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Abstract

Collaborative filtering recommenders are highly vulner-
able to malicious attacks designed to affect predicted
ratings. Previous work related to detecting such at-
tacks has focused on detecting profiles. Approaches
based on profile classification to a large extent depend
on profiles conforming to known attack models. In
this paper we examine approaches for detecting sus-
picious rating trends based on statistical anomaly de-
tection. We empirically show these techniques can be
highly successful at detecting items under attack and
time intervals when an attack occurred. In addition
we explore the effects of rating distribution on detec-
tion performance and show that this varies based on
distribution characteristics when these techniques are
used.

Introduction

Recent research has established that traditional collab-
orative filtering algorithms are vulnerable to various at-
tacks. These attacks can affect the quality of predic-
tions and recommendations for many users, resulting
in decreased users’ trust of the system. Such attacks
have been termed “shilling” attacks in previous work
(Burke et al. 2005; Burke, Mobasher, & Bhaumik 2005;
Lam & Riedl 2004; O’Mahony et al. 2004). The
more descriptive phrase “profile injection attacks” is
also used, and better conveys the tactics of an attacker.
The aim of these attacks is to bias the system’s output
in the attacker’s favor. User-adaptive systems, such as
collaborative filtering, are vulnerable to such attacks
precisely because they rely on user interaction to gen-
erate recommendations.

The fact that these profile injection attacks are ef-
fective raises the question whether system owners can
detect that there is a potential attack against an item.
Some researchers have focused on detecting and pre-
venting profile injection attacks. In (Chirita, Nejdl,
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& Zamfir 2005) several metrics were proposed for ana-
lyzing rating patterns of malicious users and evaluated
their potential for detecting such profile injection at-
tacks. A spreading similarity algorithm was developed
in order to detect groups of very similar profile injec-
tion attackers which was applied to a simplified attack
scenario in (Su, Zeng, & Z.Chen 2005). Several tech-
niques were developed to defend against the attacks in
(O’Mahony et al. 2004; Lam & Riedl 2004), including
new strategies for neighborhood selection and similarity
weight transformations (O’Mahony, Hurley, & Silvestre
2004). In (Burke et al. 2006) a model-based approach
to detection attribute generation was introduced and
shown to be effective at detecting and reducing the ef-
fects of random and average attack models. Their re-
search on preventing profile injection attacks have fo-
cused on detecting suspicious user profiles; we examine
an alternate approach to this problem by focusing in-
stead on detecting items with suspicious trends using
statistical anomaly detection techniques. We envision
this type of detection as a component of a comprehen-
sive detection approach.

The main contribution of this paper is an alternate
approach to attack detection that does not rely on pro-
file classification. Instead we introduce an item-based
approach to detection that identifies what items may
be under attack based on rating activity related to the
item. In this paper we present and evaluate two Sta-
tistical Process Control (SPC) techniques. We in-
vestigate the X-bar control limit and Confidence Inter-
val control limit techniques for detecting items which
are under attack. Our second approach attempts to
identify time intervals of rating activity that may sug-
gest an item is under attack. We examine a time series
algorithm which successfully identifies suspicious time
intervals.

Statistical process control charts have been used in
manufacturing to detect whether a process is out-of con-
trol (Shewart 1931). In general, a SPC is composed of
two phases. In the first phase the technique estimates
the process parameters from historical events and then
uses these parameters to detect out-of-control anom-
alies for recent events. Recommender systems which
collect ratings from users can also be thought of as a



Figure 1: The general form of an attack profile.

similar processes. The rating patterns can be monitored
for abnormal rating trends that deviate from the past
distribution of items. Our results show that both SPC
approaches work well in identifying suspicious activity
related to items which are under attack. For time inter-
val detection, our results show this technique performs
well at identifying suspicious time intervals, over which
an item is under attack.

