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Abstract

Constraint Optimization problems are commonly solved us-
ing a Branch and Bound algorithm enhanced by consis-
tency maintenance procedures (Wallace and Freuder 1993;
Larrosa and Meseguer 1996; Larrosa et al. 1999; Larrosa and
Schiex 2003; 2004). All these algorithms traverse the search
space in a chronological order and gain their efficiency from
the quality of the consistency maintenance procedure.
The present study introduces Conflict-directed Backjumping
(CBJ) for Branch and Bound algorithms. The proposed al-
gorithm maintains Conflict Sets which include only assign-
ments whose replacement can lead to a better solution. The
algorithm backtracks according to these sets. CBJ can be
added to all classes of the Branch and Bound algorithm.
In particular to versions of Branch & Bound that use ad-
vanced maintenance procedures of soft local consistency lev-
els, NC∗, AC∗ and FDAC (Larrosa and Schiex 2003;
2004). The experimental evaluation of B&B CBJ on random
Max-CSPs shows that the performance of all algorithms is
improved both in the number of assignments and in the time
for completion.

Introduction
In standard CSPs, when the algorithm detects that a solution
to a given problem does not exist, the algorithm reports it
and the search is terminated. In many cases, although a so-
lution does not exist we wish to produce the best complete
assignment, i.e. the assignment to the problem which in-
cludes the smallest number of conflicts. Such problems from
the scope of Max-Constraint Satisfaction Problems (Max-
CSPs) (Larrosa and Meseguer 1996). Max-CSPs are a spe-
cial case of the more general Weighted Constraint Satisfac-
tion Problem (WCSPs) (Larrosa and Schiex 2004) in which
each constraint is assigned a weight which defines its cost
if it is violated by a solution. The cost of a solution is the
sum of the weights of all constraints violated by the solution
(in Max-CSPs all weights are equal to 1). The requirement
in solving WCSPs is to find the minimal cost (optimal) solu-
tion. WCSPs and Max-CSPs are therefore termed Constraint
Optimization Problems.
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In this paper we focus for simplicity on Max-CSP prob-
lems. Max-CSP is an optimization problem with a search
tree of bounded depth. Like other such optimization prob-
lems, the choice for solving it is to use a Branch and Bound
algorithm (Dechter 2003). In the last decade, various algo-
rithms were developed for Max and Weighted CSPs (Wal-
lace and Freuder 1993; Larrosa and Meseguer 1996; Lar-
rosa et al. 1999; Larrosa and Schiex 2004). All of these al-
gorithms are based on standard backtracking and gain their
efficiency from the quality of the consistency maintenance
procedure they use. In (Larrosa and Schiex 2004), the au-
thors present maintenance procedures of soft local consis-
tency levels, NC* and AC*, which improve on former ver-
sions of Node-consistency and Arc-consistency. An im-
proved result for Max-CSPs was presented in (Larrosa and
Schiex 2003). This result was achieved by enforcing ex-
tended consistency which generates higher lower bounds.

The present paper improves on previous results by adding
Conflict-directed Backjumping to the B&B algorithms pre-
sented in (Larrosa and Schiex 2004) and in (Larrosa and
Schiex 2003). Conflict-directed Backjumping (CBJ) is a
method which is known to improve standard CSP algo-
rithms (Dechter 2003; Ginsberg 1993; Kondrak and van
Beek 1997; Zivan and Meisels 2003). In order to perform
CBJ, the algorithm stores for each variable the set of assign-
ments which caused the removal of values from its domain.
When a domain empties, the algorithm backtracks to the last
assignment in the corresponding conflict set.

One previous attempt at conflict directed B&B used rea-
soning about conflicts during each forward search step (Li
and Williams 2005). Conflicts were used in order to guide
the forward search away from infeasible and sub-optimal
states. This is in contrast to the use of conflict reasonong
for backjumping proposed in the present paper. Another at-
tempt to combine conflict directed (intelligent) backtracking
with B&B was reported for the Open-Shop problem (Guéret
et al. 2000). The algorithm proposed in (Guéret et al. 2000)
is specific to the problem. Similarly to CBJ for standard
CSPs, explanations for the removal of values from domains
are recorded and used for resolving intelligently the back-
track destination.

