
Toward Discriminative Learning of Planning Heuristics

Yuehua Xu and Alan Fern
School of EECS, Oregon State University

Abstract

We consider the problem of learning heuristics for controlling
forward state-space search in AI planning domain. We draw
on a recent framework for “structured output classification”
(e.g. syntactic parsing) known as learning as search optimiza-
tion (LaSO). The LaSO approach uses discriminative learning
to optimize heuristic functions for search-based computation
of structured outputs and has shown promising results in a
number of domains. However, the search problems that arise
in AI planning tend to be qualitatively very different from
those considered in structured classification, which raises a
number of potential difficulties in directly applying LaSO to
planning. In this paper, we discuss these issues and describe
a LaSO-based approach for discriminative learning of beam-
search heuristics in AI planning domains. Our preliminary
results in three benchmark domains are promising. In partic-
ular, across a range of beam-sizes the discriminatively trained
heuristic outperforms the one used by the planner FF and an-
other recent non-discriminative learning approach.

Introduction
It is somewhat surprising that a number of today’s state-of-
the-art planners are based on the old idea of forward state-
space heuristic search (Bonet & Geffner 1999; Hoffmann
& Nebel 2001; Nguyen, Kambhampati, & Nigenda 2002).
These performances are primarily due to the recent progress
in defining domain-independent heuristic functions that pro-
vide good guidance across a wide range of domains. How-
ever, there remain many domains where these heuristics are
deficient, leading to planning failure. One way to improve
the applicability and robustness of such planning systems
is to develop learning mechanisms that automatically tune
the heuristic to a particular domain based on prior planning
experience. In this work, we consider the applicability of
recent developments in machine learning to this problem.
In particular, given a set of solved planning problems from
a target domain, we consider using discriminative learning
techniques for acquiring a domain-specific heuristic for con-
trolling beam search.

Despite the potential benefits of learning to improve for-
ward state-space planning heuristics, there have been few
reported successes. While there has been a substantial body
of work on learning heuristics or value functions to control
search, e.g. (Boyan & Moore 2000; Zhang & Dietterich
1995; Buro 1998), virtually all such work has focused on
search optimization problems. These problems involve find-
ing a “least cost” configuration of some combinatorial ob-

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

ject and have a much different flavor than the types of do-
mains encountered in benchmarks from AI planning. To our
knowledge, no such previous system has been demonstrated
on benchmark domains from AI planning.

Recent work (Yoon, Fern, & Givan 2006) has made
progress toward learning heuristics for planning domains.
The work focused on improving the heuristic used by the
state-of-the-art planner FF (Hoffmann & Nebel 2001). In
particular, the approach used linear regression to learn an
approximation of the difference between FF’s heuristic and
the observed distances-to-goal of states in the training plans.
The sum of FF’s heuristic and the learned regression func-
tion was then used as the new domain-specific heuristic. The
primary contribution of the work was to define a generic
knowledge representation for features and a features-search
procedure that allowed learning of good regression func-
tions across a range of planning domains. While the ap-
proach showed promising results, the learning mechanism
has a number of potential shortcomings. Most importantly,
the mechanism does not consider the actual search perfor-
mance of the heuristic during learning. That is, learning is
based purely on approximating the observed distances-to-
goal in the training data. Even if the learned heuristic per-
forms poorly when used for search in one or more training
problems, no attempt is made to correct the heuristic in re-
sponse.

In this paper, we consider a learning approach that tightly
couples learning with the actual search procedure, iteratively
updating the heuristic in response to observed search errors.
This approach is discriminative in the sense that it only at-
tempts to learn a heuristic that discriminates between “good”
and “bad” states well enough to find the goal, rather than
attempting to precisely model the distance-to-goal. In many
areas of machine learning, such discriminative methods have
been observed to outperform their non-discriminative coun-
terparts. A main goal of this work is to demonstrate such
benefits in the context of planning.

Our learning approach is based on the recent framework
of learning as search optimization (LaSO) (Daume III &
Marcu 2005), which was developed to solve “structured out-
put classification” problems. Such problems involve map-
ping structured inputs (e.g. sentences) to structured outputs
(e.g. syntactic parses) and classification can be posed as per-
forming a search over candidate outputs guided by a heuris-
tic. LaSO provides an approach for discriminative learning
of such heuristics and has demonstrated good performance
across several structured classification problems. However,
the search problems corresponding to structured classifica-
tion are qualitatively very different from those typical of AI

planning domains. For example, in structured classification
the search problems typically have a single or small number
of solution paths, whereas in AI planning there are often a
very large number of equally good solutions. Given these
differences, the utility of LaSO in our context is not clear.

The main contribution of this paper is to describe a LaSO-
inspired approach to learn beam-search heuristics for AI
planning and to provide a preliminary evaluation. Our em-
pirical results show that the approach is able to learn heuris-
tics that improve beam-search compared to using the heuris-
tic from the planner FF. In addition, the results show that
discriminative learning appears to have an advantage over
the existing non-discriminative approach.

