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Abstract
Today, personalization in information systems occurs sep-
arately within each system that one interacts with. How-
ever, there are several potential improvements w.r.t. such iso-
lated approaches. Thus, investments of users in personaliz-
ing a system, either through explicit provision of informa-
tion, or through long and regular use are not transferable
to other systems. Moreover, users have little or no control
over their profile, since it is deeply buried in personaliza-
tion engines. Cross-system personalization, i.e. personaliza-
tion that shares personal information across different systems
in a user-centric way, overcomes these problems. User pro-
files, which are originally scattered across multiple systems,
are combined to obtain maximum leverage. This paper dis-
cusses an approach in support of cross-system personaliza-
tion, where a large number of users cross from one system
to another, carrying their user profiles with them. These sets
of corresponding profiles can be used to learn a mapping be-
tween the user profiles of the two systems. In this work, we
present and evaluate the use of factor analysis for the purpose
of computing recommendations for a new user crossing over
from one system to another.

Introduction
The World Wide Web provides access to a wealth of infor-
mation and services to a huge and heterogeneous user pop-
ulation on a global scale. One important and successful de-
sign mechanism in dealing with this diversity of users is to
personalize Web sites and services, i.e. to customize sys-
tem contents, characteristics, or appearance with respect to
a specific user. Each system independently builds up user
profiles and may then use this information to personalize
the system’s content and service offering. Such isolated ap-
proaches have two major drawbacks: firstly, investments of
users in personalizing a system either through explicit pro-
vision of information or through long and regular use are
not transferable to other systems. Secondly, users have little
or no control over the information that defines their profile,
since user data are deeply buried in personalization engines
running on the server side.

Cross system personalization (CSP) (Mehta, Niederee, &
Stewart 2005) allows for sharing information across dif-
ferent information systems in a user-centric way and can
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overcome the aforementioned problems. Information about
users, which is originally scattered across multiple systems,
is combined to obtain maximum leverage and reuse of infor-
mation. Previous approaches to cross system personaliza-
tion relied on each user having a unified profile which dif-
ferent systems can understand. The unified profile contains
facets modeling aspects of a multidimensional user which
is stored inside a ”Context Passport” that the user carries
along in his/her journey across information space. When a
user goes to a new system, the user’s Context Passport is
presented to a system, which can then understand the con-
text in which the user wants to use the system. The basis
of ’understanding’ in this approach is of a semantic nature,
i.e. the semantics of the facets and dimensions of the uni-
fied profile are known, so that the latter can be aligned with
the profiles maintained internally at a specific site. The re-
sults of the personalization process are then transfered back
to the user’s Context Passport via a protocol understood by
both parties. The main challenge in this approach is to es-
tablish some common and globally accepted vocabulary and
to create a standard every system will comply with. Without
such a convention, the exact mapping between the unified
user profile and the system’s internal user profile would not
be known.

Machine learning techniques provide a promising alterna-
tive to enable cross system personalization without the need
to rely on accepted semantic standards or ontologies. The
key idea is that one can try to learn dependencies between
profiles maintained within one system and profiles main-
tained within a second system based on data provided by
users who use both systems and who are willing to share
their profiles across systems – which we assume is in the
interest of the user. Here, instead of requiring a common se-
mantic framework, it is only required that a sufficient num-
ber of users cross between systems and that there is enough
regularity among users that one can learn within a user pop-
ulation, a fact that is commonly exploited in social or col-
laborative filtering.

Automatic Cross System Personalization
For simplicity, we consider a two system scenario in which
there are only two sites or systems denoted by A and B.
Both systems perform some sort of personalization and
maintain separate profiles of their users; generalization to



an arbitrary number of systems is relatively straightforward
and is discussed later. For simplification, we assume that the
complete user profiles for user i are represented as vectors
xA

i ∈ X ⊆ R
m and xB

i ∈ Y ⊆ R
p for systems A and B,

respectively. Given the profile xA
i of a user in system A, the

objective is then to find the corresponding profile xB
i of the

same user in system B. Formally we are looking to find a
mapping

FAB : R
m → R

p, s.t. FAB(xA
i ) ≈ xB

i (1)

for all user i. The situation may be further complicated by
the fact that for some users xA

