
PAC Reinforcement Learning Bounds for RTDP and Rand-RTDP

Alexander L. Strehl
Computer Science Dept.

Rutgers University
Piscataway, NJ 08854 USA

strehl@cs.rutgers.edu

Lihong Li
Computer Science Dept.

Rutgers University
Piscataway, NJ 08854 USA

lihong@cs.rutgers.edu

Michael L. Littman
Computer Science Dept.

Rutgers University
Piscataway, NJ 08854 USA
mlittman@cs.rutgers.edu

Abstract

Real-time Dynamic Programming (RTDP) is a popu-
lar algorithm for planning in a Markov Decision Pro-
cess (MDP). It can also be viewed as a learning al-
gorithm, where the agent improves the value function
and policy while acting in an MDP. It has been empir-
ically observed that an RTDP agent generally performs
well when viewed this way, but past theoretical results
have been limited to asymptotic convergence proofs.
We show that, like true learning algorithms E3 and R-
MAX, a slightly modified version of RTDP satisfies a
Probably Approximately Correct (PAC) condition (with
better sample complexity bounds). In other words, we
show that the number of timesteps in an infinite-length
run in which the RTDP agent acts according to a non-
ε-optimal policy from its current state is less than some
polynomial (in the size of the MDP), with high proba-
bility. We also show that a randomized version of RTDP
is PAC with asymptotically equal sample complexity
bounds, but has much less per-step computational cost,
O(ln(S) ln(SA) + ln(A)), rather than O(S + ln(A))
when we consider only the dependence on S, the num-
ber of states and A, the number of actions of the MDP.

Introduction
The Real-Time Dynamic Programming (RTDP) algorithm
was introduced by Barto et al. (1995). In that work, it was
shown that RTDP generalizes a popular search algorithm,
Learning Real Time A∗ (LRTA∗) (Korf, 1990). Thus, RTDP
is important to the reinforcement learning (RL) commu-
nity as well as the heuristic search community. New anal-
yses and variations of RTDP, such as Labeled RTDP and
Bounded RTDP, continue to be studied (Bonet & Geffner,
2003; McMahan et al., 2005).

With respect to standard RL terminology, RTDP is, by
definition, strictly a “planning” algorithm because it receives
as input the MDP (rewards and transitions) it will act upon.
A “learning” algorithm, as typically defined, doesn’t re-
ceive these quantities as input. However, as noted by Barto
et al. (1995), RTDP can be thought of as a learning algo-
rithm. The form of RTDP is similar to many learning algo-
rithms in that an agent following RTDP travels through the

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

MDP in one long trajectory and updates its action-values (Q-
value estimates) for those state-actions that it actually vis-
its. It also displays complex behavior that could arguably
be considered “learning”1. Traditional planning algorithms,
such as value iteration, tend to solve an MDP by iterating
through all the state-action pairs many times, rather than by
following a valid trajectory through the MDP. Hence, RTDP
can be considered something in between a learning algo-
rithm and a planning algorithm, and it represents an impor-
tant connection between the learning and planning commu-
nities in RL.

The first result of our paper is that RTDP has very nice
theoretical properties when analyzed in a PAC-like frame-
work (as defined in a later section). We prove that a slightly
modified version of RTDP, when run forever in any MDP,
will make only a polynomial number of mistakes (non-ε-
optimal choices) with high probability. We formalize this
notion of sample complexity below. This result doesn’t im-
ply convergence of its action-value estimates2.

To the best of our knowledge, the only related theoretical
result is that the action-value estimates, Q(s, a), computed
by RTDP converge to Q∗(s, a) in the limit (Barto et al.,
1995; Bertsekas & Tsitsiklis, 1996). Instead, we would
like a guarantee on RTDP’s performance after only finitely
many interactions with the environment. Furthermore, we
are not as interested in the convergence of RTDP’s action-
value estimates as we are in the performance of its behavior
(the value of the agent’s policy). For instance, in the work
of Bonet and Geffner (2003), it is empirically shown that
RTDP’s action-value estimates may take a long time to con-
verge to their optimal values. This finding is due to the fact
that some states may be difficult to reach and RTDP only up-
dates the value estimates for states as they are reached by the
agent. The authors create a new algorithm, Labeled RTDP,
that exhibits a better convergence rate (empirically). How-
ever, when the actual performances of the algorithms were
compared as measured by average cost to the goal (Figure 3
of Bonet and Geffner (2003)), RTDP’s performance was at
least as good as Labeled RTDP’s. This observation suggests

1See Section 3.4 of Barto et al. (1995) for a related discussion.
2In fact, the action-value estimates of our modified version of

RTDP won’t converge to the optimal action-values Q∗. We leave it
as an important open problem whether the original RTDP algorithm
is PAC-MDP or not.

that the slow convergence rate of RTDP may not negatively
impact its resulting behavior. Therefore, we have chosen to
directly analyze the sample complexity of RTDP rather than
the convergence rate of its action-value estimates.

