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Abstract

Much work has been done on learning from failure in
search to boost solving of combinatorial problems, such as
clause-learning in boolean satisfiability (SAT), nogood and
explanation-based learning, and constraint weighting in con-
straint satisfaction problems (CSPs), etc. Many of the top
solvers in SAT use clause learning to good effect. A simi-
lar approach (nogood learning) has not had as large an im-
pact in CSPs. Constraint weighting is a less fine grained
approach where the information learnt gives an approxima-
tion as to which variables may be the sources of greatest
contention. In this paper we present a method for learning
from search using restarts, in order to identify these critical
variables in a given constraint satisfaction problem, prior to
solving. Our method is based on the conflict-directed heuris-
tic (weighted-degree heuristic) introduced by Boussemart et
al. and is aimed at producing a better-informed version of
the heuristic by gathering information through restarting and
probing of the search space prior to solving, while minimising
the overhead of these restarts/probes. We show that random
probing of the search space can boost the heuristics power
by improving early decisions in search. We also provide an
in-depth analysis of the effects of constraint weighting.

1. Introduction
At first blush, one might imagine that learning from failure is
a hopeless endeavour. After all, animals and human beings
appear to be constructed to learn not from failure but from
success, a principle enshrined in the so-called Law of Effect.
This is not surprising when one considers that for most tasks
there are so many wrong ways to do them that it would be
impossible to store all this information, and it would still
probably not be enough to learn the correct behaviour.

Why then should we expect that we can learn from failure
in the context of constraint satisfaction search? The reason
is based on the Fail-First Principle of (Haralick & Elliott
1980). This principle states that, “In order to succeed, try
first where you are most likely to fail.” That is, in solving
CSPs it is generally best to deal with variables that cause
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difficulty as early as possible. This is because, since every
variable must be assigned a value in a full solution, there is
no point in making assignments to easy parts of the problem
and then undoing them repeatedly when it proves impossible
to find consistent value assignments for the remaining, dif-
ficult variables. In this situation, we may indeed be able to
“learn from failure”, because there is something positive to
learn: that certain variables are sources of peculiar difficulty
in a problem, usually because they represent sources of con-
tention, and for this reason search should start by assigning
these variables before other variables are considered.

This perspective should be distinguished from no-good
learning, which is a more straightforward instance of learn-
ing from failure. Although the latter is sometimes effective
in restricting search, by recognising that a given search path
will not lead to a solution, for CSP search it has not been as
successful as its formal equivalent in SAT (clause learning)
(Katsirelos & Bacchus 2005), perhaps for the same reasons
that were noted above in connection with animal and human
learning, viz that the information learned is too specific to
provide effective guidance at later stages of search.

However, learning from failure in the present sense poses
special problems. In particular, since interactions between
constraints in a problem can be complex, sources of dif-
ficulty can sometimes only be determined by actually car-
rying out search (Joslin & Clements 1998). A means of
dealing with this problem is embodied in the “weighted de-
gree” heuristic proposed by (Boussemart et al. 2004). This
heuristic depends on a strategy of associating weights with
each constraint. Weights are initially set to 1 and are in-
cremented by 1 every time that constraint removes the final
value in a domain (causing a domain wipeout). Variables
are then selected on the basis of the total weight associated
with their constraints. This is, therefore, an adaptive heuris-
tic that works to enhance any heuristic that uses a variable’s
degree. In this case, as search continues it begins to im-
prove over what it would have done if the original heuristic
were used alone. This strategy has been shown to perform
well on a variety of difficult problems (Boussemart et al.
2004) (Lecoutre, Boussemart, & Hemery 2004) (Hulubei &
O’Sullivan 2006).

However, using weighted degree in this way has poten-
tial limitations. The most obvious is that the heuristic uses
the least amount of data when making its most important



choices, i.e. the first few variable selections. Improvements
in search are likely to be restricted to lower levels of the
search tree; in particular, search may never return to the first
few variables.

It may, therefore, be possible to enhance the effects of
weighted degree by starting over once information in the
form of weights has been obtained. Restarting search is a
widely used technique for problem solving that has proven
to be effective in a number of domains. In SAT, the solver
Chaff (Moskewicz, Madigan, & Malik 2001) uses restarts
with clause learning to provide a chance to change early de-
cisions in view of the current problem state. This solver was
shown to be at least an order of magnitude faster than exist-
ing public domain SAT solvers on large, difficult problems.