i may be only known partially,
and that some aspects or values of xB

i may not be directly
observable at system B. In the latter case, the goal is to ex-
ploit the information available at system A in order to im-
prove the inference about unknown values of xB

i .
Notice that if users exist for which profiles in both sys-

tem are known, i.e. a training set {(xA
i ,xB

i ) : i = 1, . . . , l},
then this amounts to a standard supervised learning problem.
In contrast to standard regression problems that typically in-
volve only a single real-valued response variable, however,
the function FAB that needs to be learned here is vector-
valued. In fact, if profiles store say rating information about
products or items at a site, then the dimensionality of the out-
put can be significant (e.g. p can be in the tens of thousands).
Moreover, notice that we expect the outputs to be highly cor-
related in such a case, a crucial fact that is exploited by rec-
ommender systems. For computational reasons it is ineffi-
cient and often impractical to learn independent regression
functions for each profile component. Moreover, ignoring
inter-dependencies between response variables can seriously
deteriorate the prediction accuracy that is possible when tak-
ing such correlations into account. Lastly, one also has to
expect that a large fraction of users are only known to one
system (either A or B), and that the profiles of the users in
each of these systems is likely to be sparse (for collabora-
tive filtering systems, this means that a small percentage of
items are rated by each user). This brings up the question
of how to exploit data without known correspondence in a
principled manner, a problem generally referred to as semi-
supervised learning. Notice that the situation is symmetric
and that unlabeled data may be available for both systems,
i.e. sets of vectors xA

i without corresponding xB
i and vice

versa. Similar issues also arise in Cross Language Informa-
tion Retrieval (cf. (Oard 2003)).

In summary, we have three conceptual requirements from
a machine learning method:

a) Perform vector-valued regression en bloc and not inde-
pendently,

b) Exploit correlations between different output dimen-
sions (or response variables), and

c) Utilize data without known correspondences.

In addition, the nature of the envisioned application requires:

a) Scalability of the method to large user populations and
many systems/sites, and

b) Capability to deal with missing and incomplete data.

Related Work
There are a number of recent machine learning methods
that can be utilized in principle for vector-valued regression
problems like the one in Eq. (1), but some of them only par-
tially fulfill the above requirements.

Kernel dependency estimation (KDE) is a technique that
performs kernel PCA on the output side and then learns
independent regression functions from inputs to the PCA-
space. However, KDE can only deal with unlabeled data
on the output side and requires solving computationally de-
manding pre-image problems for prediction (Bakir, Weston,
& Schölkopf 2004). Another option is Gaussian process re-
gression with coupled outputs (Keerthi & Chu 2006). Here
it is again difficult to take unlabeled data into account while
preserving the computational efficiency of the procedure.
The same is true for more traditional approaches like Multi-
Layer-Perceptrons with multiple outputs.

There has been some recent work (Mehta & Hofmann
2006) which proposes the use of semi-supervised manifold
alignment (Ham, Lee, & Saul 2005) for the purposes of
cross system personalization. The latter is based on a mani-
fold learning method, namely taking the Laplacian Eigen-
map approach of (Belkin & Niyogi 2003) as the starting
point. Laplacian Eigenmaps and other manifold learning
techniques like Locally Linear Embedding (LLE) (Ham,
Lee, & Saul 2003) are non-linear generalizations of linear
dimension reduction and subspace techniques that have al-
ready been used successfully in various way for collabora-
tive filtering. The problem with the approach described in
(Mehta & Hofmann 2006) though is the lack of a probabilis-
tic interpretation and the inability to deal with incomplete
data and missing values in a principled way.

Factor Analysis
In this paper, we extend the collaborative filtering system
proposed in (Canny 2002), which is based on the linear fac-
tor analysis model (Everitt 1984) to the CSP task. We start
by motivating and introducing the factor analysis model.

Motivating Example
A very intuitive example explaining the idea behind Fac-
tor Analysis is available at Richard Darlington’s homepage1.
”Suppose each of 500 people, who are all familiar with dif-
ferent kinds of automobiles, rates each of 20 automobile
models on the question, How much would you like to own
that kind of automobile? One could usefully ask about the
number of dimensions on which the ratings differ. A one-
factor theory would posit that people simply give the highest
ratings to the most expensive models. A two-factor theory
would posit that some people are most attracted to sporty
models while others are most attracted to luxurious models.
Three-factor and four-factor theories might add safety and
reliability.”