Performing back-jumping for Max-CSPs is more compli-
cated than for standard CSPs. In order to generate a con-
sistent conflict set, all conflicts that have contributed to the



current lower bound must be taken into consideration. Fur-
thermore, additional conflicts with unassigned values with
equal or higher costs must be added to the conflict set in
order to achieve completeness.

The required information needed for the detection of the
culprit variables that will be the targets for the algorithm
backjumps is polynomial and the maintenance of the data
structures does not require additional iterations of the algo-
rithm.

The results presented in this paper show that CBJ de-
creases the number of assignments performed by the algo-
rithm by a large factor. The improvement in time is depen-
dent on the degree of the consistency maintenance procedure
used.

Max-CSPs are presented in Section . A description of the
standard Branch and Bound algorithm along with the main-
tenance procedures of NC∗, AC∗ and FDAC is presented
in Section . Section presents the CBJ algorithm for Branch
and Bound with NC∗, AC∗ and FDAC. A correctness
proof for B&B CBJ is presented in Section . An extensive
experimental evaluation, of the contribution of conflict di-
rected backjumping to B&B with NC∗, AC∗ and FDAC,
is presented in Section . The experiments were conducted
on randomly generated Max-CSPs.

Max Constraint Satisfaction Problems
A Max - Constraint Satisfaction Problem (Max-CSP) is
composed, like standard CSP, of a set of n variables
X1, X2, ..., Xn. Each variable can be assigned a single
value from a discrete finite domain. Constraints or rela-
tions R are subsets of the Cartesian product of the domains
of constrained variables. For a set of constrained variables
Xik

, Xjl
, ..., Xmn

, with domains of values for each vari-
able Dik

, Djl
, ..., Dmn

, the constraint is defined as R ⊆
Dik

×Djl
× ...×Dmn . Similarly to former studies of Max-

CSPs (Larrosa and Meseguer 1996; Larrosa et al. 1999;
Larrosa and Schiex 2003), we assume that all constraints
are binary. A binary constraint Rij between any two vari-
ables Xj and Xi is a subset of the Cartesian product of their
domains; Rij ⊆ Dj × Di.

An assignment (or a label) is a pair 〈var, val〉, where var
is a variable and val is a value from var’s domain that is
assigned to it. A partial solution is a set of assignments of
values to a set of variables. The cost of a partial solution
in a Max-CSP is the number of conflicts violated by it. An
optimal solution to a Max-CSP is a partial solution that in-
cludes all variables and which includes a minimal number of
unsatisfied constraints, i.e. a solution with a minimal cost.

The Branch and Bound algorithm
Optimization problems with a finite search-space are often
solved by a Branch and Bound (B&B) algorithm. Both
Weighted CSPs and Max-CSPs fall into this category. The
overall framework of a B&B algorithm is rather simple.
Two bounds are constantly maintained by the algorithm,
an upper bound and a lower bound. The upper bound
holds the best solution found so far and the lower bound
holds the cost of the current partial solution, which the algo-
rithm is currently trying to expand. When the lower bound

B&B
1. current state← initial state;
2. CPS ← empty assignment;
3. i← 0;
4. while(i ≥ 0)
5. if(i = n)
6. upper bound← lower bound;
7. i← i− 1;
8. else foreach (a ∈ Di)
9. temp state← update state(i,a);
10. if(local consistent(temp state))
11. states[i]← current state;
12. current state← temp state;
13. i← i + 1;
14. i← find culprit variable();
15. current state← states[i];

update state(i, val)
1. add (i, val) to CPS;
2. CPS.cost← CPS.cost + cost(i, val);
3. for j ← i + 1 to n− 1
4. foreach (a ∈ Dj)
5. if(conflicts(〈i, val〉, 〈j, a〉))
6. cost(a, i)← cost(a, i) + 1;

Figure 1: Standard B&B algorithm

is equal to or higher than the upper bound, the algorithm
attempts to replace the most recent assignment. If all
values of a variable fail, the algorithm backtracks to the
most recent variable assigned (Wallace and Freuder 1993;
Larrosa and Schiex 2004).

