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Abstract

Given the common use of restarts in today’s clause learn-
ing SAT solvers, the task of choosing a good restart policy
appears to have attracted remarkably little interest. Many
solvers, for example, restart once every k conflicts with such
a diverse choice of k as to give the impression that one policy
may be just as good as another. On the other hand, results
have been reported on the use of different restart policies for
combinatorial search algorithms. Such results are not directly
applicable to clause learning SAT solvers, as the latter are
now understood as performing a form of resolution, some-
thing fundamentally different from search. In this paper we
provide strong evidence that the restart policy matters, and
deserves to be chosen less arbitrarily, for a clause learning
SAT solver. We begin by pointing out that other things held
constant, it is the combination of the restart policy and de-
cision heuristic that completely determines the sequence of
resolution steps performed by the solver, and hence its effi-
ciency. In this spirit we implement a prototype clause learn-
ing SAT solver that facilitates restarts at arbitrary points, and
conduct experiments on an extensive set of industrial bench-
marks using various restart policies, including those used by
well-known SAT solvers as well as a universal policy pro-
posed in 1993 by Luby et al. The results indicate a substantial
impact of the restart policy on the efficiency of the solver, and
provide motivation for the design of better restart policies.

Introduction
Propositional satisfiability (SAT) is the problem of de-
termining whether a propositional formula, traditionally
in conjunctive normal form (CNF), has a satisfying
assignment—an assignment of truth values to its variables
making it evaluate to true. In this paper we focus on a class
of algorithms for SAT that has become known as conflict-
driven clause learning, or clause learning for short (Ryan
2004). These algorithms are currently the best for large SAT
instances that arise from industrial applications, such as for-
mal verification (Berre & Simon 2005).

Clause learning SAT solvers have grown out of their pre-
decessors that implemented variants of a systematic search
algorithm known as DPLL (Davis, Logemann, & Loveland
1962), which solves SAT by selecting a variable and deter-
mining, recursively, whether the formula can be satisfied by
setting that variable to either value. In fact, the initial intu-
ition for learning clauses and appending them to the CNF

formula was to help prune the DPLL search, as discussed in
earlier work (Marques-Silva & Sakallah 1996).

It has been shown, however, that clause learning as prac-
ticed in today’s SAT solvers, particularly with unlimited
restarts, corresponds to a proof system exponentially more
powerful than that of DPLL (Beame, Kautz, & Sabharwal
2004). Specifically, each learning step is in fact a sequence
of resolutions, and the learned clause the final resolvent
thereof; conversely, a resolution proof can be simulated in
polynomial time by repeatedly (i) learning each of the resol-
vents in the proof and (ii) restarting.1 Clause learning can
hence be as powerful as general resolution, while DPLL has
been known to correspond to the exponentially weaker tree-
like resolution (Beame, Kautz, & Sabharwal 2004).

Despite the dependence of this theoretical result on the
assumption of unlimited restarts, remarkably little has been
said in the literature on the importance of choosing a good
restart policy in practice. This is in stark contrast, for exam-
ple, to the sustained quest by researchers for better decision
heuristics. We argue that this imbalance of attention is doing
a disservice to the SAT community, because with the modern
understanding of clause learning, it can be seen that the de-
cision heuristic, together with the restart policy, determines
the sequence of resolutions performed by, and hence the ef-
ficiency of, the solver (assuming that the learning scheme
and other aspects of the solver are held constant).

In this paper we would like to take a step toward studying
the practical importance of restart policies in clause learning
SAT solvers, with a view to motivating further work on de-
signing more effective policies. To this end we have created
a small prototype SAT solver, called TINISAT, which im-
plements the essentials of a modern clause learning solver
and is designed to facilitate adoption of arbitrary restart
policies. After choosing and fixing a reasonably effective
decision heuristic, we conducted experiments using an ex-
tensive set of large industrial benchmarks, on which we
ran versions of TINISAT using different restart policies in-
cluding those used by well-known SAT solvers and particu-
larly one proposed in (Luby, Sinclair, & Zuckerman 1993)
based on a sequence of run lengths of the following form:

1This assumes a deviation from standard SAT practice—the
freedom to ignore assignments made by unit propagation (Beame,
Kautz, & Sabharwal 2004).