Factor analysis is used to uncover the latent structure un-
derlying a set of variables and as such is a ”non-dependent”

1http://comp9.psych.cornell.edu/Darlington/factor.htm



procedure that does not require to explicitly specify depen-
dent variables. It can be used to analyze the patterns of re-
lationships between observed variables, eventually discov-
ering the underlying (fewer and fundamental) independent
variables that may not be directly observed. The inferred
variables are called factors. A typical application of factor
analysis suggests answers to following questions:

1. What are the latent factors underlying the data?

2. In which way do these factors explain correlations be-
tween observed variables?

3. How much of the observed variability is accounted for by
latent factors, how much should be considered noise?

Factor analysis is also a generative model for high dimen-
sional data, which is actually based on a low dimensional
set of factors. Factor analysis is used to uncover the latent
structure of a set of (observed) variables within such data,
and to reduce the attribute space from a larger number of
variables to a smaller number of factors.

Factor Analysis Model
Factor analysis is a latent variable model in which depen-
dencies and correlations between multiple observable (de-
pendent) variables x are explained by virtue of a typically
much smaller number of latent variables or factors z. In lin-
ear factor analysis the functional relationship between the
observed random vector x and the unobserved z is assumed
to be linear with some additive zero mean Gaussian noise
added to each dimension of x independently. The funda-
mental equation that relates observables and latent factors
can thus be described as

x = μ + Λz + η, η ∼ N (0,Ψ), (2)

where μ ∈ R
m is a constant offset vector (mean),

Λ ∈ R
m×k is the matrix of factor loadings, and Ψ =

diag(ψ1, . . . , ψm) is a diagonal matrix modeling the vari-
ance of the additive Gaussian noise η. To complete the
model, one usually assumes that a priori z ∼ N (0, I),
i.e. the k latent factors follow an isotropic normal distribu-
tion with unit variance. The key assumption in factor anal-
ysis as in many latent class models is that conditioned on
the latent classes, the observables are rendered independent;
hence the crucial requirement on Ψ to be diagonal. It can
be shown by integrating out the latent variables z that the
distribution induced by factor analysis on the observables is
a multivariate normal of the form

x ∼ N (μ, ΛΛ′ + Ψ) . (3)

This shows that factor analysis can be thought of as a mul-
tivariate normal model in which certain constraints are im-
posed on the co-variance matrix.

Factor Analysis for Collaborative Filtering
To cast the collaborative filtering scenario in the factor anal-
ysis framework, we assume the following: Let the user
database for n users and m items be represented by a m×n
matrix X with columns xi corresponding to the profile for
user i. We assume that each xi is a realization of the random

vector in Eq. (2) drawn i.i.d. from a factor analysis model
with k factors and (unknown) parameters μ, Λ, and Ψ. We
then can use the observed user ratings in X to learn the pa-
rameters of the model, e.g. using maximum likelihood es-
timation. (Canny 2002) has shown how factor analysis can
also deal with missing data without the need for imputing
values. This is a key advantage, since value imputation can
be a pitfall in general (cf. (Ghahramani & Jordan 1994)). It
is also relatively straightforward to compute posterior proba-
bilities for missing x-variables given observed ones, as well
as computing the posterior over the latent factors. Notice in
particular that the conditional mean of an unobserved rating
is guaranteed to be a linear function of the observed ratings,
which is a simple consequence of Eq. (3).

Factor Analysis for Cross System
Personalization

In a two system scenario, we have two sites A and B, con-
taining user profiles for their users represented as vectors.
A user i has a profile xA

i ∈ R
m at site A, and a profile

xB
i ∈ R

p at site B. We assume that c users are common to
both site and that the data matrices can be partitioned as

XA =
[
XA

c XA
s

]
, X =

[
XB

c XB
s

]
, (4)

where XA
c and XB

c represent the sub-matrices of XA and
XB corresponding to the common users and XA

s and XB
s

the sub-matrices for users that are unique to A and B.
One way of looking at the CSP problem in the context of

factor analysis is to relate the profiles in both (or multiple)
systems by assuming that the user profiles are likely to be
consistent in terms of the basic factors, i.e. that they can be
explained by latent factors common to both systems. This is
similar to the manifold alignment idea of (Ham, Lee, & Saul
2003) and effectively couples the factor analyses between
the different systems.