One of RTDP’s attractive features is that by only updat-
ing value estimates for the states reached by an agent in the
MDP, it focuses computation on relevant states. In fact, each
step (action choice) of the agent requires only a single Bell-
man backup, a computation that, in the worst-case, scales
linearly with the number of states. Although this method is
a significant improvement over more expensive operations
such as value iteration, it can still be costly in large en-
vironments. Our second result is to provide an algorithm,
called Rand-RTDP that has similar PAC-like learning guar-
antees, but whose computation per-step scales at a rate of
O(ln2(S)), when we consider its dependence on S. The key
insight is that the single full-update of RTDP can be closely
approximated by an average of a few randomly chosen sam-
ple updates. This idea has been mentioned in Bertsekas and
Tsitsiklis (1996) and also analyzed in Kearns et al. (1999).

Definitions and Notation
This section introduces the Markov Decision Process nota-
tion used throughout the paper; see Sutton and Barto (1998)
for an introduction. An MDP M is a five tuple
〈S, A, T, R, γ〉, where S is the state space, A is the action
space, T : S × A × S → [0, 1] is a transition function,
R : S × A → [0, 1] is a reward function, and 0 ≤ γ < 1 is
a discount factor on the summed sequence of rewards. We
also let S and A denote the number of states and the num-
ber of actions, respectively. From state s under action a,
the agent receives a random reward r, which has expecta-
tion R(s, a), and is transported to state s′ with probability
T (s′|s, a). A policy is a strategy for choosing actions. We
assume (unless otherwise noted) that rewards all lie between
0 and 1. A stationary policy is one that produces an ac-
tion based on only the current state. For any policy π, let
V π

M (s) (Qπ
M (s, a)) denote the discounted, infinite-horizon

value (action-value) function for π in M (which may be
omitted from the notation) from state s. If T is a posi-
tive integer, let V π

M (s, T) denote the T -step value function
of policy π. Specifically, V π

M (s) = E[
∑∞

j=1 γj−1rj] and

V π
M (s, T) = E[

∑T
j=1 γj−1rj] where [r1, r2, . . .] is the re-

ward sequence generated by following policy π from state
s. These expectations are taken over all possible paths the
agent might follow. The optimal policy is denoted π∗ and
has value functions V ∗

M (s) and Q∗
M (s, a). Note that a policy

cannot have a value greater than 1/(1− γ).

PAC-MDP

In this section, we provide the formal definition we use to
characterize a learning algorithm as efficient.

Any algorithmA that guides an agent to act based on only
its history (trajectory through the MDP), such as Q-learning
(Watkins & Dayan, 1992) and R-MAX (Brafman & Tennen-
holtz, 2002), can be viewed as simply some non-stationary
policy. Thus, each action the agent takes is the result of

executing some policy. Suppose we stop the algorithm af-
ter its (t − 1)st action, and let us denote the agent’s pol-
icy by At. This policy has a well-defined value function
V At(st), where st is the current (tth) state reached by the
agent. We say it is ε-optimal, for any ε, from its current
state, if V ∗(st)− V At(st) ≤ ε.

Now, suppose that the algorithm A is run for an infinite-
length trajectory (run forever in the MDP, starting from an
arbitrary initial state). Kakade (2003) defines the sample
complexity of exploration (sample complexity, for short)
of A to be the number of timesteps t such that the non-
stationary policy at time t, At, is not ε-optimal from the
current state, st, at time t (formally V At(st) < V ∗(st)− ε).
We believe this definition captures the essence of measur-
ing learning. An algorithm A is then said to be an efficient
PAC-MDP (Probably Approximately Correct in Markov
Decision Processes) algorithm if, for any ε and δ, the per-
step computational complexity and the sample complexity
of A is less than some polynomial in the relevant quantities
(S, A, 1/ε, 1/δ, 1/(1− γ)), with probability at least 1 − δ.
It is simply PAC-MDP if we relax the definition to have
no computational complexity requirement. The terminol-
ogy, PAC, is borrowed from Valiant (1984), a classic paper
dealing with classification.

Two Algorithms
In this section, we present two learning/planning algorithms.
Both require as input a model, including the transition and
reward functions, of an MDP. In addition, we assume that
the learner receives S, A, and γ as input. The following
experiment is then conducted. The agent always occupies
a single state s of the MDP M . The algorithm is told this
state and must compute an action a. The agent receives a
reward r (which our algorithms completely ignore) and is
then transported to another state s′ according to the reward
and transition functions. This procedure then repeats for-
ever. The first state occupied by the agent may be chosen
arbitrarily. We define a timestep to be a single interaction
with the environment, as described above.

Since we are interested in algorithms that satisfy the PAC-
MDP guarantee, we also allow the learning algorithm to re-
ceive two additional inputs, ε and δ, both real numbers be-
tween zero and one, exclusively.