Here we suggest a similar approach for CSPs that com-
bines a benefit of restarting (e.g. traversing different areas
of the search space) with learning from failure, which may
serve to direct search more intelligently after restarting. As
with the weighted degree heuristic, the goal of this strategy
is to choose which variable to instantiate at a given point
in search. In this case, we hope to take better advantage of
the Fail-First Principle in order to constrain the underlying
search space more effectively.

The next section provides background and definitions.
The following section describes the basic strategies used in
this paper. The next section gives the experimental meth-
ods and the basic results of our experiments. The next sec-
tion contains an analysis of weight changes under different
strategies, to provide a more in-depth understanding of these
methods. The section after that discusses issues involved
in this type of learning. The next section describes related
work. The last section outlines our conclusions and plans
for future work in this area.

Background
A constraint satisfaction problem (CSP) can be represented
as a tuple of the form (V,D,C) where: V = {V1, ....., Vn}
is a set of variables which must be assigned values; D =
{D1, ....., Dn} is the set of domains for those variables con-
sisting of possible values which may be assigned to the vari-
ables; C = {C1, ....., Cm} is the set of constraints. These
constraints express relations Rel(Cj) among domain values
that that can be assigned to the variables in the scope of the
constraint, (V ars(Cj)). In this paper we are concerned with
binary constraint problems, so a constraint has at most two
variables in its scope. Two variables are said to be neighbors
if there is a constraint between them, i.e. if ∃ Cj s.t. (Xa,
Xb) ∈ (V ars(Cj)), then Xa and Xb are neighbors.

An assignment is a set of tuples A =
{(V1, a), (V2, b), ....., (Vk, h)}, each tuple consisting of
a different instantiated variable and the value that is as-
signed to it. A solution to a problem is an assignment A
= {(V1, a), (V2, b), ....., (Vn, x)} that includes all variables
and that does not violate any constraint, i.e. an assignment
of a value to every variable such that no constraint is
violated.

A binary constraint satisfaction problem has an associated
constraint graph, where a variable is represented by a node
in the graph and a constraint Cj is represented by an edge

between the two nodes in V ars(Cj). When the variables
at both endpoints of an edge are assigned a value consis-
tent with the edge-constraint, that edge is removed from the
dynamic constraint graph. CSPs are also characterized by
certain basic parameters. Thus, the domain size of a variable
is the number of values in its current domain, and the degree
of a variable is the number of edges connected to it. A con-
straint satisfaction problem is said to be arc-consistent when
every value in every domain has at least one support in the
domain of every neighboring variable.

During simple backtrack search a value is assigned to
each variable until either a complete consistent assignment
has been found or a dead-end (in the form of an inconsis-
tent assignment) has occurred. In the second case, search
removes the last value assigned and tries a different value in
the domain. If there are no other values left in the domain,
search backtracks up a level to the previous instantiation and
removes the value assigned from that variable’s domain and
tries another value.

Many methods have been suggested which improve on
this simple method of search. One type of method is the
use of propagation or look-ahead techniques. One can prop-
agate using MAC (maintaining arc-consistency), where the
problem is made arc-consistent after every assignment, i.e.
all values which are arc-inconsistent with that assignment
are removed from the current domain of their variable. In
this way, effects of an assignment are propagated through
the problem. Clearly only uninstantiated variables need to
be checked for consistency with an assignment when using
MAC since all values already assigned to variables must be
consistent with the new value assigned.

Even though all variables will be part of the solution, the
order in which variables are selected for instantiation during
search can have a large effect on the effort required. Typi-
cally a variable is selected according to some heuristic met-
ric obeying the Fail-First principle. One of the most widely
used heuristics in CSP solving is that which minimises the
value of domain size/degree (domain/degree for short).
By choosing the variable with the smallest domain, one is
ensuring that if there is to be a failure one will have the
fewest alternative values to try. Choosing the variable with
the largest degree ensures that through propagation one will
generally have the largest reduction in search space.

Description of the Algorithms
The basic weighted-degree heuristic was described in the
Introduction. It should be noted, however, that when se-
lecting a variable, the edge-weight-sum for each variable is
based only on edges connecting it to uninstantiated vari-
ables. (The heuristic is, therefore, a weighted-forward-
degree heuristic.) These sums are compared, and the vari-
able with the largest sum is selected as the next variable for
instantiation. In this work, we use a variant of the heuris-
tic in which the weight information is incorporated into
the minimum domain/forward-degree heuristic to produce a
minimum domain/weighted-degree heuristic (dom/wtdg for
short).