A simple manner of enforcing this constraint is to con-
struct a new combined random vector x = [xA xB ] and
to perform a joint factor analysis over the combined profile
space of system A and B. This means we effectively gener-
ate a data matrix

X =

[
XA

c XA
s ?

XB
c ? XB

s

]
, (5)

where ’?’ denotes matrices of appropriate size with un-
observed values. Again we assume that the columns of
X are independent realizations of x in a factor analysis
model. Note that the other submatrices of X may also con-
tain (many) missing entries.

It is interesting to make a further simplication by restrict-
ing the data matrix to users that are known to both systems

Xc =

[
XA

c

XB
c

]
, (6)

and to ignore the data concerning users only known to one
system. Obviously, this will accelerate the model fitting
compared to working with the full matrix X. Also, this set-
ting is more realistic, since in a real world scenario, only the



restricted portion of crossing users might be made available
by individual systems. This situation corresponds to a super-
vised learning setting where labeled output data is available
for all training samples. However, it is likely to be less ac-
curate than the semi-supervised learning setting where X is
used, since the unlabeled samples will potentially improve
the estimation of the parameters.

A third scenario is one, where each site gets profiles of
some of its users from another system, but wants to make
use of all of its locally available user profiles. In this case,
factor analysis based on the data matrix

XA =

[
XA

c XA
s

XB
c ?

]
and XB =

[
XA

c ?

XB
c XB

s

]
, (7)

will be performed at system A and B, respectively. We have
explored this model in our experiments for the case where
users with an existing profile at one site bring along their
profile from the second system.

Factor Analysis using Expectation Maximization
A standard approach for performing maximum likelihood
estimation in a factor analysis model is the expectation max-
imization (EM) algorithm. For completeness, we state here
the expectation maximization recurrence relations (for sim-
plicity restricted to the μ = 0 case). In the EM approach
maximum likelihood estimation is performed by maximiz-
ing the expected complete data log-likelihood with respect
to the parameters of the model, i.e. one needs to perform the
maximization

(Λ̂, Ψ̂) = argmax
Λ,Ψ

n∑
i=1

Ez [log p(xi, z; Λ, Ψ)] , (8)

where the expectation for z is computed with respect to the
posterior distribution of z given a particular profile xi. Note
that the latter will also depend on the parameters Λ and Ψ,
so that both steps, the computation of the posteriors (E-step)
and the re-estimation of the parameters (M-step) needs to
be alternated until (guaranteed) convergence. The posterior
distribution of the z is a multivariate normal for which the
mean vector and co-variance matrix can be calculated as

E [z|x] = 〈β,x〉, where β = Λ′(Ψ + ΛΛ′)−1 and (9)

E [zz′|x] = I − βΛ + βxx′β′ . (10)

Using these equalities, maximizing the expected complete
data log-likelihood results in the equations

Λ =

(
n∑

i=1

xiE(z|xi)′
)(

n∑
i=1

E(zz′|xi)

)−1

(11)

Ψ =
1
n

diag

[
n∑

i=1

xix′
i − ΛE(z|xi)x′

i

]
. (12)

A detailed derivation can be found in (Ghahramani & Hinton
1996).

We can rewrite the above recurrences compactly in matrix
notation, using the entire user matrix X, and the latent space

matrix Z, in a readable form as follows:

β = Λ′(Ψ + ΛΛ′)−1

Z = βX

Λ[t] = XZ′(ZZ′ + Ψ(Ψ + ΛΛ′)−1)−1

Ψ[t] =
1
n

diag(XX′ − Λ[t]ZX′)

(13)

Sparse Factor Analysis
Canny’s approach (Canny 2002) also uses an Expectation
Maximization recurrence to solve the factor analysis model,
while paying attention to the case of incomplete data.2 Since

Figure 1: Factor analysis using incomplete data. Only ob-
served variables (x1, x2, x3, ...) are used to predict the latent
variables(z1, z2, z3).