In addition to the above approaches our research
raises the question whether different rating distribu-
tions of the target items influence detection effective-
ness. Intuitively, items with few ratings or low average
rating are easier to manipulate by attackers. On the
other hand, attacks against items with many ratings
and high average rating will be harder to detect as users
have already rated these items highly. Moreover, due
to large number of items in our database, it is not pos-
sible to monitor each movie separately. Therefore, we
have categorized our items based on the rating distri-
bution. The goal of this categorization is to make the
distributions within each of the categories more simi-
lar. The items that makeup each of these categories
are then used to create the process control model for
other items within the same category. Our results also
confirm that detection performance of suspicious items
varies based on rating distribution.

The paper is organized as follows. First, we discuss
the attack models previously studied and their impact.
We then describe the detailed algorithms and experi-
mental methodology for our detection model. Finally,
we present our experimental results and discussion.

Profile Injection Attacks
A profile injection attack against a recommender sys-
tem consists of a set of attack profiles being inserted
into the system with the aim of altering the system’s
recommendation behavior with respect to a single tar-
get item it. An attack that aims to promote it, resulting
in it recommended more often, is called a push attack,
and one designed to make it recommended less often is
called a nuke attack (O’Mahony et al. 2004).

An attack model is an approach to constructing
attack profiles, based on knowledge about the rec-
ommender system: its rating database, its products,
and/or its users. The attack profile consists of an m-
dimensional vector of ratings, where m is the total num-

ber of items in the system. The profile is partitioned in
four parts as depicted in Figure 1. The null partition,
I∅, are those items with no ratings in the profile. The
single target item it will be given a rating designed to
bias its recommendations, generally this will be either
the maximum or minimum possible rating, depending
on the attack type. As described below, some attacks
require identifying a group of items for special treat-
ment during the attack. This special set IS usually re-
ceives high ratings to make the profiles similar to those
of users who prefer these products. Finally, there is a
set of filler items IF whose ratings are added to com-
plete the profile. It is the strategy for selecting items
in IS and IF and the ratings given to these items that
define the characteristics of an attack model. The sym-
bols δ, σ and γ are functions that specify how ratings
should be assigned to items in IS and IF and for the
single target item it respectively.

Two basic attack models, originally introduced
in (Lam & Riedl 2004) are random attack, and average
attack. In our formalism, for these two basic attacks
IS is empty, and the contents of IF are selected ran-
domly. For random attack all items in IF are assigned
ratings based on the function σ, which generates ran-
dom ratings centered around the overall average rating
in the database. The average attack is very similar, but
the rating for each filler item in IF is computed based
on more specific knowledge of the individual mean for
each item. For more complex attacks the IS set may
be used to leverage additional knowledge about a set
of items. For example the bandwagon attack selects
a number of popular movies for the IS set which are
given high ratings and IF is populated as described in
the random attack (Burke et al. 2005). Likewise the
segment attack populates IS with a number of related
items which it gives high ratings to, while the IF par-
tition is given the minimum rating in order to target a
segment of users (Burke et al. 2005).

Previous research on detecting and preventing the
effects of profile injection attacks have focused on
specific attack models (Su, Zeng, & Z.Chen 2005;
O’Mahony, Hurley, & Silvestre 2004; Burke et al. 2006).
Our approach, however, is to detect suspicious ratings
for an individual item independent of any attack model.
Instead we analyze the rating trends of items and iden-
tify suspicious changes in these trends which may indi-
cate a particular item is under attack.

Detection Model

In this section we describe two SPC techniques for de-
tecting items under attack, as well as a time-series tech-
nique for detecting time intervals an item is under at-
tack.

Statistical Process Control
SPC is often used for long term monitoring of feature
values related to the process. Once a feature of interest
has been chosen or constructed, the distribution of this
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Figure 2: Example of a control chart

feature can be estimated and future observations can
be automatically monitored. Control charts are used
routinely to monitor quality in SPC. Figure 2 displays
an example of a control chart in the context of collab-
orative filtering where observations are average rating
of items, which we assume are not under attack. Two
other horizontal lines, called upper limit and lower limit
are chosen so that almost all of the data points will fall
within these limits as long as there is no threat in the
system. This figure depicts that a new item’s average
rating is outside the upper limit. This indicates an
anomaly that possibly be an attack. In the following
section we describe two different control limits as our
detection scheme.