Below, we first give our problem setup for learning plan-
ning heuristics. Next, we give an overview of the LaSO
framework for structured classification. This is followed by
a description of our LaSO-based approach to learning beam-
search heuristics for planning domains, along with an analy-
sis of convergence. Finally, we present experimental results
and conclude with a discussion of future directions.

Learning Planning Heuristics
Planning Domains. A planning domain D defines a set of
possible actions A and a set of states S in terms of a set
of predicate symbols P , action types Y , and constants C.
A state fact is the application of a predicate to the appro-
priate number of constants, with a state being a set of state
facts. Each action a ∈ A consists of: 1) an action name,
which is an action type applied to the appropriate number
of constants, 2) a set of precondition state facts Pre(a), 3)
two sets of state facts Add(a) and Del(a) representing the
add and delete effects respectively. As usual, an action a
is applicable to a state s iff Pre(a) ⊆ s, and the applica-
tion of an (applicable) action a to s results in the new state
s′ = (s \ Del(a)) ∪ Add(a).

Given a planning domain, a planning problem is a tuple
(s,A, g), where A ⊆ A is a set of actions, s ∈ S is the ini-
tial state, and g is a set of state facts representing the goal.
A solution plan for a planning problem is a sequence of ac-
tions (a1, . . . , al), where the sequential application of the
sequence starting in state s leads to a goal state s′ where
g ⊆ s′. In this paper, we will view planning problems as
directed graphs where the vertices represent states and the
edges represent possible state transitions. Planning then re-
duces to graph search for a path from the initial state to goal.

Learning to Plan. Planning competitions typically in-
clude many planning domains, and each one provides a se-
quence of planning problems, often in increasing order of
difficulty. Despite the fact that the planners in these com-
petitions experience many problems from the same domain,
to our knowledge none of them have made any attempt to
learn from previous experience in a domain. Rather they
solve each problem as if it were the first time the domain
had been encountered. The ability to effectively transfer do-
main experience from one problem to the next would pro-
vide a tremendous advantage. However, to date, “learning
to plan” systems have lagged behind the state-of-the-art in
non-learning domain-independent planners. The motivation
of this work is to move toward reversing that trend.

In particular, here we focus on developing learning ca-
pabilities within the simple, but highly successful, frame-
work of heuristic state-space search planning. Our goal is to
learn heuristics that can quickly solve problems using beam
search with a small beam width. Given a representative
training set of problems from a planning domain, our ap-
proach first solves the problems using potentially expensive
search (e.g. using a large beam width), guided by an existing
heuristic. These solutions are then used to learn a heuristic
that can guide a small width beam search to the same solu-
tions. The hope is that the learned heuristic will then gener-
alize and allow for the quick solution of new problems that
could not be practically solved before learning.

Heuristic Representation. In this work we will consider
learning heuristic functions that are represented as weighted
linear combinations of features, i.e. H(n) = Σiwi · fi(n)
where n is a search node, fi is a feature of search nodes,
and wi is the weight (importance) of feature fi. In particu-
lar, for each domain we would like to learn a distinct set of
features and their corresponding weights that lead to good
planning performance in that domain. One of the challenges
with this approach is to define a generic feature space from
which features are selected. This space must be rich enough
to capture important properties of a wide range of planning
domains, but also be amenable to searching for those prop-
erties. For this purpose we will draw on prior work (Yoon,
Fern, & Givan 2006) that defined such a feature space, based
on properties of relaxed plans, and described a search ap-
proach for finding useful features. In this investigation, we
will use the features from that work in addition to using the
relaxed-plan length heuristic of FF plan as a feature.

The approach of (Yoon, Fern, & Givan 2006) used a
very simple weight learning method, where weights were
tuned by linear regression to predict the distance-to-goal of
search nodes in the training set. While this approach showed
promise, it is oblivious to the actual performance of the
heuristic when used for search. In particular, even if the
heuristic provides poor guidance for search on the training
problems no further learning will occur. The main objec-
tive of this work is to improve performance by investigat-
ing a more sophisticated weight learning mechanism that is
tightly integrated with the search process, iteratively adapt-
ing the heuristic in response to observed search errors. Be-
low we first describe prior work from structured classifica-
tion upon which our approach is based, and then describe its
adaptation to our setting.

Learning Heuristics for Structured
Classification

Structured classification is the problem of learning a map-
ping from structured inputs to structured outputs. A pro-
totypical example is the problem of part-of-speech tag-
ging where the goal is to learn a mapping from word se-
quences (i.e. sentences) to sequences of part-of-speech tags
that correctly label each word. There has been much re-
cent progress in structured classification including meth-
ods based on condition random fields (Lafferty, McCal-
lum, & Pereira 2001), Perceptron updates (Collins 2002),

and margin optimization (Taskar, Guestrin, & Koller 2003;
Tsochantaridis et al. 2004).

A recent alternative approach (Daume III & Marcu 2005)
views structured classification as a search problem and
learns by optimizing a heuristic for that problem based on
training data. In particular, given a structured input x, the
problem of labeling x by a structured output y is treated
as searching through an exponentially large set of candidate
outputs. For example, in part-of-speech tagging where x is
a sequence of words and y a sequence of tags that label the
words of x, each node in the search space is a pair (x, y′)
where y′ is a partial labeling of the words in x. Learn-
ing corresponds to inducing a heuristic that quickly directs
search to the search node (x, y) where y is the desired out-
put. This framework, known as learning as search optimiza-
tion (LaSO), has demonstrated state-of-the-art performance
on a number of structured classification problems and serves
as the basis for our work.