In the present work, we combined dom/wtdg with restart
in two ways that represent fundamentally different strate-



gies for learning. In both methods, edge-weights are car-
ried along from restart to restart. In the first method these
weights are used by the dom/wtdg heuristic for variable se-
lection throughout search. In the second method, variables
are chosen at random during all but the last restart. Dur-
ing this time weights are incremented in the usual fashion,
but they are not used to guide search. On the last restart
(final run), the dom/wtdg heuristic is used, based on the ac-
cumulated weights for each variable, which continue to be
updated during this run. This method, therefore, consists of
an information-gathering or “probing” stage (runs 1 through
R − 1), followed by a search stage.

In both methods, restarts occur after a fixed number of
nodes have been explored in the search tree (“fixed cutoff”,
C). In addition, there is a fixed maximum number of runs,
R, which gives a maximum number of restarts = R − 1. If a
solution is found before the Rth run, the process terminates
at that point. Otherwise, it continues until the final run, at
which point the cutoff is removed (increased to ∞). This
makes the method complete.

Thus, during each run, search continues until the problem
has been solved or C nodes have been searched, while up-
dating constraint weights after domain wipeouts. On runs 1
through R− 1, if no solution has been found after searching
C nodes, search restarts on the initial state of the problem
with updated weights. On the Rth run, search runs to com-
pletion, i.e. it runs until it either solves the problem or proves
the problem insoluble. On this run, the dom/wtdg heuristic
is always used for variable selection.

The first method, restart with dom/wtdg, was tested with
the expectations that:

• for the easier problems in the set, a solution may be found
without restarting or after a small number of restarts (un-
less the cutoff is too low).

• for harder problems, this approach, which learns from
each search attempt, may begin to solve problems within
the cutoff once it has enough information to make good
variable selections early in search.

The second method, search after probing for failure using
random variable selection, was tested with the expectation
that the probing procedure would give a better overall indi-
cation of points of difficulty within a problem, although it is
unlikely to solve any problem instances before the Rth run.

Tests of Restart Strategies
Experimental Methods
The basic algorithm used in the experiments reported in this
paper was a MAC-3 algorithm with d-way branching. In ad-
dition to the variable ordering heuristic described above, for
the soluble problems a promise value ordering heuristic was
used (based on (Geelen 1992)). In the version used in this
work, the heuristic calculates, for each value in the domain
of the current variable, the product of the supporting values
in the domains of neighboring uninstantiated variables, and
chooses as the next value the one with the largest product.

The experiments reported in this paper were carried out
with random binary CSPs. The problem parameters are

based on two of the problem sets used by (Boussemart et al.
2004) in their study of the weighted degree heuristic. The
parameter values are the same as those used in that paper;
the only difference is that each of the present problems con-
sisted of a single connected component. This was done by
first connecting the nodes of the constraint graph by a span-
ning tree and then adding edges at random until the required
number had been chosen. The problem sets tested on are in
the critical complexity region.

For the first problem set, we tested soluble and insoluble
problems separately to see if our approach was better suited
to one or the other class. This was done by generating sev-
eral hundred problems, and then selecting the first 100 solu-
ble and the first 100 insoluble problems from the original set.
Due to time constraints, most of our experiments have been
done with the 100 soluble problems, and these were used
for experiments reported in the next two sub-sections. The
parameters for these problem sets were <200, 10, 0.0153,
0.55>, i.e. problems had 200 variables, initial domain sizes
were all 10, the constraint graph density was 0.0153 (500
constraints), and the tightness of each constraint was 0.55.
The parameters for a second problem set, in which both sol-
uble and insoluble instances appear, were <80, 10, 0.1042,
0.35>.

For experiments on dom/wtdg with restart, the cutoff lev-
els used were 250, 500, 1000, and 2000 nodes. The number
of restarts were 1, 5, 10 and 20. These factors were “fully
crossed” in the experiments, so that all levels of the cutoff
factor were tested with all levels of the restart factor. Thus,
all combinations of factor-levels were tested. (For the insol-
uble problem set only one combination was tried, 10 restarts
with a 500 node cutoff).

For the random probing for failure experiments, each con-
dition, i.e. combination of levels for cutoff and restarts, was
tested ten times. This was done to obtain adequate samples
under randomisation and to avoid spuriously good (or bad)
effects due to random selections.