X-bar control limit One commonly used types of
control chart is the X-Bar chart which plots how far
away from the average value of a process the current
measurement falls. According to (Shewart 1931), values
that fall outside of three sigma standard deviation of the
average have a valid cause and are labeled as being out
of statistical control.

In the context of recommender systems, let us con-
sider the case where we have to identify whether a new
item is under attack by analyzing past data. Suppose
we have collected k items with similar rating distribu-
tion in the same category from our database. Let ni be
the number of users who have rated an item i. Accord-
ing to (Shewart 1931) we can define our upper (Ux̄)
and lower (Lx̄) control limits as follows:

Ux̄ = X̄ + A∗S̄
c4(n)

√
n

Lx̄ = X̄ − A∗S̄
c4(n)

√
n

where X̄ is the grand mean rating of k items, and S̄ is
the average standard deviation which can be computed
as:

S̄ =
k∑

i=1

si

with si being the standard deviation of each item.
As ni is different for each item i, n can be taken as
the average of all ni. The auxiliary function c4(n) =

√ 2
n−1Γ(n

2 )Γ( (n−1)
2 ), where Γ(t) is a complete gamma

function which is expressed as (t− 1)!. When n >= 25,
c4(n)

√
n can be approximated by

√
(n − .5) and A is

a constant value which determines the upper and lower
limit (SPSS 2002). Thus when A is set to 3 , we get
3-sigma limit. We set Ux̄ and Lx̄ as a signal threshold.
A new item is likely under attack, if the average rating
is greater than Ux̄ or less than Lx̄.

Confidence Interval Control Limit The Central
Limit Theorem is one of the most important theorems
in statistical theory (Ott 1992). It states that distrib-
ution of the sample mean becomes more normalized as
the sample size increases. This means that we can use
the normal distribution to describe the sample mean
from any population, even non-normal ones, if we have
a large enough sample. The general rule of thumb is
that you need a sample of at least 30 observations for
the Central Limit Theorem to apply (i.e., for the dis-
tribution of the sample mean to be reasonably approx-
imated with the normal distribution). A confidence in-
terval, or interval estimate, is a range of values that
contains the population mean with a level of confidence
that the researcher chooses. For example, a 95% con-
fidence interval would be a range of values that has a
95% chance of containing the population mean.

Suppose we have collected a set of k items with
similar rating distribution in the same category, and
x̄1,x̄2,· · ·,x̄k are the mean rating of these k items. The
upper (Ux̄) and lower (Lx̄ ) control limits for these
sample means can be written as:

Ux̄ = X̄ + C∗σ√
k

Lx̄ = X̄ − C∗σ√
k

where X̄ and σ is the mean and standard deviation of
x̄i’s. The value of C is essentially the z-value for the
normal distribution. For example, the value is 1.96 for
a 95% confidence coefficient.

In a movie recommender system, the upper and lower
boundaries of the confidence interval are considered as
the signal threshold for push and nuke attacks respec-
tively. If our confidence coefficient is set to .95, we are
95% sure that all the item averages will fall inside these
limits and when an average rating of an item is outside
of these limits, we consider the ratings related to this
item suspicious.

Time Interval Detection Scheme
The normal behavior of a recommender system can
be characterized by a series of observations over time.
When an attack occurs, it is essential to detect the oc-
currences of abnormal activity as quickly as possible,
before significant performance degradation. This can
be done by continuously monitoring the system for devi-
ations from the past behavior patterns. In a movie rec-
ommender system the owner could be warned of a pos-
sible attack by identifying the time period during which
abnormal rating behavior occurred for an item. Most
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Figure 3: A time series chart

anomaly detection algorithms require a set of training
data without bias for training and they implicitly as-
sume that anomalies can be treated as patterns not ob-
served before. Distributions of new data are then com-
pared to the distributions obtained from the training
data and differences between the distributions indicate
an attack.