We note that the original presentation of LaSO (Daume III
& Marcu 2005) formulated the problem as one of learning
the cost function G(n) over search nodes (i.e. distance from
the start node) rather than learning a heuristic H(n). How-
ever, it turns out that this naming convention was somewhat
arbitrary, as no particular constraints were imposed on the
learned function. Thus, the LaSO algorithm can be viewed
as learning heuristic functions, which is the view that we
will follow for the remainder of this paper.

LaSO assumes the availability of a feature vector F (n) =
〈f1(n), . . . , fm(n)〉 that is a function of search node n.
These features are intended to capture properties of search
nodes that might be useful in evaluating their quality. For ex-
ample, in part-of-speech tagging, it is typical to have indica-
tor features that detect when particular words are labeled by
certain tags and also features about the sequential tag struc-
ture, e.g. that count the number of times an article-tag was
followed by a noun-tag in a partial labeling y′. The heuris-
tic is assumed to be a linear combination of these features
H(n) = F (n) · w, where w is a vector of feature weights.
Thus, the main goal of LaSO is to optimize w so that the
learned heuristic is maximally effective.

A key feature of LaSO is that it integrates learning into
the search process, updating the weights whenever a search
error is observed. In order to determine when errors oc-
cur, LaSO assumes the availability of a function solvable(n),
which returns true if and only if the search node n is on a
path to the desired goal node (x, y). For example, in part-
of-speech tagging, if we assume that the search operators are
only able to add labels to currently unlabeled words, then
solvable((x, y′)) will be true iff the partial labeling y′ can
be completed to arrive at the goal output y.

Figure 1 shows the generic integrated learning-search pro-
cedure of LaSO. This procedure can capture various search
strategies, e.g. best-first search and certain types of beam
search by altering the Sort procedure (e.g. only keeping the
top b nodes in the queue). The function CandidateTest(n)
returns true if node n is a possible goal node, i.e. a node that
corresponds to a complete (but possibly incorrect) structured
output y. For example, in part-of-speech tagging, this test
would return true for any search node that assigns a part-

of-speech tag to each word of the input sequence x. Given
an input x the heuristically guided search terminates when a
node is dequeued that passes the candidate test and returns
the corresponding structured output. Thus, LaSO’s learning
objective is to find a set of weights such that, for each train-
ing example, the first dequeued node that passes the candi-
date test corresponds to the desired target output y.

The LaSO procedure takes as input a single training ex-
ample (x, y) along with the current weight vector and re-
turns an updated weight vector. This procedure is used by
cycling through the training examples and iteratively apply-
ing LaSO to each one until the learned heuristic is able to
correctly classify each weight, or a iteration limit is reached.
On each call LaSO begins a search guided by the current
heuristic starting from the initial node (x, null). Whenever
an error is made the weights are updated in order to help
avoid the same error in the future.

There are two possible error conditions as shown in the
first if statement: 1) the current queue does not contain any
solvable nodes, as determined by solvable((x,y’)), and hence
further search is fruitless, and 2) the most recently dequeued
node passes the candidate test but does not correspond to
the desired goal node, meaning that the search would have
terminated with an incorrect output. In either case, the pro-
cedure then computes the set of solvable sibling nodes of n
using the procedure Siblings((x, y′)). The weights are then
updated so that they will tend to assign a better heuristic
value to the sibling nodes rather than the nodes currently in
the queue. By doing this, the hope is that next time through
the search it will be more likely that the heuristic will rank
the siblings higher than the unsolvable nodes, as desired. In
the next section, we will give the Perceptron-based weight
updating rule used in our implementation. Finally, after the
weight update, the queue is set equal to the set of siblings
and the search continues. Note, that when no errors are made
the procedure operates as an ordinary search procedure, ter-
minating with the desired output.

For certain types of weight updates, (Daume III & Marcu
2005) states convergence results that bound the number of
mistakes LaSO will make on the training data under certain
assumptions.

LaSO ((x, y),w)

Q← {(x, null)} // initialize queue

while Q is not empty do
(x, y′)← ReturnFirst(Q)

if (no node in Q is solvable) or
(CandidateTest((x, y′)) and ¬solvable((x, y′))) then

S ← Siblings((x, y′))

w ← Update(w, S, Q)

Q← S

else
if CandidateTest((x, y′)) then return w

next← Expand((x, y′))

Q← Sort((Q \ (x, y′)) ∪ next)

end if
end while

Figure 1: The LaSO algorithm.