Both algorithms maintain action-value estimates, Q(s, a)
for each state-action pair (s, a). At time t = 1, 2, . . .,
let Qt(s, a) denote the algorithm’s current action-value es-
timate for (s, a) and let Vt(s) denote maxa∈A Qt(s, a).
The learner always acts greedily with respect to its esti-
mates, meaning that if st is the tth state reached, a′ :=
argmaxa∈A Qt(st, a) is the next action chosen. Addition-
ally, both algorithms make use of “optimistic initialization”,
that is, Q1(s, a) = 1/(1 − γ) for all (s, a). The main dif-
ference between the two algorithms is how the action-values
are updated on each timestep.

The RTDP Algorithm
Real-time dynamic programming (RTDP) is an algorithm
for acting in a known MDP that was first studied by Barto
et al. (1995).

Suppose that at time t ≥ 1, action a is performed from
state s. Then, the following update is performed:

Qt+1(s, a) = R(s, a) + γ
∑
s′∈S

T (s′|s, a)Vt(s
′). (1)

We analyze a modified version of RTDP, which has an
additional free parameter, ε1 ∈ (0, 1). In the analysis sec-
tion (Proposition 2), we will provide a precise value for ε1
in terms of the other inputs (S, A, ε, δ, and γ) that guaran-
tees the resulting algorithm is PAC-MDP. Our modification
is that we allow the update, Equation 1, to take place only if
the new action-value results in a decrease of at least ε1. In
other words, the following equation must be satisfied for an
update to occur:

Qt(s, a)−

(
R(s, a) + γ

∑
s′∈S

T (s′|s, a)Vt(s
′)

)
≥ ε1. (2)

Otherwise, no change is made and Qt+1(s, a) = Qt(s, a).
For all other state-action pairs (s′, a′) �= (s, a), the action-
value estimate is left unchanged, that is, Qt+1(s

′, a′) =
Qt(s

′, a′).
The only difference between our modified version of

RTDP and the standard version is that we enforce an update
condition (Equation 2). The main purpose of this change is
to bound the number of updates performed by RTDP, which
is required for our analysis that RTDP is PAC-MDP. It also
has the interesting side effect of reducing the overall compu-
tational cost of running RTDP. Without the update condition,
RTDP will continually refine its value-function estimates,
which involves infinitely many Bellman backups (compu-
tations of Equation 1). With the update condition, RTDP
stops updating its estimates once they are “close” to opti-
mal. By “close” we mean sufficient to obtain an ε-optimal
policy. Hence, the modified version will perform only a fi-
nite number of Bellman backups. A similar modification is
described by Bonet and Geffner (2003).

The Rand-RTDP Algorithm

We now introduce a randomized version of RTDP, called
Rand-RTDP. In addition to action-value estimates, Rand-
RTDP maintains a quantity LAU(s, a), for each (s, a), which
stands for “last attempted update”. Let LAUt(s, a) denote the
value of LAU(s, a) at time t (meaning immediately before the
tth action is chosen). This quantity stores the timestep when
(s, a) was last encountered and an “attempted update” oc-
curred (as defined below). The algorithm also has two free
parameters, ε1 ∈ (0, 1) and a positive integer m. In the
analysis section (Proposition 3) we provide precise values
for these parameters in terms of the other inputs (S, A, ε, δ,
and γ) that guarantee the resulting algorithm is PAC-MDP.

Suppose that at time t ≥ 1, action a is performed from
state s, and LAUt(s, a) is less than or equal to the last
timestep for which any action-value estimate was updated
(meaning some action-value estimate has changed on or
since the last attempted update of (s, a)). We call such a
timestep an attempted update. Consider the following up-

date:

Qt+1(s, a) =
1

m

m∑
i=1

(ri + γVt(si)) + ε1, (3)

where s1, . . . , sm are m random draws from T (·|s, a), the
transition distribution for (s, a) and r1, . . . , rm are m ran-
dom draws from the reward distribution for (s, a) (with
mean R(s, a)). We allow the update, Equation 3, to take
place only if the new action-value results in a decrease of
at least ε1. In other words, the following equation must be
satisfied for a successful update to occur:

Qt(s, a)−
1

m

m∑
i=1

(ri + γVt(si)) ≥ 2ε1. (4)

Otherwise, no change is made, an unsuccessful update oc-
curs, and Qt+1(s, a) = Qt(s, a). For all other state-action
pairs (s′, a′) �= (s, a), the action-value estimate is left un-
changed, that is, Qt+1(s

′, a′) = Qt(s
′, a′). In addition, if

the condition on LAUt(s, a) above doesn’t hold, then no up-
date is made.