In the context of recommender systems, we can mon-
itor an item’s ratings over a period of time. A sudden
jump in an item’s mean rating may indicate a suspi-
cious pattern. One can compare the average rating for
this item by collecting ratings over a period of time, as-
suming there are no biased ratings. When new ratings
are observed, a system can compare the current aver-
age rating to the data collected before. Figure 3 shows
an example of a time series pattern before and after an
attack in a movie recommender system. The upper and
lower curves show the rating pattern of an item after
push and nuke attack respectively, whereas the middle
curve shows the rating pattern without any attack.

Our time series data can be expressed as a sequence
of x̄t

i : t = 1, 2, ... where t is a time variable and each x̄t
i

is the average rating of an item i at a particular time t.
Suppose μi

k and σk
i are the mean and standard devia-

tion estimated from the ratings collected from a trusted
source for the first k-th interval for an item i. Our al-
gorithm is based on calculating the probability of ob-
serving the mean rating for the new time interval. If
it is outside a pre-specified threshold, then it deviates
significantly from the rating population indicating an
attack. Now if x̄t

i is the average rating for an interval t
after the k-th interval, our conditions for detecting an
attack interval t is:

x̄t
i > μi

k + Zα
2

σk
i√
n

and

x̄t
i < μi

k − Zα
2

σk
i√
n

for push and nuke attack respectively. The parameter n
is the total number of ratings for the first k-th interval
of an item i. The value for Zα

2
is obtained from a

normal distribution table for a particular value of α.
This algorithm essentially detects the time period over
which an item is potentially under attack.

Experimental Methodology

Dataset
We have used the publicly-available Movie-Lens 100k
dataset1 for our experiments. All ratings are integer
values between 1 and 5, where 1 is the lowest (most
disliked) and 5 is the highest (most liked). Our data in-
cludes all the users who have rated at least 20 movies.
For all the attacks, we generated a number of attack
profiles and inserted them into the system database
and then evaluate each algorithm. We measure “size
of attack” as a percentage of the pre-attack user count.
There are approximately 1000 users in the database, so
an attack size of 1% corresponds to 10 attack profiles
added to the system.

We propose examining items against the distributions
of items with similar characteristics which we term cat-
egories. The goal of this categorization is to make the
distributions within each of the categories more simi-
lar within the underlying populations. The items that
makeup each of these categories are then used to cre-
ate the process control model for other items within
the same category. We have categorized items in the
following way.

First we defined two characteristics of movies, density
(# of ratings) and average rating in the following way.

• low density (LD): # of ratings between 25 and 40

• medium density (MD): # of ratings between 80 and
120

• high density (HD): # of ratings between 200 and 300

• low average rating (LR): average rating less than 3.0

• high average rating (HR): average rating greater than
3.0

Then we partitioned our dataset into five different cate-
gories LDLR, LDHR, MDLR, MDHR, and HDHR. For
example, category LDLR contains movies which are LD
and LR. Table 1 shows the statistics of the different
categories computed from the MovieLens dataset. The
category HDLR which is high density and low average
rating has not been analyzed here due to insufficient
examples in the Movie-Lens 100k dataset.

Evaluation Metrics
In order to validate our results we have considered two
performance metrics, precision and recall. In addition
to investigating the trade offs between these metrics,
we seek to investigate how the parameters of the detec-
tion algorithm and the size of attacks affect the perfor-
mance. In our experiments, precision and recall have
been measured differently depending on what’s being

1http://www.cs.umn.edu/research/GroupLens/data/



Category Average # of Ratings Average Rating
HDHR 245.68 3.82
LDLR 31.26 2.61
LDHR 32.37 3.5
MDHR 97.5 3.54
MDLR 87.45 2.68

Table 1: Rating distribution for all categories of movies

identified. The basic definition of recall and precision
can be written as:

precision = # true positives
(# true positives + # false positives)

recall = # true positives
(# true positives + # false negatives)

In statistical control limit algorithms, we are mainly
interested in detecting movies which are under attack.
So # true positives is the number of movies correctly
identified as under attack, # false positives is the num-
ber of movies that were misclassified as under attack,
and # false negatives is the number of movies which are
under attack that are misclassified.