Learning Beam-Search Heuristics for
Planning

Given the success of LaSO in the context of structured clas-
sification, it is interesting to consider its applicability to a
wider range of search problems. Here we focus on search in
the context of AI planning. Recall that our “learning to plan”
training set contains planning problems along with example
solutions. We can view this problem as one of structured
classification where we are given a training set {(xi, yi)},
where each xi = (s0, g) is a planning problem and each
yi = (s0, s1, ..., sT) is a sequence of states that solves the
corresponding planning problem. Given this view, we can
consider applying LaSO in order to learn a heuristic for con-
trolling forward state-space search. That is, use the LaSO
procedure to learn a heuristic that guides search toward the
specific plan given by yi for each xi.

While in concept it is straightforward to map planning to
the LaSO framework, it is not so obvious that the approach
will work well. This is because the search problems arising
in AI planning have very different characteristics compared
to those tackled by LaSO so far. Most notably, there are
typically a large number of good (even optimal) solutions to
any given planning problem. These solutions may take very
different paths to the goal or may result by simply reorder-
ing the steps of a particular plan. For example, in the Blocks
world, in any particular state, there are generally many pos-
sible good next actions as it does not matter which order the
various goal towers are constructed. Despite the possibility
of many good solutions, LaSO will attempt to learn a heuris-
tic that strictly prefers the training-set solutions over other
equally good solutions that are not in the training set. This
raises the potential for the learning problem to be impossible
to solve or very difficult since many of the other good solu-
tions to xi may be inherently identical to yi. In such cases,
it is simply not clear whether the weights will converge to a
good solution or not.

One approach to overcoming this difficulty might be to
include many or all possible solutions in the training set.
However, in general, this will be impractical due to the enor-
mous number of good solutions. In this work, we simply
note this practical concern and empirically evaluate the ap-
proach. Below we describe a specific instantiation of LaSO
used for our planning experiments. Our instantiation is not a
precise refinement of the original LaSO as described in the
previous section. Rather, we use a slightly modified version
of the procedure that incorporates a form of beam search that
is not captured by the original procedure and that we found
more useful in the context of planning. We will refer to the
modified procedure as LaSO∗.

Beam search. In beam search, a beam B which contains b
nodes is generated at each step of the search process, where
b is the beam size. At each step, all of the nodes on the
current beam are expanded and the top b children, as scored
by the heuristic, are taken to be the next beam. This process
continues until a goal node appears on the beam, at which
point a solution plan has been found. When the beam size
is small, many nodes in the search space are pruned away,
often resulting in the inability to find a solution or finding

very sub-optimal solutions. When the beam size increases,
the quality of the solutions tend to improve, however, both
the time and space complexity increases linearly with the
beam size, leading to practical limitations. The goal of our
work is to learn a domain-specific heuristic that allows for
beam search with small b to replicate the result of using a
large b. This can be viewed as a form of speed-up learning.

Discriminative Learning. The input to our heuristic
learner is a set {(xi, yi)} of pairs, where xi = (s0, g) is
a training problem from the target planning domain and
yi = (s0, s1, . . . , sT) is a state sequence corresponding to
a solution plan for xi. Intuitively, our training procedure
will attempt to find weights such that for each problem the
j’th state in the solution is contained in the j’th beam of
the search. A search error is said to have occurred if this is
ever not the case. Figure 2 gives pseudo-code for the overall
heuristic learning approach. The top-level procedure repeat-
edly cycles through the training set passing each example
to LaSO∗ to arrive at updated weights. The procedure ter-
minates when the weights remain unchanged after cycling
through all examples or a maximum number of iterations is
reached.

Given a training example (x, y), LaSO∗ conducts a beam
search starting with the initial beam {(xi, (s0))}, i.e. a sin-
gle search node with an empty plan. After generating beam
j of the search, if n∗ = (xi, (s0, s1, . . . , sj)) is not on the
beam then a search error is said to have occurred. In this
case, we update the weights in a way that makes n∗ more
preferred by the heuristic, ideally preferred enough to re-
main on the beam next time through the search. In this work,
we use the Perceptron weight updating rule, which was one
of the updates proposed in (Daume III & Marcu 2005)

w = w + α ·
(∑

n∈B F (n)
|B| − F (n∗)

)

where 0 < α ≤ 1 is a learning rate parameter, F (n) is the
feature vector of search node n and B is the current beam.
Intuitively this update rule moves the weights in a direction
that decreases the heuristic value (increase the preference) of
the desired search node n∗ and increases the heuristic value
for the nodes in the beam. After the weight update, the beam
is replaced by the single search node n∗ and the search con-
tinues. Note that each call to LaSO∗ is guaranteed to ter-
minate in T search steps, generating training examples as
necessary.

Convergence of LaSO*
We now prove that under certain assumptions LaSO* is
guaranteed to converge in a finite number of iterations to
a set of weights that solves all of the training examples. The
proof is a simple generalization of the one used to prove con-
vergence of Perceptron updates for structured classification
(Collins 2002).