each user has rated only a subset of items, only the avail-
able rating data is used to compute the value of the latent
variables, effectively removing missing variables from the
inference process. Defining an m × m trimming diagonal
matrix Ti for the ith user which has Ti(j, j) = 1 whenever
the user i has voted for item j, the factor analysis E-step
equations are modified as follows:

E [z|xi] = 〈βi,xi〉, βi = Λ′
i(Ψ + ΛΛ′

i)
−1, Λi = ΛTi (14)

E [zz′|xi] = I − βiΛi + βixix′
iβ

′
i . (15)

Similarly, the M-step equations can be generalized to the
missing data case to yield:

Λ[t] =

(
n∑

i=1

xiE[z|xi]

) (
n∑

i=1

TiE [zz′|xi]

)−1

Ψ[t] =

(
n∑

i=1

Ti

)−1

diag

(
n∑

i=1

xix′
i − Λ[t]E[z|xi]x′

iTi

)

(16)
Further, the latent space projection of a given user profile xi

can be computed by

zi = βixi (17)

A detailed derivation can be found in (Traupman & Wilen-
sky 2004).

2An additional advantage of his approach is that the model
building can be distributed among participating users in a man-
ner that preserves privacy. In Canny’s approach, each user can
contribute to the model building by computing locally terms that
contribute to the overall computation.



The model requires an initial value for Λ and ψ. A random
matrix with a Gaussian distribution is used for Λ. This ran-
dom matrices are then used by the linear regression model
to generate an estimate. A linear regression model assumes
no noise (ψ = 0), and can be obtained from the Eq. (13)
by setting ψ = 0. The linear regression uses the following
update scheme:

z = (Λ′Λ)−1Λ′x (18)

Λ[t] = xz′(zz′)−1

Here the matrix x is a m × n user rating matrix, were miss-
ing values are replaced by some mean values. An over-
all average has been used by Canny. A few iterations of
this recurrence gives a reasonable starting value of Λ which
can be used by the factor analysis model. Please note that
Canny’s approach assumes that the observed variables have
a mean of zero. While this is not true for user ratings, simple
transformations like subtracting per-user or per-item means
from every known value can create data with approximately
zero mean. In our experiments, we have subtracted per-user
means from known ratings.

In summary, the proposed method works as follows in
practice: At first, the linear regression model in Eq. (18)
is used to calculate an initial estimate of Λ, using a low di-
mensional latent space. After approximately 10 iterations
of linear regression, the factor analysis model (cf. Eq. (16))
is initialized with this estimate of Λ. The EM recurrence
for factor analysis (EM-FA) converges reliably in 15-25 it-
erations in all our experiments. After this, a new user with
a partial rating vector xj can be used to calculate zj using
Eq. (17). Given zj , x̂j = Λzj provides the prediction for
the complete rating vector.

Extension to n-system Scenario
One of the important factors on which the success of a
method for CSP depends, is to be able to effectively use data
spread across multiple systems. The 2-system scenario is
clearly simplistic: a real world scenario has multiple systems
with users having profiles in one or more of these systems.
Besides the obvious case of a new user entering a system,
where CSP has benefits, it is also desirable that the recom-
mendation quality for an existing user can be improved by
leveraging his/her profiles in other systems. While the n-
system scenario can be dealt with by treating the entire setup
like one huge collaborative system, with items and users
ratings distributed across multiple sites, subtle issues make
the difference crucial. These issues concern correspondence
(user profiles on only a subset of systems), and item overlap.
Therefore, a generalized approach should take these issues
into consideration.

We start by assuming, as earlier, that each site can be
modeled be a linear factor analysis model. Further, corre-
sponding profiles have the same representation in the latent
space. Thus, if random variables x1,x2, ...,xn represent the
user profiles at the n sites respectively, then we form a new
random variable x by concatenating the n vectors, i.e.:

x = [x1 x2 ... xn] (19)

Let the matrix X encode all the user profiles: as before, each
user now represents a column in this matrix. Note that this
simple setup can allow for correspondence for every user,
since the combined user profile is a concatenation of user
profiles at individual sites. In case a site does not have a
profile for the given user, a vector (of appropriate length)
with missing values ’?’ is chosen. The resulting model can
then be used in a fashion similar to the 2-system scenario:
All known ratings for all systems are combined appropri-
ately (as dictated by Eq. (19)) to yield a vector of length m
(where m is the sum of number of items in all n -systems).
This vector is then first projected to get the lower dimension
embedding z in the latest space, and then Λz gives the de-
sired complete vector with all predicted values filled in. This
approach also does not need explicit item to item mapping in
case the same items are available in more than one system.
Instead, the learning approach can figure this out by looking
at only principal components in the data.