The main difference between Rand-RTDP and RTDP is
that instead of a full Bellman backup (Equation 1), Rand-
RTDP performs a multi-sample backup (Equation 3). In ad-
dition, the update of Rand-RTDP involves an additive bonus
of ε1 (a small positive number). The purpose of this bonus
is to ensure that, with high probability, the action-value esti-
mates, Q(s, a), are optimistic, which means that they always
upper bound the optimal action-values, Q∗(s, a). The bonus
is needed because even if the previous value estimates, Vt(·),
are optimistic, the random sampling procedure could result
in a choice of next-states and rewards so that the average
(1
m

∑m
i=1 (ri + γVt(si))) of these terms is not optimistic

anymore.
The purpose of the LAU(s, a) values (and the condition on

them required for an attempted update) is to limit the number
of attempted updates performed by the algorithm. This limit
allows us to prove that, with high probability, every random-
ized update will result in a new action-value estimate that is
not too far from what would have resulted if a full backup
was performed. They also limit the total amount of com-
putation. Specifically, they prevent an attempted update for
(s, a) if the last attempted update for (s, a) was unsuccessful
and no other action-value estimates have changed since the
last attempted update of (s, a).

Rand-RTDP’s Generative Model Note that Rand-RTDP
updates its action-value estimates by obtaining random sam-
ples of next states s′ and immediate rewards r for its current
state-action pair. This sampling is the only time Rand-RTDP
uses its knowledge of M . In other words, Rand-RTDP re-
quires only a generative model of the underlying MDP3,
rather than an actual representation of the transition and re-
ward functions. Next, we show that the agent can “simulate”

3A generative model of an MDP is a model that outputs a ran-
dom next state and immediate reward pair given input of a state-
action pair (s, a). Each call to the model should produce inde-
pendent draws distributed according to the dynamics of the MDP
(Kearns et al., 1999).

a generative model when it is given the true dynamics of the
underlying MDP. The reverse, obtaining the true dynamics
given a generative model, is in general impossible given only
finite time.

If the algorithm is given an explicit representation of the
transition function, T (·|s, a), in standard form (a list, for
each (s, a), of possible next-states s′ and their correspond-
ing probabilities T (s′|s, a)), then we can modify this data
structure, by adding to each transition probability in the list
the sum of the transition probabilities of all next-states ap-
pearing earlier in the list, in the same amount of time it
takes just to read the original data structure (transition func-
tion) as input. Our modified data structure combined with
a random number generator clearly allows us to draw ran-
dom next-states in time logarithmically (by binary search)
in the number of next states (at most S) (Knuth, 1969).
Thus, we can simulate a generative model in logarithmic
time with a constant-time setup cost. Knuth (1969) also de-
scribes a more sophisticated method that allows constant-
time queries, but requires sorting the input lists in the pre-
processing stage.

Implementation of Rand-RTDP An implementation of
Rand-RTDP is provided in Algorithm 1.

Algorithm 1 Rand-RTDP
0: Inputs: γ, S, A, m, ε1
1: for all (s, a) do
2: Q(s, a)← 1/(1− γ) // action-value estimates
3: LAU(s, a)← 0 // time of last attempted update
4: end for
5: t∗ ← 0 // time of most recent Q-value change
6: for t = 1, 2, 3, · · · do
7: Let s denote the state at time t.
8: Choose action a := argmaxa′∈A Q(s, a′).
9: if LAU(s, a) ≤ t∗ then

10: Draw m random next states, s1, . . . , sm and m ran-
dom immediate rewards r1, . . . , rm from the gen-
erative model for (s, a).

11: q ← 1
m

∑m
i=1 (ri + γ maxa′∈A Q(si, a

′))
12: if Q(s, a)− q ≥ 2ε1 then
13: Q(s, a)← q + ε1
14: t∗ ← t
15: end if
16: LAU(s, a)← t
17: end if
18: end for

Analysis and Comparison
Computational Complexity
In this section, we analyze the per-step computational com-
plexity of the two algorithms. We measure complexity as-
suming individual numbers require unit storage and can be
manipulated arithmetically in unit time4.

The per-step computation cost of RTDP is O(K +ln(A)),
(where K is the number of states that can be reached in

4We have tried not to abuse this assumption.

one step with positive probability), which is highly detri-
mental in domains with a large number of next states (in
the worst case, K = S). The per-step computational cost
of Rand-RTDP is O(m · G + ln(A)) where G is the cost
of drawing a single sample from the generative model. In
the analysis section we provide a value for m that is suffi-
cient for Rand-RTDP to be PAC-MDP. Using this value of
m (see Proposition 3) and assuming that G = O(ln(K)),
the worst-case per-step computational cost of Rand-RTDP
is O(m ·G + ln(A)) =

O

(
ln (SA/(εδ(1− γ)))

ε2(1− γ)4
ln(K) + ln(A)

)
,

which is a vast improvement over RTDP when only the
dependence on S is considered. Specifically, when ε, δ,
A, and γ are taken as constants, the computational cost is
O(ln(S) ln(K)) = O(ln2(S)). Note that the computational
requirements of both algorithms involve an additive factor
of O(ln(A)), due to storing and accessing the maximum
action-value estimate for the current state after an update
occurs via a priority queue.