Consider a set of training problems (xi, yi), where xi =
(s0, g) and yi = (s0, s1, . . . , sT). For each (xi, yi) we de-
note by n∗ij = (xi, (s0, . . . , sj)) the node on the desired
search path at depth j for example i. Also let Dij be the
set of all nodes that can be reached in j search steps from

HeuristicLearn ({(xi, yi)}, b)

w ← 0

repeat until w is unchanged or a large number of iterations

for every (xi, yi)

LaSO∗((xi, yi), w)

return w

LaSO∗ ((x, y), w, b)

// x is a planning problem (s0, g)

// y is a solution trajectory (s0, s1, . . . , sT)

// w current weight vector

B ← {(x, (s0))} // initial beam

for j = 0, . . . , T − 1

B ← BeamExpand(B, w, b)

n∗ ← (x, (s1, . . . , sj+1)) // desired node

if n∗ /∈ B then
w ← Update(w, B, n∗)

B ← {n∗}

BeamExpand (B, w, b)

candidates← {}
for every n ∈ B

candidates← candidates∪ Successors(n)

for every n ∈ candidates

H(n)← w · F (n) // compute heuristic score of n

return b nodes in candidates with lowest heuristic value

Figure 2: The discriminative learning algorithm.

n∗i0. That is, Dij is the set of all possible nodes that could
be in the beam after j beam updates. In our result, we will
let R be a constant such that

∀i, j,∀n ∈ Dij , ‖Φ(n) − Φ(n∗ij)‖ ≤ R.

where Φ(n) is the feature vector of node n.
As usual for Perceptron-style updates, our results will

be stated in terms of the existence of a weight vector that
achieves a certain margin on the training set. Here we use
a notion of margin that is suited to our beam search frame-
work. As defined below a beam margin is a triple (b′, δ1, δ2)
where b′ is a non-negative integer, and δ1, δ2 ≥ 0.

Definition 1 (Beam Margin). A weight vector w has beam
margin (b′, δ1, δ2) on a training set {(xi, yi)} if for each i, j
there is a set D′ij ⊆ Dij of size at most b′ such that

∀n ∈ Dij − D′ij , w · Φ(n) − w · Φ(n∗ij) ≥ δ1 and,

∀n ∈ D′ij , δ1 > w · Φ(n) − w · Φ(n∗ij) ≥ −δ2

According to this definition a weight vector w has beam
margin (b′, δ1, δ2) if at each search depth it ranks the target
node n∗ij better than most other nodes by a margin of at least

δ1, and ranks at most b′ nodes better than n∗ij by a margin
no greater than δ2. Whenever this condition is satisfied we
are guaranteed that a beam search with width b > b′ using
weights w will solve all of the training problems. The case
where b′ = 0 corresponds to the more typical definition of
margin, where the target is required to be ranked higher than
all other nodes. By considering the case where b′ > 0 we
can show convergence in cases where no such “dominating”

weight vector exists, yet there are weight vectors that allow
search to correctly solve the training problems.

Theorem 1. If there exists a weight vector w, such that
‖w‖ = 1 and w has beam margin (b′, δ1, δ2) on the training

set, then for any beam width b >
(
1 + δ2

δ1

)
b′, the number of

mistakes made by LaSO* is bounded by
(

bR
δ1(b−b′)−δ2b′

)2

.

The proof is in the appendix. Notice that when b′ = 0,
i.e. there is a dominating weight vector, the mistake bound

reduces to
(

R
δ1

)2

, which does not depend on the beam width

and matches the result stated in (Daume III & Marcu 2005).
This is also the behavior when b >> b′. In the case when
δ1 = δ2 and we use the minimum beam width allowed by

the theorem b = 2b′+1, the bound is
(

(2b′+1)R
δ1

)2

, which is

a factor of (2b′ + 1)2 larger than when b >> b′. Thus, this
result points to a trade-off between the mistake bound and
computational complexity of LaSO*. That is, the computa-
tional complexity of each iteration increases linearly with
the beam width, but the mistake bound decreases as the
beam size becomes large. This agrees with the intuition that
the more computation time we are willing to put into search
at prediction time, the less we need to learn.

Experimental Results
We now present experimental results in three benchmark
STRIPS domains: Blocks world, Pipesworld, and PSR. In
each domain, we set a time cut-off of 30 CPU minutes and
considered a problem to be unsolved if a solution is not
found within the cut-off. Given a set of training problems
we generated solution trajectories by running both FF and
beam search with different beam sizes and then taking the
best solution found as the training trajectory. For the blocks
world, we used a set of features learned in previous work
(Yoon, Fern, & Givan 2005; Fern, Yoon, & Givan 2003)
and for Pipesworld and PSR we used the features learned
in (Yoon, Fern, & Givan 2006). In all cases, we include the
heuristic computed by FF as one of the features.

Our procedure described in the previous section was then
used to learn weights for these features using a beam width
of 10 and a learning rate of 0.01. In all cases, LaSO* was
run for 1000 iterations or until the weights didn’t change.
The learning times varied across domains, depending on the
number of predicates and actions, and the length of solution
trajectories. The average time for processing a single prob-
lem in a single iteration was about 10 seconds for PSR and
less than 1 seconds for Blocks world and Pipesworld.

Domain Details. Our Blocks world problems were gen-
erated by the state generator provided by John Slaney. Four
operations are used in its representation: stack a block onto
a block, unstack a block from a block, put down a block
onto the table, and pick up a block from the table. Thirty
problems, including twenty with 10 blocks and ten with 20
blocks, were used as training data. The testing data includes
10 problems with 20 blocks, 10 problems with 30 blocks,
and 10 problems with 40 blocks. There are 15 features in
this domain including FF’s relax-plan-length heuristic.