The Branch and Bound algorithm is presented in Figure 1.
The general structure of the algorithm is different than its re-
cursive presentation by Larrosa and Schiex in (Larrosa and
Schiex 2004). In order to be able to perform backjumping,
we need an iterative formulation (cf. (Prosser 1993)). We
use an array of states which holds for each successful as-
signment the state of the algorithm before it was performed.
After each backtrack the current state of the algorithm will
be set to the state which was stored before the culprit assign-
ment was performed. The space complexity stays the same
as in the recursive procedure case, i.e. larger than a single
state by a factor of n.

We assume all costs of all values are initialized to zero.
The index of the variable which the algorithm is currently
trying to assign is i. It is initialized to the index of the first
variable, 0 (line 3). In each iteration of the algorithm, an at-
tempt to assign the current variable i is performed. The as-
signment attempt includes the updating of the current state
of the algorithm according to the selected assigned value
and checking if the new state is consistent (lines 8-10). For
standard B&B algorithm the lower bound is equal to the
cost of the current partial solution (CPS). thus the con-
sistency check is simply a verification that the cost of the
CPS is smaller than the upper bound. If the state is con-
sistent, an update of the current state is performed and the
current index i is incremented (lines 11-13). When all the
values of a variable are exhausted the algorithm backtracks
(lines 14-15). In a version with no backjumping, the function
find culprit variable simply returns i − 1. The algorithm
terminates when the value of the index i is lower than the



index of the first variable i.e. smaller than zero (line 4).
Procedure update state is also presented in Figure 1.

lines 1,2 update the CPS and its cost with the new as-
signemnt. Then, the cost of each value of an unassigned
variable which is in conflict with the new assignment is in-
cremented (lines 3-6).

The naive and exhaustive B&B algorithm can be im-
proved by using consistency check functions which increase
the value of the lower bound of a current partial solution.
After each assignment, the algorithm performs a consistency
maintenance procedure that updates the costs of potential fu-
ture assignments and increases its chance to detect early a
need to backtrack. Three of the most successful consistency
check functions are described next.

Node Consistency and NC*
Node Consistency (analogous to Forward-checking in stan-
dard CSPs) is a very standard consistency maintenance
method in standard CSPs (Dechter 2003). The main idea
is to ensure that in the domains of each of the unassigned
variables there is at least one value which is consistent with
the current partial solution. In standard CSPs this would
mean that a value has no conflicts with the assignments in
the current partial solution. In Max-CSPs, for each value in
a domain of an unassigned variable, one must determine if
assigning it will increase the lower bound beyond the limit
of the upper bound. To this end, the algorithm maintains
for every value a cost which is its number of conflicts with
assignments in the current partial solution. After each as-
signment, the costs of all values in domains of unassigned
variables are updated. When the sum of a value’s cost and
the cost of the current partial solution is higher or equal to
the upper bound, the value is eliminated from the variable’s
domain. An empty domain triggers a backtrack.

The down side of this method in Max-CSPs is that the
number of conflicts counted and stored at the value’s cost,
does not contribute to the global lower bound, and it affects
the search only if it exceeds the upper bound. In (Larrosa
and Schiex 2004), the authors suggest an improved version
of Node Consistency they term NC*. In NC* the algorithm
maintains a global cost Cφ which is initially zero. After
every assignment, all costs of all values are updated as in
standard NC. Then, for each variable, the minimal cost of
all values in its domain, ci, is added to Cφ and all value
costs are decreased by ci. This means that after the method
is completed in every step, the domain of every unassigned
variable includes one value whose cost is zero. The global
lower bound is calculated as the sum of the current partial
solution’s cost and Cφ.

Figure 2 presents an example of the operation of the NC∗
procedure on a single variable. On the left hand side, the
values of the variable are presented with their cost before the
run of the NC∗ procedure. The value of the global cost Cφ

is 6. The minimal cost of the values is 2. On the RHS, the
state of the variable is presented after the NC∗ procedure.
All costs were decreased by 2 and the global value Cφ is
raised by 2.