1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, . . . The results we have
obtained indicate a substantial impact of the restart policy
on the efficiency of the solver. Specifically, all nontrivial
restart policies we experimented with did significantly bet-
ter than if restarts were disabled, and Luby’s policy in par-
ticular achieved the best overall performance, on the set of
benchmarks used.

The rest of the paper is organized as follows: We present
the simple design of TINISAT and use it as the basis for dis-
cussing the semantics of modern clause learning, leading to
an analytical explanation why restart policies are important.
We then describe our experimental setup including the var-
ious restart policies we shall use and our attempts to iden-
tify a reasonable decision heuristic so that all policies can
be tested on competitive ground. We then report the results
obtained and make a number of important observations. Fi-
nally, we discuss related work and present our conclusions.

TINISAT: The Essentials of Clause Learning
We start by presenting the design of a simple SAT solver,
TINISAT, that (i) boasts the essentials of modern clause
learning technology, and (ii) facilitates the experimentation
with arbitrary restart policies. It shall then provide a basis
for our discussion of the importance of restart policies for
clause learning algorithms. The top-level procedure of TIN-
ISAT is given in Algorithm 1, which operates on an implicit
CNF formula whose satisfiability is in question.

Algorithm 1 TINISAT

1: loop
2: if (literal = selectLiteral()) == nil then
3: return SATISFIABLE
4: if !decide(literal) then
5: repeat
6: learnClause()
7: if assertionLevel() == 0 then
8: return UNSATISFIABLE
9: if restartPoint() then

10: backtrack(1)
11: else
12: backtrack(assertionLevel())
13: until assertLearnedClause()

The following components of a modern clause learn-
ing SAT solver can be identified in Algorithm 1: deci-
sion heuristic (selectLiteral), unit propagation (decide,
assertLearnedClause), clause learning (learnClause,
backtrack), restarts (restartPoint, backtrack). We as-
sume familiarity with the common terminology for DPLL
and clause learning algorithms, and assume that (i) 1-UIP
(Zhang et al. 2001) is used as the learning scheme, (ii) no
clauses are ever deleted (hence completeness is not an is-
sue), (iii) all functions have deterministic behavior,2 and (iv)
the first decision is made in decision level 2: level 1 is re-
served for literals found to be implied by the CNF formula,

2The learning scheme, clause deletion policy, and use of ran-
domness are all important factors that affect the efficiency of clause
learning SAT solvers, but are beyond the scope of this paper.

and level 0 to signal derivation of the empty clause. The
functions involved have the following semantics:
• selectLiteral uses some decision heuristic to select a free

variable and then select one of its two literals, and returns
it, or returns nil if no free variables exist.

• decide increments the decision level, sets the given literal
to true, and performs unit propagation; it returns true iff
no empty clause is derived.

• learnClause performs 1-UIP learning to derive an impli-
cate of the CNF formula, and sets the assertion level (i) to
0 if the empty clause is derived, (ii) to 1 if a unit clause is
derived, and otherwise (iii) to the second highest decision
level among literals of the derived clause.

• assertionLevel returns the assertion level, which has
been set by the last call to learnClause.

• restartPoint returns true iff the solver is to restart now
according to some restart policy.

• backtrack(k) undoes all variable assignments in decision
levels > k, and sets the decision level to k.

• assertLearnedClause adds the learned clause to the
clause pool, performs unit propagation if the current deci-
sion level equals the assertion level (this is the condition
under which the learned clause becomes unit), and returns
true iff no empty clause is derived.

Restarts and Backtracks Unified
Note that under this design all that is needed to adopt a given
restart policy is to implement restartPoint accordingly. It is
also interesting to note that a normal backtrack after learn-
ing (Line 12) and a complete restart (Line 10) can both be
regarded as special cases of a more general scheme (Lynce
& Silva 2002) where the solver can backtrack to any level
between 0 and the current decision level (exclusive). What
we would like to stress here, however, is that the particu-
lar scheme used by most clause learning SAT solvers to-
day, namely backtracking to the assertion level (except when
restarting), has obscured their original characteristics (inher-
ited from DPLL) as systematic search algorithms. In partic-
ular, these solvers do not perform branching anymore: The
setting of a literal occurs on Line 4, but the setting of its
negation is never explicitly tried (and possibly never tried at
all even implicitly).