Both Pipesworld and PSR are taken from the fourth in-
ternational planning computation (IPC4). Each domain in-
cluded 50 problems, roughly ordered by difficulty. We used
the first 15 problems for training and the remaining 35 prob-
lems for testing. For Pipesworld and PSR there were 35 and
54 features respectively including FF’s relaxed-plan-length
heuristic.

Performance Across Beam Sizes. Figures 3, 4, and
5 give the performance of beam search in each domain
for various beam sizes. The columns correspond to three
different algorithms: LEN - beam search using FF’s re-
laxed plan length heuristic, LaSO∗ - beam search using the
heuristic learned using LaSO∗, and LR - beam search using
the heuristic learned from linear regression as was done in
(Yoon, Fern, & Givan 2006). For each algorithm, each row
corresponds to a particular beam width and lists the number
of solved problems and the averaged plan length of those
solved problems.

In general, for all algorithms (learning and non-learning)
we see that as the beam size increases the number of solved
problems increases and solution lengths improve. However,
after some point the number of solved problems typically
decreases. This behavior is typical for beam search, since as
the beam increases there is a greater chance of not pruning a
solution trajectory, but the computational time and memory
demands increase. Thus, for a fixed time cut-off we expect
a decrease in performance. Also note that it is not necessary
true that the plan lengths are strictly non-decreasing with
beam width. With larger beam widths the number of can-
didates for the next beam increases, making it more likely
for the heuristic to get confused by “bad” states. This is also
one possible reason why performance tends to decrease with
larger beam sizes.

LaSO∗ Versus No Learning. Compared to LEN the
discriminatively learned heuristic LaSO∗ tended to signifi-
cantly improve the performance of beam search, especially
for small beam sizes. For example, Figure 3 shows that,
with beam size 1, LaSO∗ solves twice as many problems
as LEN in Blocks world. The average plan length has also
been reduced significantly, though it is still far from opti-
mal. As the beam size increases the gap between LaSO∗
and LEN decreases but LaSO∗ still solves more problems
with comparable solution quality. In Pipesworld, Figure 4
shows that LaSO∗ has the best performance with beam size
5, solving 12 more problems than LEN. As the beam size
increases, again the performance gap decreases, but LaSO∗
consistently solves more problems than LEN. We see that
LEN does outperform LaSO∗ in terms of solution length for
large beam sizes. One possible reason for this is that LaSO∗
solves more problems than LEN and those additional prob-
lems may have large solution lengths that are incorporated
into the average for LaSO∗ but not LEN. The trends are sim-
ilar for the PSR domain, however, for the largest beam sizes
both methods solve very few problems with LEN solving
slightly more.

All the experimental results show the advantage of
LaSO∗, solving more problem with smaller beam size than
LEN. Because of the smaller beam size, both the time cost
and memory cost are reduced significantly.

Comparing LaSO with Linear Regression. To compare
with the linear regression approach of (Yoon, Fern, & Givan
2005) we learned weights using linear regression. For every
training problem Pi and its solution Ti = (s0, s1, . . . , sT),
we generated a regression training set (F (sj), T−j−h(sj))
for each sj , j = 0, 1, . . . , T−1, where h(sj) is FF’s relaxed-
plan-length heuristic for state sj . Here, T − j is the distance
from the state sj to the goal state sT , computed from the
training trajectory. Thus, T − j − h(sj) is the difference
between the actual distance and FF’s heuristic. We solve the
linear regression problem using the function LinearRegres-
sion in the machine learning toolbox Weka. The final lin-
ear regression heuristic is a sum of FF’s heuristic and the
learned function. The results for this procedure are shown
in the columns labeled LR.

In Figure 3, LR solves fewer problems than LaSO∗ with
beam sizes smaller than 100 but solves more problems than
LaSO∗ with beam size larger than 100. For Pipesworld,
LaSO∗ always solves more problems than LR. In PSR, Fig-
ure 5 shows that LaSO∗ is better than LR with beam size 5,
but becomes slightly worse as the beam size increases.

These preliminary results indicate that discriminative
learning can significantly improve over non-discriminative
learning and is never much worse. Indeed, there appears to
be utility in integrating the learning process directly in the
search procedure.

Best First Search results. While our heuristic was
learned for the purpose of controlling beam search we con-
ducted one more experiment in each domain where we used
the heuristics to guide Best First Search (BFS). We include
these results primarily because BFS was the search proce-
dure used to evaluate LR in (Yoon, Fern, & Givan 2006).
These results are shown in the bottom row of each table.

In Blocks world, LaSO∗ outperforms the other two algo-
rithms. LaSO∗ solves 23 problems while FF’s relaxed-plan-
length heuristic only solves 5 problems. LEN is the best one
in Pipesworld and LR works best in PSR. But the perfor-
mance of LaSO∗ is very close to the best planner in these
two domains. These results indicate that the advantage of
the discriminatively learned heuristic over regression is not
just restricted to beam search, but appears to extend to other
search approaches. Investigating variants of LaSO for BFS
and other search strategies is an important future direction.