Any value whose lower bound, i.e. the sum of the cur-
rent partial solution’s cost, Cφ and its own cost, exceeds the

Figure 2: Values of a variable before and after running NC*

NC*(i)
1. for j ← (i + 1) to (n− 1)
2. cj ← min cost(Dj);
3. foreach (a ∈ Dj)
4. a.cost← a.cost− cj ;
5. Cφ ← Cφ + cj ;
6. lower bound← distance.cost + Cφ;
7. return (lower bound < upper bound);

Figure 3: Standard B&B algorithm

limit of the upper bound, is removed from the variable’s
domain as in standard NC (Larrosa and Schiex 2004).

The NC∗ consistency maintenance function is presented
in Figure 3. The function finds for each variable the minimal
cost among its values and decreases that cost from all the
values in the domain (lines 1-4). Then it adds the minimal
cost to the global cost Cφ (line 5). After the new cost of
Cφ is calculated it is added to the distance cost in order to
calculate the current lower bound (line 6). The function
returns true if the calculated lower bound is smaller than
the upper bound and false otherwise.

Arc Consistency and AC*
Another consistency maintenance procedure which is known
to be effective for CSPs is Arc Consistency. The idea of
standard AC (Bessiere and Regin 1995) is that if a value v of
some unassigned variable Xi, is in conflict with all values in
the current domain of another unassigned variable Xj then
v can be removed from the domain of Xi since assigning it
to Xi will cause a conflict.

In Max-CSPs, a form of Arc-Consistency is used to
project costs of conflicts between unassigned variables (Lar-
rosa and Meseguer 1996; Larrosa et al. 1999; Larrosa and
Schiex 2003; 2004). As for standard CSPs, a value in a
domain of an unassigned variable, which is in conflict with
all the values in the current domain of another unassigned
variable, will cause a conflict when it is assigned. This in-
formation is used in order to project the cost from the binary
constraint to the cost associated with each value. Values for
which the sum of their cost and the global lower bound ex-
ceeds the upper bound, are removed from the domain of
their variable (Larrosa and Schiex 2004). AC∗ combines
the advantages of AC and NC∗. After performing AC, the
updated cost of the values are used by the NC∗ procedure to
increase the global cost Cφ. Values are removed as in NC∗
and their removal initiates the rechecking of AC. The sys-
tem is said to be AC∗ if it is both AC and NC∗ (i.e. each



Figure 4: performing AC* on two unassigned variables

Figure 5: performing AC* on two unassigned variables

domain has a value with a zero cost) (Larrosa and Schiex
2004).

Figures 4 and 5 present an example of the AC* proce-
dure. On the LHS of Figure 4 the state of two unassigned
variables, Xi and Xj is presented. The center value of vari-
able Xi is constrained with all the values of variable Xj .
Taking these constraints into account, the cost of the value
is incremented and the result is presented on the RHS of Fig-
ure 4. The left hand side of Figure 5 presents the state after
the process of adding the minimum value cost to Cφ and de-
creasing the costs of values of both Xi and Xj . Since the
minimal value of Xi was 2 and of Xj was 1, Cφ was in-
cremented by 3. Values for which the sum of Cφ and their
cost is equal to the upper bound are removed from their do-
mains and the procedure ends with the state on the RHS of
Figure 5.

Full Directed Arc Consistency
The FDAC consistency method enforces a stronger ver-
sion of Arc-Consistency than AC∗ (cf. (Larrosa and Schiex
2003)). Consider a CSP with an order on its unassigned vari-
ables. If for each value valik

of variable Vi, in every domain
of an unassigned variable Vj which is placed after Vi in the
order, a value valjs

has a cost of zero and there is no binary
constraint between valik

and valjs
, we say that the CSP is in

a DAC state. A CSP is in a FDAC state if it is both DAC
and AC∗. 1

Figure 6 presents on the LHS the domains of two or-
dered variables Xi and Xj which are not FDAC with re-
spect to this order. On the RHS, an equivalent state of these
two variables which is FDAC is presented. This new state
was reached by extending the unary constraint of the second

1The code for the AC∗ and FDAC procedures is not used in
this paper therefore the reader is referred to (Larrosa and Schiex
2003; 2004).