General Framework
The algorithms we consider have the following form:

Definition 1 Suppose an RL algorithmAmaintains a value,
denoted Q(s, a), for each state-action pair (s, a) with s ∈
S and a ∈ A. Let Qt(s, a) denote the estimate for (s, a)
immediately before the tth action of the agent. We say that
A is a greedy algorithm if the tth action of A, at, is at :=
argmaxa∈A Qt(st, a), where st is the tth state reached by
the agent.

The following is a definition of a new MDP that will be
useful in our analysis.

Definition 2 (Known State-Action MDP) For an MDP
M = 〈S, A, T, R, γ〉, a given set of action-values, Q(s, a)
for each state-action pair (s, a), and a set K of state-action
pairs, we define the known state-action MDP MK =
〈S∪{s0}, A, TK , RK , γ〉 as follows. Let s0 be an additional
state added to the state space of M . Under all actions from
s0, the agent is returned to s0 with probability 1. The re-
ward for taking any action from s0 is 0. For all (s, a) ∈ K ,
RK(s, a) = R(s, a) and TK(·|s, a) = T (·|s, a). For all
(s, a) �∈ K , RK(s, a) = Q(s, a) and T (s0|s, a) = 1.

The known state-action MDP is a generalization of the
standard notions of a “known state MDP” of Kearns and
Singh (2002) and Kakade (2003). It is an MDP whose dy-
namics (reward and transition functions) are equal to the true
dynamics of M for a subset of the state-action pairs (specif-
ically those in K). For all other state-action pairs, the value
of taking those state-action pairs in MK (and following any
policy from that point on) is equal to the current action-value
estimates Q(s, a). We intuitively view K as a set of state-
action pairs for which the agent has sufficiently accurate es-
timates of their dynamics.

Definition 3 (Escape Event) Suppose that for some algo-
rithm there is a set of state-action pairs Kt defined during

each timestep t. Let AK be defined as the event, called the
escape event, that some state-action pair (s, a) is experi-
enced by the agent at time t such that (s, a) �∈ Kt.

Note that all learning algorithms we consider take ε and
δ as input. We let A(ε, δ) denote the version of algorithm
A parameterized with ε and δ. The following proposition is
taken from Strehl et al. (2006).

Proposition 1 Let A(ε, δ) be a greedy learning algorithm,
such that for every timestep t, there exists a set Kt of state-
action pairs. We assume that Kt = Kt+1 unless during
timestep t, an update to some action-value occurs or the
event AK happens. Let MKt

be the known state-action
MDP and πt be the current greedy policy, that is, for all
states s, πt(s) = argmaxa Qt(s, a). Suppose that for any
inputs ε and δ, with probability at least 1 − δ, the following
conditions hold: (1) Qt(s, a) ≥ Q∗(s, a) − ε (optimism),
(2) Vt(s)− V πt

MKt

(s) ≤ ε (accuracy), and (3) the total num-
ber of updates of action-value estimates plus the number of
times the escape event from Kt, AK , can occur is bounded
by ζ(ε, δ) (learning complexity). Then, when A(ε, δ) is ex-
ecuted on any MDP M , it will follow a 4ε-optimal policy
from its current state on all but

O

(
ζ(ε, δ)

ε(1− γ)2
ln

1

δ
ln

1

ε(1− γ)

)

timesteps, with probability at least 1− 2δ.

Our proofs work by the following scheme (for both RTDP
and Rand-RTDP): (1) Define a set of known-state actions for
each timestep t. (2) Show that these satisfy the conditions of
Proposition 1.

Sample Complexity Bound for RTDP
In this section, we prove that RTDP is PAC-MDP with a
sample complexity bound of

O

(
SA

ε2(1 − γ)4
ln

1

δ
ln

1

ε(1− γ)

)
. (5)

First, we show that RTDP has the property of “optimism”.

Lemma 1 During execution of RTDP, Qt(s, a) ≥ Q∗(s, a)
holds for all time steps t and state-action pairs (s, a).

Proof: The proof is by induction on the timestep t. For
the base case, note that Q1(s, a) = 1/(1 − γ) ≥ Q∗(s, a)
for all (s, a). Now, suppose the claim holds for all
timesteps less than or equal to t. Thus, we have that
Qt(s, a) ≥ Q∗(s, a) for all (s, a). We also have that
Vt(s) = maxa∈A Qt(s, a) ≥ Qt(s, argmaxa Q∗(s, a)) ≥
Q∗(s, argmaxa Q∗(s, a)) = V ∗(s). Suppose s is the tth
state reached and a is the action taken at time t. Of
the action-values maintained by RTDP, only Q(s, a) can
change. Specifically, if it does get updated, then we have
that Qt+1(s, a) = R(s, a) + γ

∑
s′∈S T (s, a, s′)Vt(s

′) ≥
R(s, a) + γ

∑
s′∈S T (s, a, s′)V ∗(s′) = Q∗(s, a). �

Proposition 2 The RTDP algorithm with ε1 = ε(1 − γ) is
PAC-MDP.