CSP for Existing Users
As mentioned before, one of the objectives of CSP is to
leverage data about the user available at other sites. While
we posit that new users can unmistakably gain from CSP,
users with existing profiles should also be able to gain from
their profiles at other systems in a similar way. The advan-
tage offered by CSP in this context is a systematic and prin-
cipled integration of data and evidence across all systems.
By taking user’s ratings at other sites into account in addition
to locally gathered data, one can expect to get more accu-
rate ratings. In our experimental results, we have tested this
hypothesis by performing All-but-1, All-But-5, and Only-n
tests at site A, while providing information about the ratings
at site B as side-information.

Data and Evaluation
We choose the EachMovie3 data with ratings from 72,916
users for 1,682 movies. Ratings are given on a numeric six
point scale (0.0, 0.2, 0.4, 0.6, 0.8, 1.0). The entire dataset
consists of around 2.8 million votes, however around 2.1
million of these votes are by the first 20,000 users. We
chose this dense subset of 20,000 users and 1682 movies and
scaled ratings to integers between 1 and 6. We split this data
set into two parts to form two datasets by splitting the item
set of the entire data. This way we get two datasets with the
same number of users, but with ratings over different items.
To mimic a real life setting, we allow a random 5% of items
to overlap between the data sets. The overlap is not explic-
itly maintained nor is the correspondence information made
available to the learning algorithm. Moreover, we choose
10,000 test users, since this model is useful only if it works
for a large number of users, with only a few correspondences
known. In our test runs, we build an FA model using the ma-
trix X (see eq. (4)) varying c from 500 users to 10,000 users.
For the users not in correspondence, we randomly rearrange
their order. In our setting, it is vital that we can build an
effective predictive model with as few users crossing over
from one system to another which works effectively for a

3http://research.compaq.com/SRC/eachmovie
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Figure 2: MAE and Ranking scores for 10,000 test users (with 10 fold validation). ”common” refers to the use of only common
users (Eq. 5) for training the model.
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Figure 3: MAE and Ranking scores for 5000 test users (with 10 fold validation)



large number of new users. We randomly choose the test set
and the item set for every run of the algorithm. In addition,
we also performed the model building step using only the
users common to both systems using Xc (see Eq. (5)).

Time and Space complexity
The time complexity of a single iteration of sparse FA is
O(nmk2), which is linear in the size of the user database,
and quadratic in k, which is the number of dimensions in
the latent space. The prediction time is O(mk2) which is
linear in the number of items. The space complexity is low
∼ O(mk), as is characteristic of model based collaborative
filtering.

Implementation
The factor analysis algorithm has been implemented on
a standard Pentium IV based PC running Matlab R14.
Canny’s original Matlab code has been made available pub-
licly4, and this served as a starting point for our purposes.
The core code is very quick and scales very well to a large
data set like EachMovie. Running times for the model
building phase with 10,000 users is around 40 seconds, and
less than 10 seconds when only common users are used.
Prediction times are much faster: recommendations of all
10,000 test users are generated in 6.5 seconds. We have used
k = 14 − 20, and have found that there is negligible differ-
ence for values higher than 14: hence we report results for
k = 14.

Metric used
1. Mean Average Error = 1

m |pv − av|, where pv is the pre-
dicted vote and av is the actual vote. The average is taken
only over known values (assume the active user has pro-
vided m votes).

2. Ranking score of top-N items. Rscore = 100∗ R
Rmax

. Rank-

ing scores were introduced in (Breese, Heckerman, &
Kadie 1998) and have been widely used in literature to
evaluate the ranking of a top-n recommendation. We
choose the only the top 20 items instead of the entire
set of rated items. The choice of 20 items is also based
on the fact that we have picked users with at least 20
votes, and would like to evaluate this metric over observed
votes only. This metric gives a values between 0 and 100.
Higher values indicate a ranking with top items as the
most highly rated ones. One big advantage of this metric
is that it gives the same score for permutations of items
with the same score. Thus if a user has rated 6 items with
the maximum score 5, then the Rscore is the same for any
permutation of the ranking. This removes the problem of
breaking ties.