Results were analysed with the analysis of variance
(ANOVA), in some cases followed by comparisons of indi-
vidual means using paired-comparison t-tests (Hays 1973).
For experiments with dom/wtdg with restart (next sub-
section), the ANOVA was based on a two-way fixed effects
model. Experiments on search after probing for failure (sub-
sequent sub-section), were analysed with a three-way mixed
effects model in which problems was a third factor (and each
cell of the design had ten data points based on the ten tests
for that problem), as well as a two-way ANOVA based on
the mean for each problem across the ten tests.

To meet the statistical assumptions of the ANOVA, and to
make computations tractable, the original data were trans-
formed by taking logarithms prior to the analysis. (Since
the main test problems are in the critical complexity region,
heavy-tail effects are not present; in addition, for these prob-
lems such effects should be eliminated by performing arc
consistency after each instantiation.) For the ANOVAs, the
actual analyses were carried out ‘by hand’ in EXCEL, i.e.
functions such as SUM and SUMSQ were used, but not the
statistical tools provided by the program. The t-tests em-
ployed the paired-comparison test available in EXCEL.



Results for dom/wtdg with Restart
For reference, we first note the performance of the basic
dom/wtdg heuristic on these problems. For the soluble prob-
lem set, this heuristic required a mean of 37,934 nodes
and 94,162,635 constraint checks to find one solution. It
is also of interest that for the soluble problem set, the ba-
sic min domain/forward-degree heuristic required a mean
of 107,059 nodes. and 226,235,887 constraint checks; this
confirms that dom/wtdg is a very powerful heuristic when
used on these problems. (Since nodes, constraint checks,
and runtime were all highly correlated in these experiments,
for brevity, results will be reported in terms of nodes.)

Summary results for the tests of dom/wtdg with restart are
given in Table 1. The table shows means for “total nodes”
over the 100 (soluble) problems for each condition. This
measure includes nodes searched across all (≤ R) runs, in-
cluding the final run to completion if one was needed. For
these data, there were no consistent trends for either the
number of restarts or the cutoff value. In addition, the anal-
ysis of variance (ANOVA) showed no statistically signifi-
cant differences for either the cutoff or restarts factors. This
means that differences among the means in Table 1 are not
evidence of reliable differences between conditions.

Table 1. Results with Repeated dom/wtdg
Total Search Nodes

cutoff
250 500 1000 2000

1 49,185 52,974 40,375 48,189
re-

5 45,283 52,222 45,773 47,574
starts

10 46,648 46,525 42,165 53,483

20 53,262 47,656 51,811 52,160
Notes. <200,10,.0153,.55> problems.
Means for 100 problems.

In addition to the basic assessment of total effort, it was
of interest to consider means for the last run for each prob-
lem, to determine if there was any evidence of improvement
that could be ascribed to learning. These results are given
in Table 2. Again, there are no consistent trends, although
means tended to decrease as either the cutoff or number of
restarts increases. In this case, however, the ANOVA gave
statistically significant results for each factor, although not
for their interaction. For restarts, F (3,1584) = 7.627, p <
0.01; for cutoff, F (3,1584) = 10.953, p < 0.01.

Table 2. Repeated dom/wtdg: Final Run

cutoff
250 500 1000 2000

1 48,958 52,489 39,445 46,469
re-

5 44,053 49,867 41,433 40,194
starts

10 44,248 41,975 34,125 40,383

20 48,642 38,976 37,461 29,140
Notes. <200,10,.0153,.55> problems.
Mean nodes for 100 problems.

One possible reason for the statistically significant results
that may confound interpretation is that a problem was only
tested until a solution was found. This means that whenever
a problem was solved before the R − 1th restart, it would
necessarily have a low value for the number of nodes in the
final run. This would be more likely to happen for larger C
and R, and is suggested by the overall trends noted above.
This may have happened either because the weights were
effective at this point or because a degree of randomisation
was added to a heuristic that is generally effective. There-
fore, cases where the mean was better than the reference
value (37,934), which sometimes occurred when the num-
ber of restarts was 10 or 20 (see Table 2) must be treated
with caution.

To obviate this difficulty, 39 problems were selected that
were never solved before the final run under any condition.
For these problems, dom/wtdg alone required a mean of
77,111 nodes to find a solution. The means for these 39
problems under the present experimental regimen are given
in the table below. For this problem set, the ANOVA gave
no statistically significant results. This indicates that im-
provements over ordinary dom/wtdg in Table 2 and the sta-
tistically significant results may be due to the confounding
factor suggested above.