Proof: We apply Proposition 1. By Lemma 1, Condition (1)
is satisfied. During timestep t of the execution of RTDP, we
define Kt to be the set of all state-action pairs (s, a) such
that:

Qt(s, a)−

(
R(s, a) + γ

∑
s′

T (s′|s, a)Vt(s
′)

)
≤ ε1. (6)

We claim that Vt(s)−V πt

MKt

(s) ≤ ε1/(1− γ) always holds.
To verify, note that V πt

MKt

is the solution to the following set
of equations:

V πt

MKt

(s) = R(s, πt(s)) + γ
∑
s′∈S

T (s′|s, πt(s))V
πt

MKt

(s′),

if (s, πt(s)) ∈ Kt,

V πt

MKt

(s) = Qt(s, πt(s)), if (s, πt(s)) �∈ Kt.

The vector Vt is the solution to a similar set of equations
except with some additional positive reward terms, each
bounded by ε1 (see Equation 6). It follows that Vt(s) −
V πt

MKt

(s) ≤ ε1/(1 − γ). Thus, by letting ε1 = ε(1 − γ),
we satisfy Vt(s) − V πt

MKt

(s) ≤ ε, as desired (to fulfill Con-
dition (2) of Proposition 1). Finally, note that by defini-
tion, the algorithm performs updates if and only if the event
AK occurs. Hence, it is sufficient to bound the number of
times that AK occurs. Every successful update of Q(s, a)
decreases its value by at least ε1. Since its value is initial-
ized to 1/(1− γ), we have that each state-action pair can be
updated at most 1/(ε1(1 − γ)) times, for a total of at most
SA/(ε1(1 − γ)) = SA/(ε(1 − γ)2) timesteps t such that
AK can occur. Ignoring log factors, this analysis leads to a
total sample complexity bound of

Õ

(
SA

ε2(1− γ)4

)
. (7)

�

Sample Complexity Bound for Rand-RTDP
In this section, we prove that Rand-RTDP is PAC-MDP also
with a sample complexity bound of

O

(
SA

ε2(1− γ)4
ln

1

δ
ln

1

ε(1− γ)

)
. (8)

For Rand-RTDP, we define Kt, during timestep t of the
execution of Rand-RTDP, to be the set of all state-action
pairs (s, a) such that:

Qt(s, a)−

(
R(s, a) + γ

∑
s′

T (s′|s, a)Vt(s
′)

)
≤ 3ε1. (9)

We will show, in the proof of the following lemma, that
Rand-RTDP will perform at most κ attempted updates dur-
ing any given infinite-length run through any MDP, where

κ := SA

(
1 +

SA

ε1(1 − γ)

)

Lemma 2 During execution of Rand-RTDP, if m ≥
ln(2κ/δ)/(2ε1

2(1− γ)2), then on every timestep t such that
(escape event) AK occurs, a successful update also occurs,
with probability at least 1− δ/2.

Proof: First, we bound the number of updates and attempted
updates. Note that each time a successful update occurs for
(s, a), this event results in a decrease to the current action-
value estimate, Q(s, a), of at least ε1. As Q(s, a) is initial-
ized to 1/(1 − γ) and it cannot fall below zero, it can be
successfully updated at most 1/(ε1(1 − γ)) times. Hence,
the total number of updates is bounded by SA/(ε1(1− γ)).
Now, note that when a state-action pair, (s, a), is first expe-
rienced, it will always perform an attempted update. Next,
another attempted update of (s, a) will occur only when at
least some action-value has been successfully updated (due
to Line 9 in Algorithm 1) since the last attempted update
(of (s, a)). Thus, the total number of attempted updates is
bounded by SA(1 + SA/(ε1(1 − γ))) = κ.

Suppose at time t, (s, a) is experienced and results in
an attempted update. The Rand-RTDP agent draws m
next states s1, . . . , sm and m immediate rewards r1, . . . , rm

from its generative model. Define the random variables
Xi := ri + γVt(si) for i = 1, . . . , m. Note that the
Xi are independently and identically distributed with mean
E[Xi] = R(s, a) + γ

∑
s′ T (s′|s, a)Vt(s

′). Hence, by the
Hoeffding bound we have that

Pr

[
1

m

m∑
i=1

Xi − E[X1] ≥ ε1

]
≤ e−2ε1

2m(1−γ)2 .

Thus, by our choice of m we have that

1

m

m∑
i=1

Xi − ε1 < E[X1] (10)

will hold with probability at least 1− δ/(2κ). We claim that
if (s, a) �∈ Kt (so that the event AK occurred at time t),
then this attempted update will be successful if Equation 10
holds. To see this fact, note that the difference between the
old action-value estimate (Qt(s, a)) and the candidate for
the new action-value estimate is at least ε1:

Qt(s, a)−

(
1

m

m∑
i=1

(ri + γVt(si)) + ε1

)

= Qt(s, a)− (1/m)

m∑
i=1

(Xi)− ε1

> Qt(s, a)− E[X1]− 2ε1 > 3ε1 − 2ε1 = ε1.