For example, suppose assignments {A, B,C, D} have
been made in decision levels 2, 3, 4, 5, respectively, before
the empty clause is derived in level 5, and suppose the fol-
lowing clause is learned: A ∨ D. This clause says that the
two decisions made in levels 2 and 5 alone are responsi-
ble for the conflict. Now, despite the fact that simply flip-
ping the value of variable D in level 5 could well result
in a satisfiable subproblem, Line 12 insists on taking the
solver back to the assertion level, which is 2, erasing as-
signments {D,C, B} on the way. The learned clause then
gets asserted in level 2 (Line 13), and implies D (because
the assignment A is present, making the clause unit), trig-
gering a round of unit propagation. Notice that the branches
{A, B, C} and {A,B}, which can well contain solutions,
have been skipped over without ever being explored.



It should be emphasized here, as we already alluded to,
that this behavior is not a peculiarity of TINISAT, but is
the common practice of most current clause learning SAT
solvers we have seen, including Chaff, BerkMin, MiniSat,
and Siege. (The earlier solver GRASP, though, used a dif-
ferent backtracking scheme such that no branch was skipped
over unless proven to contain no solutions.)

The Importance of Restarts

This shift of paradigm in backtracking, as we discussed, ob-
scures the characteristics of clause learning SAT solvers as
systematic search algorithms. For this reason we propose to
view the modern practice of clause learning not as a version
of DPLL search enhanced with resolution,3 but as a pure res-
olution algorithm in its own right. In fact, what Algorithm 1
does is nothing other than the following 3-step cycle:

(1) set variables till hitting a conflict;

(2) derive a clause by resolution;

(3) unset some variables and go back to (1).

For unsatisfiable formulas, this loop terminates on deriving
the empty clause in (2); for satisfiable formulas, it terminates
when (1) “happens” to exhaust all variables without conflict.

In this context the importance of the restart policy be-
comes prominent: Together with the existing backtracking
scheme, it dictates the set of assignments to undo in (3),
which, together with the decision heuristic, ultimately de-
termines the entire sequence of resolution steps performed
in (2). In other words, the decision heuristic, backtracking
scheme, and restart policy can all be understood as serving
a single purpose, that of guiding the resolution process.

Consider for example a clause learning SAT solver that
has run on a hard instance for a period of time without
restarts. The solver has now accumulated a considerable
number of learned clauses, which have helped update the
variable and literal scores as are maintained by decision
heuristics typical in clause learning SAT solvers. These new
scores represent, in a way, the solver’s current state of belief
about the order in which future decisions should be made,
having taken into account all the conflicts discovered so far.
Without the freedom of restarts, however, the solver would
not be able to fully execute its belief because it is bound by
the decisions that have been made earlier. In particular, note
that these early decisions were made without the benefit of
the new knowledge in the form of all the conflicts discovered
since. This, we believe, is the main reason why restarts can
help improve the efficiency of clause learning SAT solvers
even when no randomness is present (which will be the case
in our experiments with TINISAT).

In this section we have provided a new understanding
of modern clause learning through the design of TINISAT,
a concrete and simple clause learning SAT solver, leading
to an analytical argument that the restart policy matters.

3Recall from (Beame, Kautz, & Sabharwal 2004) that each
learning step is a sequence of resolution steps the final resolvent
of which is recorded as the “learned clause.”

We now proceed to support this argument with an empiri-
cal study of concrete restart policies using real-world SAT
benchmarks and the TINISAT solver.

Experimental Setup
We describe in this section the restart policies we shall ex-
periment with, the decision heuristic to be used with these
policies in the experiments, and our choice of benchmarks.

Restart Policies
In choosing the set of restart policies for our empirical study,
we have aimed to include those that are currently used by
well-known SAT solvers as well as some potentially more
effective ones that may have escaped the attention of the
clause learning community. Specifically, we shall experi-
ment with the following seven restart policies:

• N: a policy calling for no restarts at all.