Table 3. Repeated dom/wtdg: Only
Solved on Final Run

cutoff
250 500 1000 2000

1 78,227 97,048 63,318 85,327
re-

5 70,643 88,570 78,570 86,240
starts

10 75,439 82,901 69,995 90,979

20 95,526 72,389 82,116 70,345
Notes. <200,10,.0153,.55> problems.
Mean nodes for 39 problems only solved
on run to completion.

There are at least two reasons why dom/wtdg with restart
may not be effective. Since failure always occurs in a par-
ticular context in the form of a partial assignment, weights
derived from such failures may not be relevant at the be-
ginning of search when the contexts of those failures are no
longer present. Furthermore, variables with higher weights
will tend to be chosen earlier after restart and, since wipe-
outs generally don’t occur until after several variables have
been assigned and only affect future variables when con-
straint propagation is used, these variables are less likely
to have their weights increased. This will lead to different
variables being weighted each time. When these variables
are chosen during subsequent restarts, still other variables
may be weighted, and so forth. Together, these effects will
make it difficult to distinguish sources of “global” as op-
posed to “local” difficulty, i.e. difficulty that is basic to the
problem and which will, therefore, be encountered through-
out the search space, versus difficulty restricted to a specific
part of the search space.



Results for Search after Probing for Failure

If variables are chosen at random during search, then infor-
mation concerning problem difficulty can be obtained from
a wider sample of the search space and is thus more likely to
to be related to global difficulties. Although a given domain
wipeout is still dependent on a specific assignment at that
point, with repeated restarts it is likely that different parts
of the search space will be explored. After a sequence of
such restarts, a high constraint weight indicates that this con-
straint was directly linked with domain wipe-outs in many
different parts of the search space, and is therefore associ-
ated with a basic source of difficulty in the problem.

Table 4. Results with Repeated Random Variable
Selection - Total Search Nodes

cutoff
250 500 1000

1 44,130 48,123 47,204
re-

5 40,048 42,318 42,073
starts

10 37,179 36,192 40,503

20 39,135
Notes. <200,10,.0153,.55> problems.
Means over 10 runs with 100 problems.
Time did not permit collecting data for
all conditions with 20 restarts.

Domain wipeouts that occur early in search are also more
likely to reflect basic difficulties, since the smaller the as-
signment that produces a wipeout, the greater the probability
that the constraint will cause a wipeout in a different part of
the search space. (This is similar to non-generalised nogood
learning, where more effective nogoods are those that are
shorter in length). This implies that, for C > n, a shorter
cutoff (Ci) with more restarts (Ri) should learn better in-
formation than a larger cutoff (Cj) with fewer restarts (Rj),
where Ci x Ri = Cj x Rj , i.e. where the total number of
search nodes while probing is the same.

These expectations are largely bourne out by the experi-
ments using restart with random variable selection. In these
tests, in contrast to those with restart using weighted degree,
there was sometimes evidence of improvement even for total
nodes (Table 4). More significantly, in the final runs search
was clearly superior to the basic dom/wtdg heuristic (Table
5: 10 and 20 restarts). As already noted, due to the in-
efficiency of search with random variable ordering, R − 1
restarts were carried out for each problem under all condi-
tions. Hence, the results in Table 4 are not affected by find-
ing solutions before the cutoff prior to the last restart.

The ANOVA for this experiment (based on 1, 5, and 10
restarts) gave a highly significant result for the restarts fac-
tor; in contrast, the result for the cutoff factor was not sig-
nificant (Table 6). Not surprisingly, the problems factor
was highly significant, showing that there were stable dif-
ferences in problem difficulty despite the randomisation of
variable selection. The only significant interaction was be-
tween problems and number of restarts.

Table 5. Repeated Random Variable Selection: Final Run
(Search Nodes)

cutoff
250 500 1000

1 43,880 47,623 46,204
re-

5 38,798 39,818 37,073
starts

10 34,679 31,192 30,503

20 29,135
Notes. <200,10,.0153,.55> problems.
Means over 10 runs with 100 problems.