Results
In order for CSP to be useful, we require CSP to provide a
perceptable advantage over status quo. Clearly, a new user
who has profiles with other systems should be able to use

4http://guir.berkeley.edu/projects/mender/

his/her previous ratings to get a meaningful recommenda-
tion. This advantage should increase when the number of
systems in the CSP setting is higher (i.e. many users have
profiles in n systems and provide this information when
moving to a new system), or when the user already has a
profile at the current system. In summary, our evaluation
aimed at testing 3 hypotheses:

1. CSP offers an advantage over popular item voting5 for a
large number of first time users,

2. CSP offers an advantage for existing users in a standard
collaborative filtering setting, and

3. CSP offers an advantage in a n-system scenario.

Figure 2. provides experimental evidence for the first hy-
pothesis. While popular voting has been reported to pro-
vide a good recommendation quality, here it performs very
poorly. The simple reason for this is our large number of test
users; clearly the same rating and ranking can not appeal to
a large variety of users. In contrast, the CSP approach of-
fers significantly better results, performing 12% better than
the baseline when 4,000 users have crossed over. When the
complete set of training users are set in correspondence, this
advantage jumps to 22%. Note that these numbers are not in-
significant for a collaborative filtering setting, where the best
performing k-Nearest Neighbor algorithms perform only 12-
16% better than popularity voting.

Not surprisingly, the semi-supervised approach to CSP
performs better than the supervised approach. In the su-
pervised approach, only the users with known correspon-
dences are used for training the model. While this approach
is clearly more efficient, the early advantage gained by semi-
supervised learning here is to the tune of 6% when 4,000
users have crossed. Subsequently, both approaches perform
similarly, but this is because the input data to both starts to
look much similar and is actually the same when all the
training users have been set in correspondence. Clearly,
more available data helps to make the model learn faster.

The advantage offered by CSP is even more evident in the
Ranking score metric, which depicts the utility of the ranked
recommendation list returned to the user. This metric was
originally proposed in (Breese, Heckerman, & Kadie 1998)
and bases itself on the observation that the utility of an item
in the ranked list decays exponentially, with a half life of,
say 5 items. We have measure this metric only over the
observed votes. As figure 2 shows, the popularity voting
offers a very low ranking score in comparison with the CSP
approach. The advantage is more than 70% when around
4000 users have crossed over, and conitnues to grow a
further 15% till all the training set has been used.

To test the second hypothesis, the following setup is
used: the entire set is split into 2 parts as earlier. At site A,
10,000 users are used to train a model of just site A. This
model is then used to generate recommendations for 5,000
test users, and then evaluated using the All-But-1, All-but-5,
and Only-n protocols (see (Breese, Heckerman, & Kadie

5Popular voting involves using mean rating of every item and
recommending the mostly highly rated items to the active user
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Figure 4: MAE and Ranking scores for ∼ 3, 000 test users
(with 10 fold validation) in an Only-n scenario. n is varied
from 1 to 50.

1998) for details on these protocols). In addition, a second
model is trained with 8,000 users(total), out of which some
users have profiles at Site B. The number of such profiles
in correspondence is increased from 1000 to 8000. Now,
this second model is used to generate recommendation for
5,000 test users for site A. Notice that the test users have
their complete profiles from site B available, in addition
to some ratings for site A. Figure 3 provides evidence for
this hypothesis, where the MAE for All-but-1 and All-but-5
show an advantage for CSP even for existing users. Clearly,
this advantage is higher when a lower number of votes for
a user are available at site A. Figure 4 shows the results
of an experiment where the number of votes available at
site A (per user) was varied from 1 to 50. As test users,
we chose only those users who had cast at least 50 votes in
our test set of 5000 users. Over various runs, this number
of test users was noted to be around 3000. It is clear
that CSP has a big early advantage over single-system
collaborative filtering to the tune of 20%. This advan-
tage decreases to 5% when 20 votes per user are available.
At the 50-votes per user point, the advantage is less than 3%.