• M: a geometric policy used in MiniSat v1.14 (Eén &
Sörensson 2005) with an initial restart interval of 100 con-
flicts, which increases by a factor of 1.5 after each restart.
We will denote it by (100, 1.5).

• Z: a fixed-interval policy used in Chaff II, also known as
the 2004 version of zChaff (Moskewicz et al. 2001), with
a restart interval of 700 conflicts, denoted (700, 1).

• B: a fixed-interval policy used in BerkMin (Goldberg &
Novikov 2002) with a restart interval of 550 conflicts, de-
noted (550, 1).

• G: a geometric policy (32, 1.1), which we have added to
improve the balance between fixed-interval and geometric
policies we consider.

• S: a fixed-interval policy used in Siege (Ryan 2004) with
a restart interval of 16000 conflicts, denoted (16000, 1).

• L: a class of policies proposed in (Luby, Sin-
clair, & Zuckerman 1993) for randomized algorithms
based on the following sequence of run lengths:
1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, . . . (defined below).
In our experiments we take a “unit run” in this sequence
to be 32 conflicts.4 Hence the actual restart intervals are:
32, 32, 64, 32, 32, 64, 128, . . . We denote this policy by
(Luby’s, unit=32).

The first six of these policies are straightforward, while
Luby’s policy can be formally defined as the sequence
t1, t2, t3, . . . such that:

ti =
{

2k−1, if i = 2k − 1;
ti−2k−1+1, if 2k−1 ≤ i < 2k − 1.

We have chosen Luby’s policy because of an interesting
property it has5: In the context of a particular class of ran-
domized algorithms, known as Las Vegas algorithms, (Luby,

4Use of other units is certainly possible. Given our computing
resources, however, we restrict ourselves to a single representative
of this class of policies. The particular choice of 32 was made,
somewhat arbitrarily, after a limited number of experiments.

5We have not studied the theoretical relevance of this property
in the context of clause learning.



Sinclair, & Zuckerman 1993) proved that this policy is uni-
versally optimal in the sense that (i) it achieves an expected
running time that is only a logarithmic factor slower than the
true optimal policy, which is determined by the specific run-
ning time distribution of the algorithm on a specific problem
instance, and (ii) no other universal policy can do better by
more than a constant factor.

Decision Heuristic
To maximize the reliability of our comparison of restart poli-
cies, we have taken steps to ensure that other components of
the SAT solver, which will be TINISAT as we mentioned,
are tuned toward their best performance. Rather than low-
level optimizations, however, we focused on designing a
reasonably effective decision heuristic. Based on experi-
ments using a subset of our full benchmark suite (described
below), we found that a variation of the VSIDS heuristic
(Moskewicz et al. 2001) combined with BerkMin’s practice
of choosing literals from recent unsatisfied conflict clauses
(Goldberg & Novikov 2002) tended to work well.

Specifically, for each literal we keep a score that is ini-
tially the number of its occurrences in the original clauses.
On learning a clause, we increment the score of every lit-
eral by 1 for each of its occurrences in clauses that are in-
volved in the resolution process.6 The scores of all liter-
als are halved once every 128 conflicts. When a decision is
called for (Line 2 of Algorithm 1), we pick a (free) literal
with the highest score from the most recently learned clause
that has not been satisfied, and set it to true; if no such clause
exists we pick any (free) literal with the highest score.

Benchmarks
We use the entire set of industrial benchmarks distributed
by Miroslav Velev of Carnegie Mellon University at
http://www.ece.cmu.edu/˜mvelev/, except sss.1.0, sss.1.0a,
sss-sat-1.0, vliw-sat-1.0, and vliw-sat-1.1 as they are too
easy,7 and dlx-iq-unsat-2.0 as the download appeared to be
incomplete. This gives us 22 benchmark families with 251
instances totaling about 25GB in size—hence the CNF for-
mulas have an average size of about 100MB.