Figure 6: performing FDAC on two unassigned variables

value in Xj’s domain to the binary constraint between the
two variables. In other words, the cost of this value is de-
creased by one and a constraint with each of the values in
the domain of Xi is added. Then, the binary constraint of
the third value of Xi with all the values of Xj is projected
to its unary cost.

For a detailed description of FDAC and demonstrations
of how FDAC increases the lower bound the reader is re-
ferred to (Larrosa and Schiex 2003).

Branch and Bound with CBJ
The use of Backjumping in standard CSP search is known
to improve the run-time performance of the search by a
large factor (Prosser 1993; Kondrak and van Beek 1997;
Dechter and Frost 2002). Conflict directed Backjumping
(CBJ) maintains a set of conflicts for each variable, which
includes the assignments that caused a removal of a value
from the variable’s domain. When a backtrack operation is
performed, the variable that is selected as the target, is the
last variable in the conflict set of the backtracking variable.
In order to keep the algorithm complete during backjump-
ing, the conflict set of the target variable, is updated with the
union of its conflict set and the conflict set of the backtrack-
ing variable (Prosser 1993).

The data structure of conflict sets which was described
above for CBJ on standard CSPs can be used for the B&B
algorithm for solving Max-CSPs. However, additional as-
pects must be taken into consideration for the case of Max-
CSPs.

In the description of the creation and maintenance of a
consistent conflict set in a B&B algorithm the following
definitions are used:

Definition 1 A global conflict set is the set of assignments
such that the algorithm back-jumps to the latest assignment
of the set.

Definition 2 The current cost of a variable is the cost of
its assigned value, in the case of an assigned variable, and
the minimal cost of a value in its current domain in the
case of an unassigned variable.

Definition 3 A conflict list of value vj from the domain of
variable Xi, is the ordered list of assignments of variables in
the current partial solution, which were assigned before
i, and which conflict with vj .

Definition 4 The conflict set of variable Xi with cost ci

is the union of the first (most recent) ci assignments in each
of the conflict lists of all its values (If the conflict list is
shorter than ci then all of it is included in the union).



update state(i, val)
1. add (i, val) to CPS;
2. CPS.cost← CPS.cost + cost(i, val);
3. foreach(a ∈ Di)
4. for 1 to val.cost
5. GCS ∪ first element in a.conflict list;
6. remove first element from a.conflict list
7. for j ← i + 1 to n− 1
8. foreach (a ∈ Dj)
9. if(conflicts(〈i, val〉, 〈j, a〉))
10. a.cost← a.cost + 1;
11. a.conflict list ∪ (i, val);

find culprit variable(i)
1. culprit← last assignment in GCS;
2. GCSleftarrowGCS \ culprit;
3. return culprit;

Figure 7: Changes in B&B required for backjumping

In the case of simple B&B, the global conflict set
is the union of all the conflict sets of all assigned
variables. Values are always assigned using the min-
conflict heuristic i.e. the next value to be assigned is the
value with the smallest cost in the variable’s current do-
main. Before assigning a variable the cost of each value
is calculated by counting the number of conflicts it has
with the current partial solution. Next, the variable’s
current cost is determined to be the lowest cost among the
values in its current domain. As a result, the variable’s
conflict set is generated. The reason for the need to add
the conflicts of all values to a variable’s conflict set and
not just the conflicts of the assigned value, is that all the
possibilities for decreasing the minimal number of conflicts
of any of the variables’ values must be explored. Therefore,
the latest assignment that can be replaced, and possibly de-
crease the cost of one of the variables values to be smaller
than the variable’s current cost must be considered.

Figure 7 presents the changes needed for adding conflict
directed backjumping to standard B&B. After a successful
assignment is added to the distance and its cost is added to
the distance cost (lines 1,2), the added cost, val.cost is used
to determine which assignments are added to the global con-
flict set (GCS). For each of the values in the domain of
variable i, the first val.cost assignments are removed and
added to the GCS (lines 3-6). As a result, when performing
a backjump, all that is left to do in order to find the culprit
variable is to take the latest assignment (the one with the
highest variable index) in the GCS.