The first step follows from the definition of Xi. The second
step follows from Equation 10. The third step follows from
the fact that (s, a) �∈ Kt (see Equation 9). Since there are at
most κ attempted updates, the chance that the update is not
successful (which is at most the probability that Condition
10 does not hold) is at most δ/2, for any timestep that sat-
isfies the above restrictions (an attempted update occurs for
(s, a) �∈ Kt at time t), by the union bound.

What we have shown is that, with high probability, every
attempted update of (s, a) at times t such that (s, a) �∈ Kt

will be successful. It can be shown that if this statement
holds for execution of the algorithm up to some time t, and
(s, a) �∈ Kt is the state-action pair at time t, then an at-
tempted update will occur for (s, a). It is not hard to prove
but is a bit tedious, so we omit it here. �

Next, we show that Rand-RTDP has the property of “op-
timism” with high probability.

Lemma 3 During execution of Rand-RTDP, if m ≥
ln(2κ/δ)/(2ε1

2(1 − γ)2), then Qt(s, a) ≥ Q∗(s, a) holds
for all time steps t and state-action pairs (s, a), with proba-
bility at least 1− δ/2.

Proof: The proof is by induction on the timestep t. When
t = 1, no actions have been taken by the agent yet, and we
have that Q1(s, a) = 1/(1−γ) ≥ Q∗(s, a) for all (s, a), due
to optimistic initialization. Now, suppose that Qt(s, a) ≥
Q∗(s, a) holds for all (s, a) at some timestep t. Suppose
that a is the tth action, and it was taken from state s (s was
the tth state reached by the agent). If this step does not re-
sult in an attempted update, then no action-value estimates
change, and we are done. Thus, suppose that an attempted
update does occur. The Rand-RTDP agent draws m next
states s1, . . . , sm and m immediate rewards r1, . . . , rm from
its generative model (to be used in the attempted update). By
Equation 3, if the update is successful, then Qt+1(s, a) =
(1/m)

∑m
i=1 (ri + γVt(si)) + ε1 (if it’s not successful then

it still upper bounds Q∗(s, a), by the inductive assumption).
However, we have that (1/m)

∑m
i=1 (ri + γVt(si)) + ε1 ≥

(1/m)
∑m

i=1 (ri + γV ∗(si)) + ε1, by the induction hypoth-
esis. Applying the Hoeffding bound (with random variables
Yi := ri + γV ∗(si) for i = 1, . . . , m) and the union bound
as in the proof of Lemma 2, we then have that Qt+1(s, a) ≥
Q∗(s, a) holds, with probability at least 1 − δ/2, over all
attempted updates of any state-action pair. �

Proposition 3 The Rand-RTDP algorithm with m =
1

2ε12(1−γ)2 ln
(

2κ
δ

)
= O

(
1

ε2(1−γ)4 ln
(

SA
ε(1−γ)δ

))
and ε1 =

ε(1− γ)/3 is PAC-MDP.

Proof sketch: The proof is very similar to that of Proposi-
tion 2, and leads to a total sample complexity bound of

Õ

(
SA

ε2(1− γ)4

)
. (11)

�

Note that the PAC sample complexity bound we’ve
proved for RTDP (Equation 7) is asymptotically the same
as that for Rand-RTDP (see Equation 11). This result sug-
gests that it may be possible to use Rand-RTDP instead of
RTDP on large-scale problems where computation cost is
critical, without sacrificing much in terms of convergence
performance.

Experiments
For each experiment, we recorded the cumulative reward ob-
tained (to stand in for sample complexity)5 by the algorithm

5The true sample complexity of the algorithm is expensive, and
often impossible, to compute in practice.

for a fixed number of timesteps (50,000). We also measured
the number of backups (specifically, the number of times
the algorithm computes the value of some reachable next-
state, V (s′)) computed by the algorithm (to measure com-
putational complexity). Our experiments were designed to
supplement the theoretical analysis and are not meant as a
thorough evaluation of the algorithms.

The algorithms were tested on random MDPs generated
as follows, for parameters S = 500, A = 2, and γ = 0.95.
To guarantee that every state was reachable from every other
state, random Hamiltonian circuits (to ensure connectivity)
connecting every state were constructed under each action,
and a probability of 0.1 was assigned to each of the cor-
responding transitions. Then, for each state-action pair,
the transition function was completed by assigning random
probabilities (summing up to 0.9) to 99 randomly selected
next states. Therefore, for each state-action pair, there were
at most 100 next-states. To make the MDP more interesting,
we constructed the reward function so that R(s, a) tended to
be large if the index of s was large; specifically, the mean
reward, R(s, a), was randomly selected with mean propor-
tional to the index of s.6 Each experiment was repeated 100
times and the results were averaged.