Results
Our experiments consist of running TINISAT with each of
the seven restart policies on the entire set of benchmarks.
As a check that the experiments are not handicapped by the
unsophisticated implementation of TINISAT (written in un-
der 800 lines of C++), we have also run MiniSat v1.14 (Eén
& Sörensson 2005) and Siege v4 (Ryan 2004) (given seed
123456789 for its random number generator) on the same
set of benchmarks. All our experiments were conducted on
a cluster of 16 AMD Athlon 64 processors running at 2GHz
(comparable to a 4GHz Pentium) with 2GB of RAM under
SuSE Linux 9.3 Professional. A time limit of 2 hours was

6We note that this differs from similar scoring methods used by
other solvers such as Chaff II and MiniSat v1.14.

7These five families contain a total of 357 instances, which were
solved by Siege v4 in 428 seconds, TINISAT-L in 506 seconds,
MiniSat v1.14 in 661 seconds, and Chaff II in 1971 seconds.

imposed on all runs of the solvers, allowing us to complete
all the experiments in about 80 CPU days.

The overall results are shown in Table 1. In the second
and third columns we report for each benchmark family the
number of instances and their total size (in megabytes). In
the remaining columns we report the number of instances
solved by each solver for each benchmark family. The total
number of instances solved by each solver and the total time
it spent on all instances (including the 2 hours in case it did
not solve the instance) are reported in the two bottom rows.

The first observation we make from these results is that
restarts definitely helped: All the six nontrivial restart
policies did significantly better than the no-restarts policy.
Even the least effective of them allowed TINISAT to finish
2.43 days sooner and solve 37 more instances, than the no-
restarts policy.

Our second observation is that Luby’s universal policy
appears to outperform all the rest on this particular set of
benchmarks. Given that the optimality of Luby’s policy
was originally proved for Las Vegas algorithms, this empir-
ical result provides motivation for extending the theoretical
study of Luby’s policy to clause learning algorithms. In-
terestingly, Siege’s policy of (16000, 1) achieved a perfor-
mance close to that of Luby’s, which appears consistent with
the fact that the Siege solver itself exhibited a performance
similar to TINISAT-L on these benchmarks (we do not have
an analytical interpretation of this observation though).

To give a more concrete picture of the impact of the restart
policy on the efficiency of the solver, we present detailed re-
sults in Tables 2 and 3 for two of the benchmark families
where TINISAT solved all instances using every policy. For
space constraints we only include three policies in each ta-
ble: the no-restarts policy and the worst and best of the rest.
Results on Siege are also included as a reference point.

In Table 2, we observe that Luby’s policy outperformed
the other two by more than a factor of two. While Siege
outperformed TINISAT-L on these instances, we observe
that TINISAT-L made fewer decisions and generated signif-
icantly fewer conflicts than Siege, suggesting the effective-
ness of Luby’s policy in guiding the solver toward shorter
unsatisfiability proofs (these are all unsatisfiable instances
except the last one).

In Table 3, we observe that Luby’s policy again outper-
formed the other two by a large margin, and TINISAT-L sig-
nificantly outperformed Siege, which failed to solve three of
the instances. On instances they both solved, we observe
that while TINISAT-L sometimes made more decisions (re-
flecting the overhead of restarts), it consistently generated
fewer conflicts than Siege, suggesting the effectiveness of
the restart policy in guiding the solver toward earlier solu-
tions (these are all satisfiable instances).

Finally, we note that TINISAT coupled with Luby’s policy
(and in fact any of the other nontrivial policies) also sig-
nificantly outperformed MiniSat v1.14 on these benchmarks
(see Table 1). We view this as supporting evidence for our
argument that the decision heuristic together with the restart
policy largely determines the efficiency of a clause learning
SAT solver when the learning scheme is fixed (to our knowl-
edge MiniSat also uses 1-UIP learning).



Table 1: Overall results on running TINISAT with seven restart policies: N = No restarts; M = (100, 1.5); Z = (700, 1); B =
(550, 1); G = (32, 1.1); S = (16000, 1); L = (Luby’s, unit=32). Cutoff was 2 hours.