The space complexity of the overhead needed to perform
CBJ in B&B is simple to bound from above. For a CSP with
n variables and d values in each domain, the worst case is
that for each value the algorithm holds a list of O(n) assign-
ments. This makes the space complexity of the algorithm
bounded by O(n2d).

Figure 8 presents the state of three variables which are
included in the current partial solution. Variables X1, X2

and X3 were assigned values v1, v2 and v1 respectively. All
costs of all values of variable X3 are 1. The conflict set
of variable X3 includes the assignments of X1 and X2 even
though its assigned value is not in conflict with the assign-

Figure 8: A conflict set of an assigned variable

Figure 9: A conflict set of an unassigned variable

ment of X2. However, replacing this assignment can lower
the cost of value v2 of variable X3.

Node Consistency with CBJ
In order to perform conflict directed backjumping in a
B&B algorithm that uses node consistency maintenance,
the conflict sets of unassigned variables must be main-
tained. To achieve this goal, for every value of a fu-
ture variable a conflict list is initialized and maintained.
The conflict list includes all the assignments in the cur-
rent partial solution which conflict with the correspond-
ing value. The length of the conflict list is equal to the
cost of the value. Whenever the NC∗ procedure adds the
cost ci of the value with minimal cost in the domain of Xi

to the global cost Cφ, the first ci assignments in each of
the conflict lists of Xi’s values are added to the global
conflict set and removed from the value’s conflict lists.
This includes all the values of Xi including the values re-
moved from its domain. Backtracking to the head of their
list can cause the return of removed values to the variables
current domain. This means that after each run of the
NC∗ procedure, the global conflict set includes the union of
the conflict sets of all assigned and unassigned variables.

Figure 9 presents the state of an unassigned variable Xi.
The current partial solution includes the assignments of
three variables as in the example in Figure 8. Values v1 and
v3 of variable Xi are both in conflict only with the assign-
ment of variable X1. Value v2 of Xi is in conflict with the
assignments of X2 and X3. Xi’s cost is 1 since that is the
minimal cost of its values. Its conflict set includes the as-
signments of X1 since it is the first in the conflict list of
v1 and v3, and X2 since it is the first in the conflict list of
v2. After the NC∗ procedure, Cφ will be incremented by
one and the assignments of X1 and X2 will be added to the
global conflict set.

Figure 10 presents the changes in NC∗ that are required



NC*(i)
1. for j ← i + 1 to n− 1
2. cj ← min cost(Dj);
3. foreach (a ∈ Dj)
4. a.cost← a.cost− cj ;
5. for 1 to cj

6. GCS ← GCS∪ first element in a.conflict list;
7. remove first element from a.conflict list;
8. Cφ ← Cφ + cj ;
9. lower bound← CPS.cost + Cφ;
10. return (lower bound < upper bound);

Figure 10: Changes in NC∗ maintenance that enable CBJ

for performing CBJ . For each value whose cost is de-
creased by the minimal cost of the variable, cj , the first cj

assignments in its conflict list are removed and added to
the global conflict set (lines 5-7).

AC* and FDAC with CBJ
Adding CBJ to a B&B algorithm that includes arc-
consistency is very similar to the case of node consistency.
Whenever a minimum cost of a future variable is added
to the global cost Cφ, the prefixes of all of its value’s
conflict lists are added to the global conflict set. How-
ever, in AC∗, costs of values can be incremented by con-
flicts with other unassigned values. As a result the cost of a
variable may be larger than the length of its conflict list.
In order to find the right conflict set in this case one must
keep in mind that except for an empty current partial so-
lution, a cost of a value vk of variable Xi is increased due
to arc-consistency only if there was a removal of a value
which is not in conflict with vk, in some other unassigned
variable Xj . This means that replacing the last assignment
in the current partial solution would return the value which
is not in conflict with vk, to the domain of Xj . Whenever a
cost of a value is raised by arc-consistency, the last assign-
ment in the current partial solution must be added to the
end of the value’s conflict list. This addition restores the
correlation between the length of the conflict list and the
cost of the value. The variables’ conflict set and the global
conflict set can be generated in the same way as for NC∗.