Problems solved Plan length
b LEN LaSO∗ LR LEN LaSO∗ LR
1 13 25 11 6022 2444 4254
5 21 26 19 3094 939 1767
10 22 25 19 2589 1035 368
20 23 27 22 921 671 227
50 20 27 19 522 488 102

100 19 24 20 290 218 157
200 20 21 26 192 241 99
500 17 17 23 101 122 84
1000 16 19 20 100 103 68
BFS 5 23 13 97 167 97

Figure 3: Results on Blocks world.

Problems solved Plan length
b LEN LaSO∗ LR LEN LaSO∗ LR
1 11 13 8 375 1739 3888
5 16 28 19 1467 1409 1300

10 17 26 21 2192 740 800
20 17 27 22 161 173 885
50 18 27 21 264 84 4111

100 18 27 21 83 72 165
200 20 26 20 46 74 108
500 21 25 21 39 67 74

1000 20 22 20 31 52 38
BFS 15 11 7 48 46 46

Figure 4: Results on Pipesworld.

Problems solved Plan length
b LEN LaSO∗ LR LEN LaSO∗ LR
1 0 0 0 - - -
5 0 14 9 - 275 228
10 1 12 13 516 194 160
20 7 12 17 374 183 146
50 13 16 16 154 105 109
100 13 9 13 114 86 86
200 8 5 4 71 73 70
500 4 2 2 55 53 48
1000 1 1 1 39 39 43
BFS 13 18 21 100 119 124

Figure 5: Results on PSR.

Summary and Future Work
This work began with the question of whether the LaSO ap-
proach to structured classification could be usefully applied
in the context of AI planning. We discussed the qualita-
tive differences between the search problems in AI planning
compared to what LaSO has been applied to so far, and the
potential difficulties that might arise. Nevertheless, our pre-
liminary investigation in three benchmark planning domains
suggests that our LaSO variant is 1) able to significantly im-
prove over the heuristic of FF plan, and 2) improve over
the regression based learning method recently proposed in
(Yoon, Fern, & Givan 2006). Thus, we conclude that the ap-
proach has good promise as a way of learning heuristics to
control forward state-space search planners, a problem that
to date has received little attention.

Currently our approach assumes a provided set of fea-
tures. Here we used features that were discovered by pre-
vious learning-to-plan research. In future work, we plan to
extend the method to allow for feature induction within the
learning process. In particular, we plan to develop a fea-
ture language that allows us to capture arbitrary constraints
on actions and states, compared to the current feature lan-
guage that only captures properties of states. The constraints
can then be combined in a “soft” way by learning weights
that combine them appropriately. Prior work on learning
to plan (Khardon 1996; Huang, Selman, & Kautz 2000;
Fern, Yoon, & Givan 2003) has shown that action con-
straints (e.g. don’t pick-up a “solved” block) are often an
effective form of knowledge for planning, while other work
demonstrates the potential benefits of state constraints (e.g.
the number of solved blocks should monotonically increase)
(Yoon, Fern, & Givan 2005). We believe that the LaSO ap-
proach will provide a principled framework for learning both
types of constraints and learning to weigh them against each
other.

Another important direction of future work is to investi-
gate the sensitivity of the LaSO approach to the particular
solutions provided in the training data. In addition, under-
standing more general conditions under which the approach
is guaranteed to converge is of interest. Currently the notion
of beam margin provides a sufficient but not necessary con-
dition for a set of weights to successfully solve the training
problems. That is, there are cases where a set of weights ex-
ists that solve the training problems, yet our mistake bound
does not apply. The question of convergence in such cases
is left as future work.

Also of interest is to investigate the use of plan analysis
in LaSO. For example, one might use plan analysis to con-
vert the totally ordered plans in the training data to partially-
order plans. LaSO could then be modified so that it only
considers a search step to be in error if it violates the partial
ordering. We also plan to consider learning heuristics for
other search strategies. Of particular interest to us is the in-
tegration of beam search and limited discrepancy backtrack-
ing as described in (Furcy & Koenig 2005). Finally, apply-
ing the framework to other search spaces in planning, such
as partial order planning, and more general planning formu-
lations, e.g. probabilistic planning, are important directions.

Acknowledgements
We would like to thank Sungwook Yoon for helpful discus-
sions and for providing critical infrastructure. This work
was supported by an NSF award IIS-0546867 and DARPA
award FA8750-05-2-0249. Views and conclusions con-
tained in this document are those of the authors and do not
necessarily represent the official opinion or policies, either
expressed or implied, of the US government or of DARPA.

Appendix. Proof of Theorem 1
Proof. Let wk be the weights before the k′th mistake is
made. Then w1 = 0. Suppose the k′th mistake is made
when the beam B at depth j does not contain the target node
n∗ = n∗ij . The occurrence of the mistake indicates that, for

n ∈ B, wk · Φ(n∗) > wk · Φ(n), which lets us derive an
upper bound for ‖wk+1‖2.