Benchmark Number of Size Number of Instances Solved
Family Instances (MB) N M Z B G S L MiniSat Siege
dlx-iq-unsat-1.0 32 4543 10 32 32 32 32 32 32 23 17
engine-unsat-1.0 10 62 7 7 8 7 7 7 7 7 7
fvp-sat.3.0 20 414 1 16 9 9 18 17 14 11 20
fvp-unsat.1.0 4 4 4 4 4 4 4 4 4 4 4
fvp-unsat.2.0 22 74 22 22 22 22 22 22 22 20 22
fvp-unsat.3.0 6 243 0 0 0 0 0 1 0 0 5
liveness-sat-1.0 10 1264 6 5 8 9 6 4 7 7 6
liveness-unsat-1.0 12 1134 4 4 4 4 4 4 4 4 4
liveness-unsat-2.0 9 537 3 3 3 3 3 3 3 3 3
npe-1.0 6 695 2 4 3 4 3 4 3 3 3
pipe-ooo-unsat-1.0 15 1452 6 7 7 7 7 7 7 3 8
pipe-ooo-unsat-1.1 14 775 7 8 8 8 8 8 8 3 9
pipe-sat-1.0 10 1662 9 6 9 10 5 9 10 6 10
pipe-sat-1.1 10 984 9 7 10 10 10 10 10 8 10
pipe-unsat-1.0 13 989 8 8 9 8 8 8 9 4 12
pipe-unsat-1.1 14 760 9 9 11 11 11 10 11 4 14
vliw-sat-2.0 9 1611 5 8 5 6 8 9 9 6 9
vliw-sat-2.1 10 3680 4 2 1 2 5 6 5 2 2
vliw-sat-4.0 10 3076 10 10 10 10 10 10 10 10 7
vliw-unsat-2.0 9 695 0 1 1 1 2 2 2 0 7
vliw-unsat-3.0 2 124 0 0 1 0 0 0 2 0 2
vliw-unsat-4.0 4 405 1 1 1 1 1 1 1 0 1
Total 251 25180 127 164 166 168 174 178 180 128 182
Total Time on All Instances (days) 11.28 8.85 8.49 8.56 8.00 7.80 7.68 11.45 7.45

Table 2: Detailed results for fvp-unsat-2.0, all unsatisfiable except 7pipe bug. Abbreviations: Dec. (decisions), Con. (conflicts),
Res. (restarts). Times are in seconds. Three policies included: Policy N (no restarts) and the worst and best of the rest.

Benchmark Number of TINISAT-N TINISAT-M TINISAT-L Siege

Vars Clauses Dec. Con. Res. Time (s) Dec. Con. Res. Time (s) Dec. Con. Res. Time (s) Dec. Con. Time (s)

2pipe 892 6695 3014 1170 0 0.04 3174 1287 4 0.05 2938 1066 16 0.04 4155 1741 0.06

2pipe 1 ooo 834 7026 2509 1089 0 0.04 3147 1387 5 0.06 2766 1210 19 0.05 4541 2423 0.10

2pipe 2 ooo 925 8213 2895 1371 0 0.06 3085 1356 5 0.06 3133 1412 22 0.06 4552 2269 0.09

3pipe 2468 27533 19265 6566 0 0.54 22157 8404 9 0.74 20805 7599 86 0.72 25197 8718 0.53

3pipe 1 ooo 2223 26561 11702 5455 0 0.45 12629 5245 8 0.44 15806 6257 65 0.59 16073 7620 0.49

3pipe 2 ooo 2400 29981 16688 7435 0 0.70 23334 9943 9 1.04 23500 10164 117 1.14 23858 9465 0.69

3pipe 3 ooo 2577 33270 22712 10182 0 1.09 27407 12487 10 1.37 23423 9038 100 1.05 26745 11997 1.01

4pipe 5237 80213 69238 24060 0 5.46 95579 37319 12 8.49 80798 25041 250 6.17 98531 31725 4.03

4pipe 1 ooo 4647 74554 44644 18764 0 3.72 55785 23445 11 5.35 56859 22797 220 5.06 59881 27800 3.51

4pipe 2 ooo 4941 82207 54429 22013 0 5.14 71958 29928 12 7.36 74383 26652 253 6.70 70755 30660 4.15

4pipe 3 ooo 5233 89473 65850 22820 0 5.74 88936 34633 12 9.50 76519 23385 227 6.22 82797 33116 4.93