Maintaining a consistent conflict set in FDAC is
somewhat similar to AC∗. Whenever a cost of a value is
extended to a binary constraint, its cost is decreased and its
conflict list is shortened. When a binary constraint is pro-
jected on a value’s cost, the cost is increased and the last
assignment in the current partial solution is added to its
conflict list. Caution must be taken when performing the
assignment since the constant change in the cost cost of val-
ues may interfere with the min-cost order of selecting values.
A simple way to avoid this problem is to maintain for each
value a different cost which we term priority cost. The
priority cost is updated whenever the value’s cost is up-
dated except for updates performed by the DAC procedure.
When we choose the next value to be assigned we break ties
of costs using the value of the priority cost.

Correctness of B&B CBJ

In order to prove the correctness of the B&B CBJ algorithm
it is enough to show that the global conflict set maintained

by the algorithm is correct. First we prove the correctness for
the case of simple B&B CBJ with no consistency mainte-
nance procedure by proving that the replacement of assign-
ments which are not included in the global conflict set can-
not lead to lower cost solutions. Consider the case that a
current partial solution has a length k and the index of the
variable of the latest assignment in the current partial solu-
tion’s corresponding conflict set is l. Assume in negation,
that there exists an assignment in the current partial solu-
tion with a variable index j > l, that by replacing it the cost
of a current partial solution of size k with an identical pre-
fix of size j − 1 can be decreased. Since the assignment
j is not included in the global conflict set this means that
for every value of variables Xj+1...Xk, assignment j is not
included in the prefix of size cost of any of their values’
conflict lists. Therefore, replacing it would not decrease
the cost of any value of variables Xj+1...Xk to be lower than
their current cost. This contradicts the assumption. �

Next, we prove the consistency of the global conflict set
(GCS) in B&B CBJ with the NC∗ consistency mainte-
nance procedure. To this end we show that all variables
in the current partial solution whose constraints with unas-
signed variables contribute to the global cost Cφ are in-
cluded in the global conflict set. The above proof holds
for the assignments added due to conflicts within the cur-
rent partial solution. For assignments added to the global
conflict set due to conflicts of unassigned variables with
assignments in the current partial solution we need to
show that all conflicting assignments which can reduce the
cost of any unassigned variable are included in the global
conflict set. After each assignment and run of the NC∗ pro-
cedure, the costs of all unassigned variables are zero. If
some assignment of variable Xj in the current partial so-
lution was not added to the global conflict set it means that
it was not a prefix of any conflict list of a size, equal to
the cost added to Cφ. Consequently, changing an assign-
ment which is not in the global conflict set cannot affect the
global lower bound. �

The consistency of the global conflict set for AC∗ fol-
lows immediately from the correctness of the conflict set for
theB&B’s current partial solution and for NC∗. The only
difference between NC∗ and AC∗ is the addition of the
last assignment in the current partial solution to the global
conflict set for an increment of the cost of some value which
was caused by an arc consistency operation. A simple induc-
tion proves that at any step of the algorithm, only a removal
of a value can cause an increment of a value’s cost due to arc
consistency. The correctness for the case of FDAC follows
immediately from the proof of AC∗. The details are left out
for lack of space.

Experimental Evaluation
The common approach in evaluating the performance of
CSP algorithms is to measure time in logic steps to elimi-
nate implementation and technical parameters from affect-
ing the results. Two measures of performance are used by
the present evaluation. The total number of assignments and
cpu-time. This is in accordance with former work on Max-
CSP algorithms’ performance (Larrosa and Schiex 2003;



Figure 11: Assignments of NC* and NC* CBJ (p1 = 0.4)

Figure 12: Run-time of NC* and NC* CBJ (p1 = 0.4)

Figure 13: Assignments of AC* and AC* CBJ (p1 = 0.4)

Figure 14: Run-time of AC* and AC* CBJ (p1 = 0.4)