For comparisons of means in Table 5, a second ANOVA
was done with only the Restarts and Cutoff factors, using
the means for the ten tests for each problem and condition.
Again, the restarts factor was highly significant statistically
(F (2, 891) = 8.687, p < 0.01), while the cutoff factor was
not (F (2, 891) = 0.313). Post-hoc comparisons were made
for the following pairs of conditions

1. 5-restarts/500-cutoff versus 10-restarts/250-cutoff

2. 5-restarts/1000-cutoff versus 10-restarts/500-cutoff

In both cases, the difference between means was statistically
significant (t(99) = 3.391, p < 0.001, and t(99) = 2.913, p <
0.01, respectively, for the comparisons just noted [one-tail
tests].) This supports the expectation that superior learning
should result from shorter cutoffs and more restarts as com-
pared to longer cutoffs with fewer restarts.

Table 6. Analysis of Variance for Repeated Variable
Selection, Final Run

factor SS df MS F p
Problems 2472.57 99 24.98 114.548 << 0.01
Restart 38.69 2 19.35 88.726 << 0.01
Cutoff 0.69 2 0.35 1.593 ns
P*R 97.79 198 0.49 2.265 < 0.01
P*C 45.29 198 0.23 1.049 ns
R*C 1.60 4 0.40 1.834 ns
P*R*C 83.52 396 0.21 0.967 ns
Error 1766.07 8100 0.22
Notes. Based on data of Table 5, omitting data for 20 restarts.
Column headers are standard abbreviations for ANOVA terms:
“SS” = sum of squares, “df” = degrees of freedom, “MS” =
mean sum of squares (SS/df), “F ” is the test statistic obtained
by dividing the MS in that row by the MS-Error. “p”is the pro-
bability of obtaining the value of F under the null hypothesis
of no effects, where the expectation of F=1.

Results for Insoluble Problems

The basic dom/wtdg averaged 41,200 nodes in solving 100
problems. The repeated dom/wtdg with 10 restarts and a
cutoff of 500 nodes did worse, averaging 47,072 nodes in
total. For the random variable selection while probing, we
again did ten experimental tests with 10 restarts and a cutoff
of 500 nodes. This did better than basic dom/wtdg in total
nodes on every run, averaging 39,312 nodes (so the final run
averaged 34,312 nodes).
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Figure 1: Variable weights after 100th restart, with C =
1000, on a sample problem instance. Two independent tests
with random variable selection are shown together with re-
sults for repeated weighted degree.

Results for Mixed Problem Set
A lexical value ordering was used for these 100 problems,
46 of which were insoluble. The basic dom/wtdg averaged
186,854 nodes over the 100 problems. Repeated dom/wtdg
with 20 restarts and a cutoff of 200 nodes did worse, averag-
ing 220,727 nodes in total. For the random variable selection
while probing, we again did ten experimental tests with 10
restarts and a cutoff of 500 nodes. This did better on aver-
age than basic dom/wtdg in total nodes, averaging 183,405
nodes (so the final run averaged 178,405 nodes).

Analysis of Weight Changes Produced by Each
Strategy

To better understand the differences between the two strate-
gies used in the previous experiments, we ran both random
variable ordering and dom/wtdg variable ordering with 100
restarts on selected problems. For these tests, we used cut-
offs of 250 and 1000 nodes. The five problems chosen for
these tests were sufficiently difficult that they could not be
solved within the specified cutoff. Each variable’s cumu-
lated edge-weight was saved after every restart.

After 100 restarts the sum of weights across all variables
was 50% to 100% greater for random variable ordering than
for repeated dom/wtdg, depending on the cutoff. This means
that when using random ordering there were 50% to 100%
more domain wipeouts than when using dom/wtdg.

One reasonable explanation for the greater effectiveness
of random probing for failure is that it provides better
discrimination among variables, especially those with the
largest weights. Figure 1 shows a typical weight plot for
a single problem after 100 restarts, for the repeated wtd-
deg experiment and for two random variable ordering ex-
periments. In all three cases the variables were ranked ac-
cording to their weight after the 100th restart. The slope of
the line indicates the level of discrimination between suc-
cessive variables. Note that for both random orderings the
slope is very steep for the top 50 variables and maintains a
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Figure 2: Variable weights after 20th restart on a sample
problem instance. The twenty variables are ranked by their
weight after the 100th restart (C = 1000).

better level of discrimination over the next 50 variables than
repeated weighted-degree. The slope for repeated-weighted
degree has a much more gradual inclination, which indi-
cates that even after 100 restarts there are no variables with
a clearly larger weight than their predecessor.