4pipe 4 ooo 5525 96480 73743 30316 0 8.33 169434 81833 14 35.62 88729 29030 254 8.17 90161 36656 5.53

5pipe 9471 195452 101530 18176 0 6.03 110712 14569 10 4.27 131655 14135 126 4.67 139115 15618 2.58

5pipe 1 ooo 8441 187545 94343 30709 0 11.49 117321 37638 12 18.16 104141 31560 254 12.43 146601 58115 13.55

5pipe 2 ooo 8851 201796 97195 33725 0 13.58 140816 48862 13 29.24 123345 33414 268 15.02 145892 55019 13.60

5pipe 3 ooo 9267 215440 123283 33839 0 17.53 149626 48628 13 28.17 120410 30881 254 13.96 133506 47582 12.06

5pipe 4 ooo 9764 221405 216620 78339 0 52.23 265416 87930 15 56.29 236519 64407 509 35.57 254647 90128 23.14

5pipe 5 ooo 10113 240892 116861 37552 0 17.99 141425 42796 13 24.41 121361 30269 254 15.50 150600 47137 12.47

6pipe 15800 394739 577706 208817 0 273.60 571806 184524 16 192.17 453483 88171 640 73.44 518038 91997 28.77

6pipe 6 ooo 17064 545612 496762 124712 0 181.56 463974 125891 15 153.58 404756 85444 636 81.42 485418 146967 63.59

7pipe 23910 751118 1188862 388233 0 764.32 1168826 318819 18 497.61 876368 130092 998 171.05 997777 131085 59.19

7pipe bug 24065 731850 166382 17509 0 13.89 542511 143273 16 119.26 144616 14526 131 10.27 282794 12309 4.21

Total 3566233 1122852 0 1383.53 4249058 1300197 252 1193.24 3186313 686550 5699 469.3 3761634 900147 258.25



Table 3: Detailed results for vliw-sat-4.0, all satisfiable. Abbreviations: Dec. (decisions), Con. (conflicts), Res. (restarts).
Times are in seconds. Three policies included: Policy N (no restarts) and the worst and best of the rest. Cutoff was 2 hours.

Benchmark Number of TINISAT-N TINISAT-S TINISAT-L Siege
Vars Clauses Dec. Con. Res. Time (s) Dec. Con. Res. Time (s) Dec. Con. Res. Time (s) Dec. Con. Time (s)

bug1 521188 13378641 9881446 604996 0 2199.98 8521585 49471 3 242.00 6064544 22613 220 236.31 4138878 26364 154.52
bug2 521158 13378532 7680490 267252 0 712.04 6189255 17318 1 118.74 6274425 11959 125 174.57 3185190 16616 102.06
bug3 521046 13376161 4447142 2098 0 57.72 4447142 2098 0 57.75 3327664 2781 36 76.90 4460466 24509 153.75
bug4 520721 13348117 7670838 563100 0 2045.31 6246054 43329 2 229.49 5710694 16378 156 187.37 4092308 19896 132.98
bug5 520770 13380350 7754522 86586 0 582.81 7459833 29041 1 190.47 4620905 7980 92 133.09 – – –
bug6 521192 13378781 8808865 362411 0 1246.53 7811661 44263 2 219.33 5449328 13250 126 160.90 4138295 37005 199.82
bug7 521147 13378010 7893893 595572 0 1603.23 6125501 19414 1 115.87 4070162 8026 92 120.43 4008315 15148 103.39
bug8 521179 13378617 7793145 340079 0 1557.75 6166611 38239 2 216.89 4564989 10454 122 151.55 – – –
bug9 521187 13378624 6045105 40574 0 289.25 6871992 46122 2 284.25 3547174 5713 62 97.72 4475278 30692 190.22
bug10 521182 13378625 6935993 44236 0 252.06 8242265 56847 3 354.18 4681271 10683 123 150.14 – – –

Total 74911439 2906904 0 10546.68 68081899 346142 17 2028.97 48311156 109837 1154 1488.98 11836.74

Related Work
While in this work we have focused on restart policies for
clause learning, in previous work researchers have stud-
ied the use of restarts in combinatorial search algorithms.
Fixed-interval as well as dynamic restart policies, for ex-
ample, were studied in (Gomes, Selman, & Kautz 1998;
Kautz et al. 2002) using a randomized version of Satz (Li
& Anbulagan 1997), a SAT solver based on pure DPLL
search (without clause learning). Another example is found
in (Walsh 1999), where a geometric policy was found to
be particularly effective for search problems that exhibit a
“small world” topology.

