more sim-
ply. In breadth-first heuristic search, the only place the al-
gorithm removes items from the Closed list is when a layer
is deleted. During layer expansion, no “remove” operations
occur. This temporal access pattern is enough to guaran-
tee that the “read” and “remove” operations for the Closed
list cannot overlap. Concurrent “read/resize” operations
can also be effectively addressed by leveraging the layered
search structure. The “resize” operation will only occur dur-
ing “add” operations to the Closed list, and can be deferred
until all “add” operations for a layer have been performed

2However, this also relies on Java’s garbage collection capabil-
ity.

and a previous layer is being deleted. Essentially, layer syn-
chronization partitions the search into two phases. The first
phase is the node expansion phase where each thread ex-
pands nodes in the current layer. The second phase is the
layer deletion phase where each thread deletes unnecessary
previous layers from memory. The node expansion phase
only allows “read” and “add” operations to the Closed list
while the layer deletion phase only allows “remove” and “re-
size” operations. When “resize” is triggered by the “add”
operation, the “resize” request is only flagged and the actual
action is deferred until the layer deletion phase. This may
increase the hash table load factor until the actual “resize”
operation. However, such flagged “resize” operations do not
happen frequently and the cost is well amortized into the
whole process.

Finally, we note that we use chaining to resolve hash col-
lisions in order to maximize concurrency and space utiliza-
tion. An open-addressing approach to resolving collisions
may result in large areas of the hash table being visited,
which can incur synchronization overhead. It is therefore
more difficult to design a non-blocking “read” operation.
Also in order to keep the hash table reasonably loaded to
reduce access time, much of the space in the table is wasted
in an open-addressing design.

Chunk Based Open List
The Open list is distributed and each thread has its own pri-
vate copy. Since duplicate detection requires a global list,
all graph nodes are hashed into the Closed list as soon as
they are generated. In other words, the Closed list contains
all open and closed nodes, and duplicate detection involves
checking the Closed list. If the open nodes are also stored in
a distributed Open list, there is memory overhead for nodes
that coexist in both the Open and Closed lists for some time.
This can be alleviated by only storing pointers in the Open
list. The key issues we address in design of the Open list are
efficient dynamic load balancing and memory utilization.

We choose not to implement the Open list as a hash table.
Since it is not used for duplicate detection, fast access is not
necessary, and, since a hash table is not designed to be split
easily and efficiently, a hash table is not a suitable data struc-
ture for dynamic load balancing. Instead, we implement the
Open list as a linked list. The split and splice operations of a
linked list have constant-time complexity, which facilitates
dynamic load balancing. However a traditional linked list
incurs considerable space overhead because it requires stor-
ing a pointer with every list node. In addition, a traditional
linked list does not exhibit strong data locality. For these
reasons, we introduce a “coarsened linked list” that we call
“chunk list.” A chunk list is a list of chunks, where each
chunk is a fix-size deque (a double ended queue). A chunk
list is a hybrid of a linked list and an array. On the chunk
level, operations such as split and splice are the same as for
conventional linked lists. But inside a chunk, elements are
aggregated compactly and have good data locality. Because
each chunk can hold a large number of elements, the mem-
ory overhead for list pointers is negligible.

In parallel graph search, a private layered Open list is
maintained for each thread, consisting of the current and

Figure 2: Chunk-based Open List

next layer, where each layer is a chunk list of node point-
ers, as illustrated in Figure 2.

Dynamic Load Balancing
Parallel graph search requires balancing the workload for
different processes so that processing power is not wasted
by leaving some processes idle. Load balancing is typically
dynamic because the irregular shape of the graph makes it
difficult to statically partition the workload in a balanced
way.

The structure of our distributed Open list is designed to fa-
cilitate dynamic load balancing, which is achieved by split-
ting and splicing chunks in the Open list among different
threads. All working threads are arranged in a ring topology
in which each thread has a predetermined neighbor thread.
Each thread has a status flag that indicates whether or not
it still has nodes to expand. When its Open list is empty,
a thread sets its status flag, signals the control thread, and
goes to sleep. Each thread is responsible for monitoring its
neighbor’s status flag. If it notices that its neighbor is idle,
and a significant number of chunks remain in the current
layer of its Open list to be expanded, it can migrate some
of these chunks to its neighbor. It does so by splitting some
chunks from the current layer of its Open list, putting them
on its neighbor’s Open list, and waking up its neighbor. The
time complexity of dynamic load balancing is roughly lin-
ear in the number of chunks in the Open list. Because each
chunk usually contains a large number of nodes, this is neg-
ligible compared to the complexity of node expansion. The
pseudocode on the following page shows how the control
(Algorithm 2) and working (Algorithm 1) threads cooperate
in expanding the nodes in a layer, including dynamic load
balancing.