We evaluated the stability of a variable’s ranking in terms
of its edge-weights statistically, using Kendall’s coefficient
of concordance, W (Hays 1973). This statistic allows one
to compare m distinct rankings in order to assess their over-
all similarity. (Possible values of the statistic range from
0 to 1, inclusive.) Five problems were tested, for each we
selected the 20 variables that had the highest weights af-
ter the final run. (Since domains of low-weight variables
are rarely wiped out, their inclusion in the analysis pro-
duces spuriously high levels of concordance.) Variables
were ranked with respect to edge-weights after successive
sets of 10 restarts, and these 10 sets of ranks were used to
calculate W . It was suggested earlier that using dom/wtdg
with restart may have the untoward result of allowing the
critical variables to fall back down the ordering. The results
of the test of concordance are consistent with this hypoth-
esis. The concordance of the top 20 variables ranked by
edge-weight was always 0.65 or less for dom/wtdg variable
selection, while for random variable selection the concor-
dance of the top 20 variables was always 0.85 or greater.

This difference can also be shown graphically. Figure 2
shows the weights of the same top 20 ranked variables of
Figure 1, after 20 restarts for a random probing run and
from a repeated weighted-degree. Note how the repeated
weighted-degree slope is nearly horizontal, while for ran-
dom probing the same first few variables are already in or-
der.

These results show that restart with random variable or-
dering results in more stable patterns of edge-weights among
variables across restarts. This, in turn, implies that variables
that are truly ‘critical’, i.e. those associated with global dif-
ficulties in the sense used above, can be found early in the
sequence of repeated runs with this strategy of probing for



failure.

Discussion
Domain/weighted-degree is a powerful heuristic that already
demonstrates the benefits of learning from failure. Nonethe-
less, we have shown that further information can be ex-
tracted and utilised to improve search even more. Due to
the expense entailed by information gathering, the overall
efficiency of our best procedure is not appreciably different
from search using the original heuristic for the class of prob-
lems tested. However, the potential for improvement exists
and we do not yet know what the limit of this improvement
actually is.

A critical feature of our procedure is restarting after a lim-
ited amount of search. However, in our work we have shown
that this technique cannot simply be combined with the pro-
cess of incrementing edge-weights in order to be successful.
As discussed above, restarting under these conditions can
actually ‘distort’ a good weight profile, evidently by bias-
ing failure in favor of variables that are instantiated later in
search and by altering this bias from restart to restart so that
differences among variables are obscured.

An important result found in connection with the ran-
dom variable selection procedure was that number of restarts
is a more important parameter than cutoff-level. In fact,
differences associated with the latter were not statistically
significant over the range of values tested (Table 6). This
conclusion was supported by the post-hoc analysis, which
showed that, for conditions in which the maximum allot-
ment of nodes was the same, a greater number of restarts
was more beneficial than a higher cutoff.

In further experimental tests, we obtained evidence that
supports our explanation of the deficiencies of weighted-
degree with restart and also helps explain the improvement
observed when restart is combined with random variable se-
lection. Thus, we have shown that when variables are ranked
in terms of edge-weights, the rankings of individual vari-
ables are much less stable across restarts when selection is
by dom/wtdg with accumulated weights than they are when
selection is random. And we have shown that differences in
edge-weights are much greater when the latter procedure is
used, which should translate into more effective discrimina-
tion during variable selection.

As in most learning from search approaches, there are
important blame assignment issues (Sleeman, Langley, &
Mitchell 1982). First, one doesn’t know the actual root of
any insoluble subtree without knowing the solution, because
search can backtrack above any given variable except, of
course, the first variable selected. Secondly, when propa-
gating assignments using arc consistency, one doesn’t know
that a given constraint is truly to blame for a variable’s do-
main going empty. It could be that the constraint of a neigh-
boring variable had removed so many values that support
was lost for neighboring domains and thus it should be the
former which is weighted. In this context, a significant ad-
vantage of the weighted degree heuristic is that the weight
it gives for each individual wipeout is small. In this case,
it is the cumulative effect of a variable’s constraints directly

causing domain wipeouts on a number of occasions that de-
termines whether that variable will be selected over another.

It should be noted that, in these procedures, the extra work
done before solving is simply heuristic search using either
weighted-degree or random variable ordering. The overall
time taken per problem should be similar to the weighted-
degree heuristic without restarts, if the number of nodes re-
quired to solve the problem is the same as the total number
of nodes required by our method.