‖wk+1‖2 = ‖wk +
∑

n∈B Φ(n)
b

− Φ(n∗)‖2

= ‖wk +
∑
n∈B

Φ(n) − Φ(n∗)
b

‖2

= ‖wk‖2 + 2wk ·
∑
n∈B

Φ(n) − Φ(n∗)
b

+ ‖
∑
n∈B

Φ(n) − Φ(n∗)
b

‖2

≤ ‖wk‖2 + ‖
∑
n∈B

Φ(n) − Φ(n∗)
b

‖2

≤ ‖wk‖2 + R2

where the first equality follows from the definition of the
perceptron-update rule and the first inequality follows be-

cause wk · (Φ(n) − Φ(n∗)) < 0 for each n ∈ B. Using this
upper-bound we get by induction that

‖wk+1‖2 ≤ kR2

Next we derived a lower bound for w · wk+1. We will
denote by B′ ⊆ B the set of nodes in the beam such that
δ1 > w · (Φ(n)−Φ(n∗)) ≥ −δ2. By the definition of beam
margin |B′| ≤ b′.

w · wk+1 = w · wk + w ·
∑
n∈B

Φ(n) − Φ(n∗)
b

= w · wk + w ·
∑

n∈B−B′

Φ(n) − Φ(n∗)
b

+ w ·
∑

n∈B′

Φ(n) − Φ(n∗)
b

≥ w · wk + w ·
∑

n∈B−B′

Φ(n) − Φ(n∗)
b

− b′δ2

b

≥ w · wk +
(b − b′)δ1

b
− b′δ2

b

By induction, we get that w ·wk+1 ≥ k (b−b′)δ1−b′δ2
b . Com-

bining this result with the above upper bound on ‖wk+1‖
and the fact that ‖w‖ = 1 we get that

1 ≥ w · wk+1

‖w‖‖wk+1‖ ≥ k
(b − b′)δ1 − b′δ2

b
√

kR

Under the theorem’s assumption that b >
(
1 + δ2

δ1

)
b′ we

can infer that δ1(b− b′) > δ2b
′ and rearrange this inequality

to bound the number of mistakes k by

k ≤
(

bR

δ1(b − b′) − δ2b′

)2

which completes the proof.

References
Bonet, B., and Geffner, H. 1999. Planning as heuristic
search: New results. In ECP, 360–372.

Boyan, J., and Moore, A. 2000. Learning evaluation func-
tions to improve optimization by local search. Journal of
Machine Learning Research 1:77–112.

Buro, M. 1998. From simple features to sophiscated eval-
uation functions. In van den Herik, H. J., and Iida, H.,
eds., Proceedings of the First International Conference on
Computers and Games ((CG)-98), volume 1558, 126–145.
Tsukuba, Japan: Springer-Verlag.

Collins, M. 2002. Discriminative training methods for hid-
den Markov models: Theory and experiments with the per-
ceptron algorithm. In Conf. on Empirical Methods in NLP.

Daume III, H., and Marcu, D. 2005. Learning as search op-
timization: Approximate large margin methods for struc-
tured prediction. In International Conference on Machine
Learning (ICML).

Fern, A.; Yoon, S.; and Givan, R. 2003. Approximate
policy iteration with a policy language bias. In Proceedings
of the 16th Conference on Advances in Neural Information
Processing.

Furcy, D., and Koenig, S. 2005. Limited discrepancy beam
search. In International Joint Conference on Artificial In-
telligence (IJCAI).

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:263–302.

Huang, Y.-C.; Selman, B.; and Kautz, H. 2000. Learning
declarative control rules for constraint-based planning. In
Proceedings of the 17th International Conference on Ma-
chine Learning, 415–422. Morgan Kaufmann, San Fran-
cisco, CA.

Khardon, R. 1996. Learning to take actions. In AAAI/IAAI,
Vol. 1, 787–792.

Lafferty, J.; McCallum, A.; and Pereira, F. 2001. Condi-
tional random fields: Probabilistic models for segmenting
and labeling sequence data. In International Conference on
Machine Learning, 282–289.

Nguyen, X.; Kambhampati, S.; and Nigenda, R. S. 2002.
Planning graph as the basis for deriving heuristics for plan
synthesis by state space and CSP search. Artificial Intelli-
gence 135(1-2):73–123.

Taskar, B.; Guestrin, C.; and Koller, D. 2003. Max-margin
markov networks. In Neural Information Processing Sys-
tems Conference.

Tsochantaridis, I.; Hofmann, T.; Joachims, T.; and Altun,
Y. 2004. Support vector machine learning for interdepen-
dent and structured output spaces. In International Confer-
ence on Machine Learning.

Yoon, S.; Fern, A.; and Givan, R. 2005. Learning mea-
sures of progress for planning domains. In Proceedings of
the Twentieth Conference on Uncertainty in Artificial Intel-
ligence.

Yoon, S.; Fern, A.; and Givan, R. 2006. Learning heuristic
functions from relaxed plans. In International Conference
on Automated Planning and Scheduling (ICAPS).

Zhang, W., and Dietterich, T. G. 1995. A reinforcement
learning approach to job-shop scheduling. In Proceedings
of the International Joint Conference on Artificial Intel-
lience.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 2
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