On the other hand, in the case of time interval de-
tection, we are interested in detecting the time inter-
val during which an attack occurred on an item. So
# true positives is the number of time intervals cor-
rectly identified as being under attack, # false positives
is the number of time intervals that were misclassified
as attacks, and # false negatives is the number of time
intervals that were misclassified as no attack.

Category Training Test
HDHR 50 30
LDLR 50 30
LDHR 50 50
MDHR 50 50
MDLR 30 14

Table 2: Total number of movies selected from each
category in training and testing phases

Methodology for detection via control
limits
In SPC, the process parameters are estimated using his-
torical data. This process is accomplished in two stages,
training and testing. In the training stage, we use the
historical ratings to estimate the upper and lower con-
trol limits. In the testing stage, we compare the new
item’s average rating with these limits. If the current
average rating is outside of the boundaries we consider
that an attack. Table 2 shows the number of movies se-
lected during training and testing phases. In the train-
ing phase, we used the ratings for all movies in the
training set to compute the control limits.

Our evaluation has been done in two phases. In the
first phase, we calculated the average rating for each
movie in the test set and checked whether it lies within
the control limits. We assumed that the MovieLens
dataset had no biased ratings for these movies and con-
sidered the base rating activity to have no attack. We
then calculated the false positives, which are the num-
ber of no attack movies that were misclassified as under
attack by our detection algorithm. In the second phase
we generated attacks for all the movies in the test set.
Two types of attacks were considered: push and nuke.
For push attacks we gave a maximum possible rating
5 and for nuke attacks we gave a minimum possible
rating 1. The average rating of each movie was then
computed and checked whether it fell within the control
limits. We then computed true positives, the number
of movies correctly identified as under attack and false
negatives, the number of movies which are under attack
that were misclassified as no attack movies. Precision
and recall have then been computed using the formula
in the evaluation section.

Methodology for time interval detection

For the time interval detection algorithm, we relied
upon the time-stamped ratings which were collected
in the MovieLens dataset over a seven month period.
Our main objective here is to detect the time interval
over which an attack is made. The original dataset
was sorted by the time-stamps given in the MovieLens
dataset, and broken into 72 intervals, where each inter-
val consists of 3 days.

For each category, we selected movies from the test
set shown in Table 2. For each test movie, first we ob-
tained ratings from sorted time-stamp data and com-
puted mean and standard deviation prior to the t-th
interval, which we assume contains no biased ratings.
We set t to 20, which is equivalent to two months. Our
assumption here is that the system owner has collected
data from a trusted source prior to the t-th interval,
which is considered as historical data without any bi-
ased ratings.

An attack (push or nuke) was then generated and in-
serted between the t-th and (t + 20)-th interval chosen
at random times. We choose a long period of attack (20
intervals) so that an attacker can easily disguise him-
self as a genuine user and will not be easily detectable.
During this time, we identified the time intervals as at-
tack or no attack depending on whether our system
generates an attack at that time interval or not. For
each subsequent interval starting at t-th interval, we
computed the average rating of the movie. If the av-
erage rating deviate significantly from the distribution
of historical data, we considered this interval as a sus-
picious one. At this stage, we calculated the precision
and recall for detecting attack intervals for each movie
and averaged over all test movies.
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Experimental Results

In our first set of experiments we built a predictive
model for different categories of movies using SPC al-
gorithms. Test items were then classified as either an
item under attack or not under attack. We varied the
parameters of the detection algorithms throughout our
experiments to examine their affect on detection per-
formance.

Figure 4 shows the effect of the confidence coefficient
for all categories in a push attack using the Confidence
Interval algorithm. In this case, precision and recall
did not change significantly while confidence coefficients
change from .80 to .99, which indicates the number
of false positives and true positives remain the same
within this range for different categories.