These previous studies of restart policies were based on
the observation that for many combinatorial search prob-
lems, repeated runs of a randomized search algorithm on the
same problem instance (or, similarly, runs of a determinis-
tic search algorithm on random instances of a problem) ex-
hibit a “heavy-tailed” distribution (Gomes, Selman, & Crato
1997), meaning that any run has a nonnegligible probabil-
ity of taking exponentially longer than all previous runs that
have been seen. Intuitively, a restart policy can help com-
bat this unpredictability of search performance by cutting
off runs before they take too long in the hope that one of the
future runs will succeed quickly.

Interestingly, part of this opportunistic thinking appears to
remain valid in the context of clause learning, which as we
discussed performs resolution instead of search. After all,
one cannot always predict the performance of a clause learn-
ing solver on a particular problem instance, either, given
its known performance on similar instances (for a quick re-
minder of this fact, see the performance of Siege in Table 3).
We believe, therefore, that the applicability of these previous
results to clause learning SAT solvers will be an interesting
topic for future work.

Conclusions
Through the design of a simple clause learning SAT solver,
we have established a new formulation of modern clause
learning as a resolution process guided, among other things,
by the decision heuristic and restart policy. This leads to an
analytical argument for the importance of the restart policy
in clause learning, which we studied empirically by compar-

ing the performance of various policies on a large number
of challenging industrial benchmarks. Our results indicate
a substantial impact of the restart policy on the efficiency
of the clause learning solver. In particular, Luby’s univer-
sal policy exhibits the best overall performance on the set
of benchmarks used. We view our work as a step toward a
better understanding of the role played by restarts in clause
learning, and hope that it will motivate further work on the
design of more effective restart policies, including dynamic
ones which we have not considered in this work.
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Eén, N., and Sörensson, N. 2005. MiniSat—A SAT solver with conflict-clause
minimization. In SAT 2005 Competition.
Goldberg, E., and Novikov, Y. 2002. BerkMin: A fast and robust SAT-solver. In
DATE, 142–149.
Gomes, C. P.; Selman, B.; and Crato, N. 1997. Heavy-tailed distributions in combi-
natorial search. In CP, 121–135.
Gomes, C. P.; Selman, B.; and Kautz, H. A. 1998. Boosting combinatorial search
through randomization. In AAAI, 431–437.
Kautz, H. A.; Horvitz, E.; Ruan, Y.; Gomes, C. P.; and Selman, B. 2002. Dynamic
restart policies. In AAAI, 674–681.
Li, C. M., and Anbulagan. 1997. Heuristics based on unit propagation for satisfia-
bility problems. In IJCAI.
Luby, M.; Sinclair, A.; and Zuckerman, D. 1993. Optimal speedup of Las Vegas
algorithms. Information Processing Letters 47(4):173–180.
Lynce, I., and Silva, J. P. M. 2002. Complete unrestricted backtracking algorithms
for satisfiability. In SAT.
Marques-Silva, J., and Sakallah, K. 1996. GRASP—A new search algorithm for
satisfiability. In ICCAD, 220–227.
Moskewicz, M.; Madigan, C.; Zhao, Y.; Zhang, L.; and Malik, S. 2001. Chaff:
Engineering an efficient SAT solver. In DAC, 530–535.
Ryan, L. 2004. Efficient algorithms for clause-learning SAT solvers. Master’s thesis,
Simon Fraser University, School of Computing Science.
Walsh, T. 1999. Search in a small world. In IJCAI, 1172–1177.
Zhang, L., and Malik, S. 2002. The quest for efficient Boolean satisfiability solvers.
In CADE, Lecture Notes in Computer Science, 295–313.
Zhang, L.; Madigan, C.; Moskewicz, M.; and Malik, S. 2001. Efficient conflict
driven learning in a Boolean satisfiability solver. In ICCAD.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 2
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