This dynamic load balancing scheme requires virtually
no shared resources. The control thread merely coordinates
working threads and does not itself distribute work. There-
fore the control thread is typically not a bottleneck. Layer
synchronization, in which breadth-first search must explore
all the nodes in the current layer before the next layer is
considered, considerably simplifies the task of dynamic load
balancing. In parallel best-first search, load balancing serves
two purposes. It makes sure the processes are busy and
it makes sure they are doing useful work. To ensure the
latter, it must evenly distribute the most-promising nodes
among processes. Because a ring virtual topology has low
connectivity, it is usually not fast enough to distribute the
most-promising nodes in an asynchronous parallel best-first
search (Grama et al. 2003). For breadth-first search with
layer synchronization, however, this is not a problem. The
sole purpose of dynamic load balancing is to keep the pro-

1: loop
2: while - true do
3: while open list not empty do
4: if neighbor’s true then
5: if worth to migrate work then
6: split and splice open list
7: neighbor’s false
8: wake up neighbor
9: end if

10: end if
11: if solution found then
12: - true
13: wake up control thread
14: terminate all working threads and exit
15: else
16: do node expansion
17: end if
18: end while
19: true this thread runs out of open list
20: wake up control thread and sleep
21: eventually this thread will be woken up

and possibly receive some additional
states in its own open list

22: end while
23: - false
24: if - then
25: exit
26: end if
27: prune previous Closed list layer
28: go on to next layer
29: end loop

Algorithm 1: Working Thread

1: sequential expansion until open list is big enough
2: - false
3: - false
4: all working threads’ false
5: distribute open list and start all working threads
6: while - true do
7: go to sleep will be woken up later
8: if all working threads’ true then
9: - true

10: all working threads’ false
11: wake up all working threads
12: end if
13: end while

Algorithm 2: Control Thread

cesses busy. Using layer synchronization, there can be no
useless work. For this reason, the ring topology is sufficient
for distributing work in parallel breadth-first search, at least
for the relatively small-scale parallelism considered in this
paper. To scale up to large scale parallelism, a topology with
higher connectivity and a hierarchical structure may be more
suitable. Such a change in load balancing topology should
be relatively easy to incorporate into the search framework.

Preliminary Performance Analysis
We used the Fifteen Puzzle as an initial test domain for our
implementation of parallel breadth-first heuristic search. Ta-
ble 1 shows timing results for eight of the nine most difficult
of the one hundred instances of the Fifteen Puzzle used as
a test suite by Korf (1985). We ran the search algorithm on
a Sun Fire with eight MHz Ultrasparc III proces-
sors running the Solaris 10 operating system. All programs
were compiled using GNU gcc version . We used
the “hoard” multiprocessor memory allocator (Berger et al.
2000; Berger 2006) (version d) developed by Emery
Berger at the University of Massachusetts at Amherst. In
Table 1, the number of threads refers to the number of work-
ing threads and does not include the control thread. The
measured time is the search wall time and includes initial-
ization and finalization of all serial resources. The chunk
size for the Open list is , which means that a chunk
holds puzzle state pointers. As Table 1 shows, par-
allelization of the search algorithm results in close to linear
speedup.

In a multithreading program, most parallel overhead is
due to synchronization in the shared-address-space. Ad-
ditional overhead sometimes includes redundant work and
process idling. But since our approach uses layer synchro-
nization, there can be no redundant work. And using our
dynamic load balancing scheme, there is little parallel over-
head due to process idling. Thus, most parallel overhead
appears to be due to concurrent access of the Closed list,
and we have focused on making this as efficient as possi-
ble. Since we run our algorithm on a NUMA architecture,
the memory locality problem could also affect performance.
Our algorithm does not currently leverage memory local-
ity. Finally, the performance of a multithreading programs
is sensitive to-low level system and OS support, and we are
trying to further improve this aspect of our implementation.