On the other hand, we can observe in Figure 5, that
as sigma increases, precision increases and recall de-
creases for all categories except HDHR and MDHR in a

push attack using X-bar algorithm. As sigma increases
the upper limit increases and the average rating of an
item which is not under attack from these two categories
still falls between the limits and is classified correctly.
Recall results reflect the intuition that the average rat-
ing of a target item with a high average rating does not
increase enough to fall outside the upper control limit;
thus the item is misclassified as an item not under at-
tack. The results shown here confirm that items with
few ratings and low average are easy to detect using
this technique.

Figure 6 shows the results for all categories of movies
at different attack sizes in a push attack, using X-Bar
algorithm where sigma limit is set to 3. The recall chart
shows that at lower attack sizes precision and recall are
low for both the HDHR and MDHR categories. This
observation is consistent with our conjecture that if an
item is already highly rated then it is hard to distinguish
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Figure 7: The Precision and Recall graphs for all categories, varying nuke attack sizes using X-Bar control limits
(sigma limit set to 3)

from other items in this category after an attack. On
the other hand the recall measures for LDLR, LDHR,
and MDLR are 100% at 3% attack size. The lower
the densities or average rating, the higher the recall
values at different attack sizes. Similar results were
obtained (not shown here) for the confidence interval
control limit algorithm. Precision values in X-bar algo-
rithm are much higher than Confidence Interval algo-
rithm indicating X-bar algorithm works well in terms
of classifying correctly no attack items, although both
algorithms work for identifying suspicious items. As
the figures depict, the performances also vary with dif-
ferent categories of items. This is consistent with our
conjecture as the number of ratings (density) decrease,
the algorithms detect the suspicious items more easily.

The next aspect we examined was the effectiveness
of detection in the face of nuke attacks against all cat-
egories of movies. Figure 7 shows the results for all
categories of movies varying attack sizes in a nuke at-
tack using X-Bar algorithm where sigma limit is set to

3. The precision increases as the attack size increases,
indicating this algorithm produces fewer false positives
at higher attack sizes. The recall chart shows that the
detection rate is very high even at 3% attack size for
all categories. At lower attack sizes low density movies
are more detectable than higher densities against nuke
attack. It is reasonable to assume that the higher the
densities, the lower the chance of decreasing average
rating below the lower limit at lower attack sizes. The
results depicted here confirm that this algorithm is also
effective at detecting nuke attacks and the performance
varies with different categories. The same trend has
been obtained for the Confidence Interval algorithm not
shown here.

The main objective of the time series algorithm is
to detect a possible attack by identifying time intervals
during which an item’s ratings are significantly differ-
ent from what is expected. In this experiment, first
we obtained ratings from sorted time-stamp data for
each item in the test dataset and computed mean and
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Figure 9: The Precision and Recall graphs for all categories, varying push attack sizes using time series algorithm
(α set to .05)

standard deviation prior to the t-th interval, which we
assume contains no biased ratings and consider this as
our historical data. An attack (push or nuke) was then
generated and inserted between the t-th and (t+20)-th
interval chosen at random time. Now for each subse-
quent interval starting at t-th interval, we compute the
average rating of the movie. If the average rating de-
viates significantly from the distribution of historical
data, we flag this interval as a suspicious one.

Figure 8 shows the effect of detection threshold for
all categories in a 1% push attack using the time se-
ries algorithm. The result shows clearly that recall de-
creases as the probability of detecting an attack interval
decreases for all categories except LDLR and MDLR.
These two categories which are already low rated, a
small attack could not increase average rating signifi-
cantly in a time interval. On the other hand, precision
is inversely affected by α values with low rated items.

In this case, the highly rated item’s average appeared to
be as an attack in a time interval. Moreover, precision
are very small at 1% attack size for all categories.