The results of RTDP are summarized below:
Param Reward Backups

ε1 = 0.1 25, 248± 13 4, 476, 325 ± 589
ε1 = 0.2 25, 235± 12 4, 396, 626 ± 889
ε1 = 0.3 25, 208± 15 4, 288, 353 ± 4, 505
ε1 = 0.4 25, 197± 16 4, 005, 369 ± 31, 161

The results of Rand-RTDP are summarized below:
Param Reward Backups

(ε1 = 0.1, m = 30) 25, 124± 14 1, 469, 122± 184
(ε1 = 0.2, m = 30) 25, 138± 12 1, 450, 281± 227
(ε1 = 0.3, m = 30) 25, 126± 15 1, 435, 197± 269
(ε1 = 0.4, m = 30) 25, 104± 15 1, 420, 445± 343
(ε1 = 0.1, m = 50) 25, 159± 13 2, 448, 039± 308
(ε1 = 0.2, m = 50) 25, 150± 15 2, 415, 387± 411
(ε1 = 0.3, m = 50) 25, 148± 14 2, 388, 299± 456
(ε1 = 0.4, m = 50) 25, 139± 13 2, 361, 596± 596

As a comparison, we also ran the optimal policy, which
achieved 25,873 ± 13 cumulative reward, and the policy
that chooses actions uniformly at random, which achieved
24,891± 15 cumulative reward. We see from the results that
Rand-RTDP did not require as much computation as RTDP,
but also didn’t achieve quite as much reward.

Conclusion
In this paper, we have provided a theoretical analysis of the
sample complexity of RTDP and a randomized variant of it,
Rand-RTDP. When viewed as learning algorithms, both al-
gorithms are shown to be efficient in the PAC-MDP frame-
work. In particular, their sample complexity bounds have a
sub-quadratic dependence on the sizes of the state and action

6We found that if the mean rewards are chosen uniformly at
random, then the optimal policy almost always picks the action
that maximizes the immediate reward, which is not interesting in
the context of sequential decision making.

spaces, which are arguably the most important factors. To
the best of our knowledge, this is the first sample complex-
ity result for RTDP, although people have investigated its
limit behavior (Barto et al., 1995; Bonet & Geffner, 2003).
Furthermore, the Rand-RTDP algorithm improves the per-
step computational cost over RTDP without an asymptotic
increase in its sample complexity.

Acknowledgments
Thanks to the National Science Foundation (IIS-0325281).
We also thank John Langford and Eric Wiewiora for discus-
sions.

References
Barto, A. G., Bradtke, S. J., & Singh, S. P. (1995). Learning to act

using real-time dynamic programming. Artificial Intelligence,
72, 81–138.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-dynamic pro-
gramming. Belmont, MA: Athena Scientific.

Bonet, B., & Geffner, H. (2003). Labeled RTDP: Improving the
convergence of real-time dynamic programming. Proc. 13th In-
ternational Conf. on Automated Planning and Scheduling (pp.
12–21). Trento, Italy: AAAI Press.

Brafman, R. I., & Tennenholtz, M. (2002). R-MAX—a gen-
eral polynomial time algorithm for near-optimal reinforcement
learning. Journal of Machine Learning Research, 3, 213–231.

Kakade, S. M. (2003). On the sample complexity of reinforcement
learning. Doctoral dissertation, Gatsby Computational Neuro-
science Unit, University College London.

Kearns, M., Mansour, Y., & Ng, A. Y. (1999). A sparse sampling
algorithm for near-optimal planning in large Markov decision
processes. Proceedings of the Sixteenth International Joint Con-
ference on Artificial Intelligence (IJCAI-99) (pp. 1324–1331).

Kearns, M. J., & Singh, S. P. (2002). Near-optimal reinforcement
learning in polynomial time. Machine Learning, 49, 209–232.

Knuth, D. (1969). The art of computer programming: Vol
2 / seminumerical algorithms, chapter 3: Random numbers.
Addison-Wesley.

Korf, R. E. (1990). Real-time heuristic search. Artificial Intelli-
gence, 42, 189–211.

McMahan, H. B., Likhachev, M., & Gordon, G. J. (2005). Bounded
real-time dynamic programming: RTDP with monotone upper
bounds and performance guarantees. Proceedings of the Twenty-
second International Conference on Machine Learning (ICML-
05) (pp. 569–576).

Strehl, A. L., Li, L., & Littman, M. L. (2006). Incremental model-
based learners with formal learning-time guarantees. To appear
in Proceedings of the Twenty-second Conference on Uncertainty
in Artificial Intelligence (UAI-06).

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An
introduction. The MIT Press.

Valiant, L. G. (1984). A theory of the learnable. Communications
of the ACM, 27, 1134–1142.

Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine
Learning, 8, 279–292.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 2
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