Conclusion and Future Work
We have presented a parallel formulation of breadth-first
heuristic search for a shared-memory architecture. By using
layer synchronization, in which threads expand all nodes in
one layer of the breadth-first search graph before expanding
any nodes in the next layer, we were able to simplify the al-
gorithm in several ways and reduce parallel overhead. For
example, a layer-synchronized search makes it impossible
to do useless work and has a simpler termination condition.
It allows design of a simpler concurrent hash table that in-
cludes a simple non-blocking read of the hash table. Since
nodes in any layer of the search graph are not prioritized, it
also simplifies dynamic load balancing. Using our chunk list

states expanded thread threads threads threads threads threads

Table 1: Timing results (in wall clock seconds) for eight of Korf’s Fifteen Puzzle cases.

data structure, we were able to design a simple but efficient
load balancing scheme.

This is preliminary work and we are continuing to im-
prove the algorithm. Improvements that we are currently
exploring include methods for compressing the Open and
Closed lists and more efficient memory-management tech-
niques. We also plan to test the algorithm on additional
problems. Eventually, we will consider a layer-synchronized
approach to parallel graph search in a distributed-memory
environment.

Acknowledgments
Yang Zhang thanks his PhD advisor, Ed Luke, for helpful
advice and support.

References
Barnat, J.; Brim, L.; and Chaloupka, J. 2003. Parallel
breadth-first search LTL model-checking. In Proceedings
of the 18th IEEE International Conference on Automated
Software Engineering (ASE’03), 106–115.

Berger, E. D.; McKinley, K. S.; Blumofe, R. D.; and
Wilson, P. R. 2000. Hoard: A scalable memory al-
locator for multithreaded applications. In The Ninth In-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS-
IX). Cambridge, Massachusetts.

Berger, E. D. 2006. The hoard allocator website.
http://www.hoard.org/. Accessed March 19, 2006.

Brim, L.; Černá, I.; Krčál, P.; and Pelánek, R. 2001. Dis-
tributed LTL model checking based on negative cycle de-
tectioin. In Lecture Notes in Computer Science, volume
2245, 96–107.

Grama, A., and Kumar, V. 1999. State of the art in par-
allel search techniques for discrete optimization problems.
IEEE Transactions on Knowledge and Data Engineering
11(1).

Grama, A.; Gupta, A.; Karypis, G.; and Kumar, V.
2003. Introduction to Parallel Computing: Second Edition.
Addison-Wesley. ISBN 0-201-64865-2.

Heyman, T.; Geist, D.; Grumberg, O.; and Schuster, A.
2002. A scalable parallel algorithm for reachability analy-
sis of very large circuits. Formal Methods in Systems De-
sign 21:317–338.

Korf, R., and Schultze, P. 2005. Large-scale parallel
breadth-first search. In Proceedings of the 20th National
Conference on Artificial Intelligence (AAAI-05), 1380–
1385.
Korf, R.; Zhang, W.; Thayer, I.; and Hohwald, H. 2005.
Frontier search. Journal of the ACM 52(5):715–748.
Korf, R. 1985. Depth-first iterative deepening: An optimal
admissible tree search. Artificial Intelligence 27:97–109.
Kumar, V., and Rao, V. N. 1987. Parallel depth-first search
on multiprocessors part II: Analysis. International Journal
of Parallel Programming 16(6):501–519.
Kumar, V.; Ramesh, K.; and Rao, V. N. 1988. Parallel best-
first search of state-space graphs: A summary of results. In
Proceedings of the 1988 National Conference on Artificial
Intelligence (AAAI-88).
Lamborn, P., and Hansen, E. 2006. Memory-efficient graph
search in planning and model checking. In Proceedings of
the Doctoral Consortium of the 16th International Confer-
ence on Automated Planning and Scheduling (ICAPS-06).
Lea, D. 2006. The Java concurrency pack-
age. Online at http://gee.cs.oswego.edu/dl/concurrency-
interest/index.html. Accessed March 19, 2006.
Lerda, F., and Sisto, R. 1999. Distributed-memory model
checking with SPIN. In Proceedings of the 6th Interna-
tional SPIN Workshop.
Rao, V. N., and Kumar, V. 1987. Parallel depth-first search
on multiprocessors part I: Implementation. International
Journal of Parallel Programming 16(6):479–499.
Yoo, A.; Chow, E.; Henderson, K.; and McLendon, W.
2005. A scalable distributed parallel breadth-first search al-
gorithm on BlueGene/L. In Proceedings of the ACM/IEEE
Supercomputing 2005 Conference, 25–35.
Zhou, R., and Hansen, E. 2006. Breadth-first heuristic
search. Artificial Intelligence 170:385–408.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 2
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