The overall effect of this algorithm against all cate-
gories of movies are shown in Figure 9 against a push
attack. The time interval detection rate for highly rated
items is low at small attack sizes which indicates that
it is very hard to detect the attack interval against a
push attack. On the other hand, the results are oppo-
site in nature against a nuke attack which is depicted
in Figure 10. As expected, the highly rated items are
easily detectable against a nuke attack.

The time interval results show that the period in
which attacks occur can also be identified effectively.
This approach offers some particularly valuable bene-
fits by not only identifying the target of the attack and
the type of attack (push/nuke), but also identifies the
time interval over which the bias was injected. This
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Figure 10: The Precision and Recall graphs for all categories, varying nuke attack sizes using time series algorithm
(α set to .05)

combination of data would greatly improve a system’s
ability to triangulate on the most suspicious profiles.
This technique could be combined with profile classifi-
cation to further weight the suspicion of profiles that
contributed to an item during a suspected attack inter-
val. For very large datasets with far more users than
items, profile analysis is likely to be resource intensive;
thus it is easy to see the benefit of being able to nar-
row the focus of such tasks. One of the side effects of
time based detection is forcing an attacker to spread
out their attack over a longer period of time in order to
avoid detection.

In the experiments above, we have shown that there
are some significant differences in the detection per-
formance over different groups of items based on their
rating density and their average ratings. In partic-
ular, with the techniques described above, the items
that seem most likely to be the target of a push at-
tack (LDLR, LDHR, MDLR) are effectively detected
at even low attack sizes. For nuke attacks the detection
of likely targets (LDHR, MDHR) is also fairly robust.
Across the SPC detection schemes, detection was weak-
est for the HDHR group. However, as these items are
the most densely rated, they are inherently the most
robust to injected bias.

The performance evaluation indicated that the
interval-based approach generally fairs well in compari-
son to SPC, even at lower attack sizes for detecting at-
tacks. But precision was much lower in interval-based
approach than in SPC. However, these two types of
algorithms may be useful in different contexts. The
interval-based method focuses on the trends rather than
the absolute rating values during specific snapshots.
Thus, it is useful for monitoring newly added items for
which we expect high variance in the future rating dis-
tributions. On the other hand the SPC method works
well for items that have well established distribution for
which significant changes in a short time interval may
be better indicators of a possible attack. As noted ear-

lier, however, we do not foresee these algorithms to be
used alone for attack detection. Rather, they should be
used together with other approaches to detection, such
as profile classification, in the context of comprehensive
detection framework.

Conclusions

Previous research on detecting profile injection attacks
has focused primarily on the identification and classi-
fication of malicious profiles. In this paper we have
focused on an alternate approach to this problem by
detecting items with suspicious trends. We investigated
the effectiveness of three statistical anomaly detection
techniques in identifying rating patterns that typically
result from profile injection attacks in collaborative fil-
tering recommender systems. We show that anomaly
detection techniques can be effective at detecting both
items under attack and the time intervals associated
with the attack for both push and nuke attacks with
high recall values. Our results empirically show that
detection performance varies for different categories us-
ing these methods and the most vulnerable items are
also the most robust with these schemes. In our experi-
ments we have focused on detecting anomalies in shifts
in average rating, in the future we plan to explore the ef-
fectiveness of other indicators of suspicious trends such
as changes in variance and rating frequency.

In addition to the direct benefits described above,
all three of these techniques offer a crucial difference to
profile classification alone; they are profile independent.
Profile classification is fundamentally based on detect-
ing profile traits researchers consider suspicious. While
profiles that exhibit these traits might be the most dam-
aging, there are likely ways to deviate from these pat-
terns and still inject bias. Unlike traditional classifica-
tion problems where patterns are observed and learned,
in this context there is a competitive aspect since at-
tackers are likely to actively look for ways to beat the
classifier. Given this dynamic, detection schemes that



combine multiple detection techniques that examine
different aspects of the collaborative data are likely to
offer significant advantages in robustness over schemes
that rely on a single aspect. We envision combining the
techniques outlined in this paper with other detection
techniques to create a comprehensive detection frame-
work.
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