2004).
Experiments were conducted on random CSPs of n vari-

ables, k values in each domain, a constraint density of p1

and tightness p2 (which are commonly used in experimental
evaluations of Max-CSP algorithms (Larrosa and Meseguer
1996; Larrosa et al. 1999; Larrosa and Schiex 2004)). In
all of the experiments the Max-CSPs included 10 variables
(n = 10) and 10 values for each variable (k = 10). Two
values of constraint density p1 = 0.4 and p1 = 0.9 were
used to generate the Max-CSPs. The tightness value p2,
was varied between 0.7 and 0.98, since the hardest instances
of Max-CSPs are for high p2 (Larrosa and Meseguer 1996;
Larrosa et al. 1999). For each pair of fixed density and tight-
ness (p1, p2), 50 different random problems were solved by
each algorithm and the results presented are an average of

Figure 15: Assignments of AC* and AC* CBJ (p1 = 0.9)

Figure 16: Run-time of AC* and AC* CBJ (p1 = 0.9)

Figure 17: Assignments of FDAC and FDAC CBJ (p1 = 0.4)

Figure 18: Run-time of FDAC and FDAC CBJ (p1 = 0.4)

these 50 runs.
In order to evaluate the contribution of Conflict directed

Backjumping to Branch and Bound algorithms using con-
sistency maintenance procedures, the B&B algorithm with
NC∗, AC∗ and FDAC procedures were implemented. The
results presented show the performance of these algorithms
with and without CBJ. The NC∗ procedure was tested only
for low density problems p1 = 0.4, since it does not com-
plete in a reasonable time for p1 = 0.9.

Figure 11 presents the number of assignments performed
by NC* and NC* CBJ. For the hardest instances, where p2

is higher than 0.9, NC* CBJ outperforms NC* by a factor of
between 3 at p2 = 0.92 and 2 at p2 = 0.99. Figure 12 shows
similar results for cpu-time.

Figure 13 presents the number of assignments performed



Figure 19: Assignments of FDAC and FDAC CBJ (p1 = 0.9)

Figure 20: Run-time of FDAC and FDAC CBJ (p1 = 0.9)

by AC* and AC* CBJ. For the hardest instances, where p2

is higher than 0.9, AC* CBJ outperforms AC* by a factor of
2. Figure 14 presents the result in cpu-time. The results in
cpu-time are similar but the difference is smaller than for the
number of assignments.

Figures 15, 16 shows similar results for the AC* algorithm
solving high density Max-CSPs (p1 = 0.9). The factor of
improvement is similar to the low density experiments for
both measures.

Figure 17 presents the number of assignments performed
by FDAC and FDAC CBJ. The difference in the number of
assignments between the conflict-directed backjumping ver-
sion and the standard version is much larger than for the case
of NC* and AC*. However, the difference in cpu-time, pre-
sented in Figure 18, is smaller than for the previous proce-
dures. These differences are also presented for high density
Max-CSPs in Figures 19 and 20.

The big difference between the results in number of as-
signments and in cpu-time for deeper look-ahead algorithms
can be explained by the large effort that is spent in FDAC
for detecting conflicts and pruning during the first steps of
the algorithm run. For deeper look-ahead, the backjumping
method avoids assignment attempts which require a small
amount of computation. The main effort having been made
during the assignments of the first variables of the CSP
which are performed similarly, in both versions.

Conclusions
Branch and Bound is the most common algorithm used for
solving optimization problems with a finite search space
(such as Max-CSPs). Former studies improved the re-
sults of standard Branch and Bound algorithms by im-
proving the consistency maintenance procedure they used
(Wallace and Freuder 1993; Larrosa and Meseguer 1996;
Larrosa et al. 1999; Larrosa and Schiex 2003; 2004). In
this study we adjusted CBJ which is a common technique
for standard CSP search (Prosser 1993; Kondrak and van

Beek 1997) to Branch and Bound with extended consistency
maintenance procedures. The results presented in Section
show that CBJ improves the performance of all versions of
the B&B algorithm. The improvement is measured by two
separate measures - the number of assignments performed
by the algorithm and its run-time. The factor of improve-
ment in the number of assignments is consistent and large.
The factor of improvement in run-time is dependent on the
consistency maintenance procedure used. The factor of im-
provement does not decrease (and even grows) for random
problems with higher density.
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