Related Work
Constraint weighting was introduced by Morris (Morris
1993) in his breakout algorithm for escaping local minima
while using local search, and a similar technique was in-
troduced by Selman (Selman & Kautz 1993) for solving
large structured SAT problems. Recently Eisenberg and
Faltings (Eisenberg & Faltings 2003) suggested using Mor-
ris’s breakout algorithm to identify hard and unsolvable sub-
problems. After a fixed number of iterations through the al-
gorithm they switched to a systematic search technique for
solving the problem which uses a static variable ordering
based on constraint weights produced by the breakout algo-
rithm and the graph structure. Their method differs from
ours in its strategy for knowledge acquisition: they used
local search techniques whilst we use probes of the search
space. Furthermore, our goal is purely to boost the power of
the weighted-degree heuristic by supplying it with informa-
tion for early decisions.

Squeaky Wheel Optimization (SWO) (Joslin & Clements
1998) is another local search strategy that assigns blame to
trouble elements in the form of numeric values and then
sorts the ordering for the next attempt at solving the prob-
lem based on these values. However, unlike our method,
SWO does not carry blame factors over from run to run and
does not have a completeness guarantee.

Chaff, as mentioned earlier, is a SAT solver (Moskewicz,
Madigan, & Malik 2001) which uses restarts with clause
learning for effective problem solving. Due to the addi-
tion of conflict clauses through learning, SAT ensures that
it does not repeat the previous attempt when restarting. This
is similar to using restarting with weighted-degree in our
case, where incrementing weight counters ensures that the
previous search is not repeated upon restart. However they
use a weight-decaying method that gives recent weight up-
dates more bearing. This is because they want to concentrate
on penalties which are more relevant to the current search
space. We, on the other hand, are trying to identify con-
straints related to global difficulties in order to make the best
early selections for our final run.

(Tompkins & Hoos 2004) presented experimental evi-
dence indicating that local search algorithms with clause-
weight learning do not benefit from their weights on a global
scale, and that all learning is local. Our findings with the re-
peated weighted-degree method were similar in that restart-
ing with the learned weights proved detrimental. However,
we would argue that different methods give information of
different quality, and it is the method which is key. We have
shown that when we use random probing of the search space
to find constraint weights, these have a global benefit for the



weighted-degree heuristic. It should be noted though that
our work was for complete search for CSPs whilst theirs
was for local search with SAT, which could also have had
a bearing.

Refalo’s work on impact-based search strategies used a
similar probing of the search space with restarts to uncover
effects of search specific to a problem (Refalo 2004). In
this approach he measured the “impact” (reduction of the
search space due to assignment of a variable) of values for
variables and thus of the variables themselves by the domain
reduction caused by the propagation of that value. He found
that using these probes for information gathering prior to
solving boosted search. Although the information gathered
and the use of it is different, the idea of probing the search
space is similar to ours.

Conclusions and Future Work

In devising learning strategies for problem solving there are
some key questions that one must consider: what are we
going to learn, how are we going to learn it, how can we use
the information learnt and most importantly how dependable
is the information.

In our case, the information learnt was the number of
times the constraints of each variable directly caused a do-
main wipeout. Learning was encoded by incrementing the
weight on each edge, and this information was then used to
guide search by selecting variables in decreasing order of
their edge-weight sum. Since the dependability of the infor-
mation in singularity is quite weak, weights are only incre-
mented by 1. Thus, it is only through the buildup of these
weights that importance is attached to a variable.

We presented two approaches which affected the qual-
ity of information learnt during preprocessing, namely
weighted-degree variable selection and random variable se-
lection. Clearly, using the weighted-degree heuristic in this
manner is not a dependable method for information gather-
ing, although it did allow us to solve problems during pre-
processing. Random variable ordering was much more suc-
cessful, presumably because it probed more diverse areas of
the search space for information. We showed that this pre-
processing method of learning from failure can improve on
the weighted-degree heuristic or a variant by supplying it
with relevant information for its initial variable selections as
well as later in search.

Clearly, the random-selection strategy is not suitable for
solving easy problem instances, since the cost of probing the
search space is likely to outweigh the benefit of the informa-
tion learnt. However, we have shown that on hard problem
sets, information gathering prior to solving can be beneficial.

An important question is whether we can obtain the in-
formation required to improve variable selection with less
cost. One method may be to improve the quality of the
information learned. We have two approaches in mind for
doing this: depth restriction for preprocessing and inverse-
depth weighting. Both make use of the insights of this paper,
that constraints causing domain wipeouts early in search are
more useful for learning than those later in search.
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