To test the third hypothesis, we constructed a setup with 3
systems in the following way: for 4,000 users, correspond-
ing profiles from all 3 systems are available, for 2,000 users,
profiles for system 1 and 2 are available, and for the next
2,000 users, profiles from system 1 and 3 are available. Now
for 5,000 test users, we tested the 3 following scenarios for
new users at system 1:

1. No profile is available

2. Profile from system 2 is available

3. Profile from system 2 and 3 is available.

Popular vote Only from A From A,B

MAE 2.6052 1.1725 1.1142

RS 14.5585 61.8124 66.4900

Table 1: MAE and Ranking Score for 3-system scenario.
Each system had an non-overlapping item set of size 500.

With this setup, we constructed a joint factor model and
evaluated the predictions of the model in the cases stated
above. Table 1. shows the MAE and Ranking Scores for
the n-system scenario. The results clearly show that in an n-
system environment, CSP offers a definite advantage. When
a new user brings along a profile from another system, there
is a dramatic improvement in performance. The numbers in
this experiment for MAE are higher than the 2-system cases
due to the decreased size of the item sets for each system.
Finally, a new user who brings profiles from two systems
has a bigger advantage than a user make available his/her
profile from only from one system.

Usefulness in Practical Scenarios
With a variety of systems using personalization engines,
there is a lot of data being collected about users as they
go about their day to day pursuits. Combining this data
from various sources in a secure and transparent way can
significantly improve the level of personalization that elec-
tronic systems currently provide. In this scenario, develop-
ing an approach which makes very few assumptions about
systems and users is of paramount importance. While our
approach has been demonstrated in a collaborative filtering
setting, there is no binding to use only rating data. The pro-
files of a content based system can be just as easily plugged
in, as can be a profile from a hybrid system. Importantly,
we also hypothesize that user profiles should be stored on
the user’s side in Context Passport which can leverage data
about the user available with multiple systems. We envision
that even data from operating systems and email clients can
be plugged into the Context Passport, and can be communi-
cated from the user to the system and back using protocols
like CSP (Mehta, Niederee, & Stewart 2005). Our approach
makes all of this possible in principle. However, the ab-
sence of relevant data, where user profiles of the same users
at multiple sites are available, makes it difficult to evaluate
the effectiveness of our algorithm in a real life setting. Our
attempts are on to collect such a dataset in a scientific con-
ference setting.

Privacy
One important aspect of cross system personalization is pri-
vacy. People and companies alike are likely to have reser-
vations against sharing their data with our systems. Users
fear the loss of their anonymity, while companies fear a
loss of their competitive edge. With our method, the im-
portant thing is to discover the underlying social similarity
between people and not their exact buying/rating patterns.



The framework we adopt here is based on Privacy Enhanced
Collaboratve filtering (cf. (Canny 2002)), where user pro-
file data is not known to anyone except the system and the
user. In our case, we could even relax the requirement of any
one system requiring the complete profile, and maintaining
the unified user profile only at the user’s end (cf. (Mehta,
Niederee, & Stewart 2005)) in the form of a passport. We
have previously called this unified profile as the Context
Passport. The computation of the model parameters can
be decentralized and users can provide only their profile’s
contribution to a central totaller. Importantly, this contribu-
tion can be encrpyted, and properties of public-key/private-
key encryption allow the computation to proceed with these
encrypted values without loss of precision. The interested
reader can find more details of the encryption framework
and its use in (Canny 2002).

Conclusion
We have outlined a novel approach for leveraging user data
distributed across various electronic systems in order to pro-
vide a better personalization experience. One major benefit
of this approach is dealing with the new user problem: a new
user of a collaborative filtering system can usually be pro-
vided only the non-personalized recommendation based on
overall item popularity. Our approach allows making better
predictions by utilizing the user’s profile in other systems.
The main contribution of this paper is the presented factor
analysis method, which offers a satisfactory improvement
over status quo for a potentially important application sce-
nario. It also offers an algorithmic improvement over pre-
vious work by taking into account the incompleteness of
data. Future work includes developing a practical frame-
work around the sparse Factor Analysis algorithm for CSP
and exploring further algorithmic improvements and alter-
natives.
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